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Diabatic quantum and classical annealing of the Sherrington-Kirkpatrick model
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Quantum annealing is a contender to solve combinatorial optimization problems based on quantum dynamics.
While significant efforts have been undertaken to investigate the quality of the solutions and the required run
times, much less attention has been paid to understanding the dynamics of quantum annealing and the process
leading to the solution during the sweep itself. In this comprehensive study, we investigate various aspects of the
quantum annealing dynamics using different approaches. We perform quantum annealing, simulated quantum
annealing, and classical annealing on several hundred instances of the Sherrington-Kirkpatrick model with
intermediate system sizes up to 22 spins using numerical simulations. We observe qualitative differences between
the quantum and classical methods, in particular at intermediate times, where a peak in the fidelity, also known as
diabatic bump, appears for hard instances. Furthermore, we investigate the two-point correlation functions, which
feature differences at intermediate times as well. At short times, however, the methods are similar again, which
can be explained by relating the short-time expansion of quantum annealing to a high-temperature expansion,
thus allowing one in principle to find the classical solution already at short times, albeit at prohibitive sampling
cost.
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I. INTRODUCTION

In 1998 Kadowaki and Nishimori suggested using quantum
fluctuations to solve combinatorial optimization problems [1].
To be precise, a noncommuting “driver” Hamiltonian is added
to a problem Hamiltonian, which is diagonal in the compu-
tational basis and whose ground state encodes the solution
of the optimization problem. Starting in the ground state of
the driver, which is very strong at this point, the strength
is reduced dynamically, and the state evolves according to
the Schrödinger equation, hopefully having a large overlap
with the desired ground state. The resulting method, named
quantum annealing by its inventors, received much attention
in the following decades [2–4] as it might outperform classical
algorithms for relevant applications and as experimental real-
izations using superconducting qubits exist and can operate
on up to several thousand qubits [5–8]. Most of the early
studies focused on long annealing times, where the method
can be related to the adiabatic theorem, guaranteeing to find
the (desired) ground state if the fluctuations are weakened
adiabatically, i.e., slowly enough [9–11]. At long annealing
times, quantum annealing, therefore, corresponds to adiabatic
quantum computation.

Of course, the main question here is, how long do these
times need to be for a given problem and how do they
compare with classical algorithms. The decisive quantity for
quantum annealing is the minimal gap between the instanta-
neous ground state and excited state. This gap can be related
to the order of the quantum phase transition, with typically
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polynomially small gaps in the system size at second-order
and exponential small gaps at first-order transitions. However,
some works show that at first-order transitions the situation
can be much more varied [12–14]. The next question of how
this compares with classical algorithms is also strongly model
dependent. Here mixed results were reported in the literature
for different problems, with some problems benefiting from
quantum annealing [15], while other even very simple prob-
lems, such as the mean-field all-to-all ferromagnet, lack such
benefits and can or even do show worse performance [16–19].
Furthermore, many works suggest that quantum annealing
of NP-hard problems is exponentially hard in the quantum
case as well [20–24] or at least that an exponential speedup
cannot be expected for all types of problem instances [25].
However, some works do report positive results for differ-
ent models [8,26,27]. Furthermore, nonexponential speedups
could also be possible and useful. Even given a benefit, a
major question is whether the actual experimental annealers
could use it since they most likely do not implement the
coherent unitary dynamics of the Schrödinger equation, but
suffer from finite temperature and other imperfections [3,5].
In any case, interest in quantum annealing with faster anneal-
ing times outside the adiabatic regime has grown recently, and
this setup is also known as diabatic quantum annealing [28].
However, to our best knowledge, few works have investigated
quantum annealing for various annealing times [29,30].

In this article, we present a study comparing quantum
annealing and two classical annealing algorithms, simu-
lated annealing and simulated quantum annealing, on the
Sherrington-Kirkpatrick model (mean-field spin glass), a
problem known to be a NP-hard problem [31]. We investigate
two to three hundred instances for system sizes ranging from

2469-9926/2023/107(6)/062602(19) 062602-1 ©2023 American Physical Society

https://orcid.org/0000-0002-4312-8851
https://orcid.org/0000-0002-2272-2691
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.062602&domain=pdf&date_stamp=2023-06-01
https://doi.org/10.1103/PhysRevA.107.062602


ARTEM RAKCHEEV AND ANDREAS M. LÄUCHLI PHYSICAL REVIEW A 107, 062602 (2023)

N = 8 to N = 22 and perform the different annealing types
at various speeds. This allows us to gain an overview of the
qualitative behavior of the methods at short, intermediate, and
long times. We will see that the methods show similarities in
the short- and long-time regimes, and that most qualitative
deviations between the methods lie in the intermediate-time
regime. In fact, for our model and instances, the qualita-
tive deviations are strong between quantum annealing and
the classical annealing methods, with both classical methods
being rather similar. The article is structured as follows: in
Sec. II we introduce the different annealing methods in more
detail and comment on the numerical implementations. Next,
in Sec. III we introduce the model and discuss the instances
which were investigated. We then discuss the behavior of the
fidelity and the correlation functions in Secs. IV and V. Here
we focus on identifying the different regimes discussed above
and on identifying the differences and similarities between
the methods. It will turn out that particularly at short times
the methods are very similar to each other in terms of the
correlation functions and fidelity growth. We argue that this
is related to the probability distribution in the computational
basis in Sec. VI. In particular, we demonstrate that at short
times quantum annealing produces a thermal distribution at
high temperatures.

Throughout the article, we use dimensionless units ob-
tained by setting h̄ = 1 and kB = 1. Furthermore, we measure
energies in units of a fictitious interaction constant J ,
which we also set to unity. In practice, this value would
be determined by the strength of the interactions in the
Sherrington-Kirkpatrick Hamiltonian [Eq. (7)].

II. ANNEALING METHODS

A. Quantum annealing

Quantum annealing (QA) works by evolving a state with a
time-dependent Hamiltonian interpolating between an initial
and final Hamiltonian Hini and Hfin,

H (s(t )) = [1 − s(t )]Hini + s(t )Hfin, (1)

parameterized by a time-dependent parameter s running from
0 to 1, while t runs from 0 to the annealing time T . In this
work we will focus on a standard setup with s(t ) = t/T . The
initial state is the ground state for Hini. A typical choice, which
we will also use, is to take a transverse field Hini = Hx =
−∑

i σ
x
i for quantum fluctuations. As a result, the model

which we treat is not the most generic version of quantum
annealing, since the total Hamiltonian is a so-called stoquastic
Hamiltonian, i.e., all off-diagonal matrix elements are non-
negative [2]. This property also enables simulated quantum
annealing, which we will introduce later in this section. The
differences of stoquastic and general Hamiltonians for quan-
tum evolution are a subject of current research [32–34].

We simulate quantum annealing numerically, by discretiz-
ing time with a resolution of �t = 0.01, and then approx-
imating the time-dependent Hamiltonian by a fourth-order
commutator-free Magnus expansion [35,36]. This results in
having to compute the action of exponentials of large sparse
matrices onto the state at each step. This can be done effi-
ciently using Krylov subspace methods [37–41] with partial
reorthogonalization [42] and an appropriate error bound [43]

to ensure the accuracy of the result. The model which we
will use has a “spin-flip” symmetry, meaning that one can
exchange σ z

i by −σ z
i at all sites i, without changing the Hamil-

tonian. As a result, the full Hilbert space can be decomposed
into two independent subspaces with even and odd spin-flip
parity. Since the initial state lies fully in the positive parity
subspace, we can operate therein and ignore the other. This
reduces the Hilbert space dimension by a factor of two, and
thus the size of the dimension for N spins is 2N−1. For the
largest system size of N = 22, this amounts to a dimension of
2 097 152. During the simulations, we compute the two-site
correlation functions Gi j = 〈σ z

i σ z
j 〉 and record the 1000 most

probable states in the computational basis to gain an overview
of the distribution.

B. Simulated annealing

Simulated annealing (SA) is the classical “predecessor” to
quantum annealing. It mimics the cooling down of a classical
system, which, if done slowly enough, results in the system
reaching the equilibrium state at zero temperature, the ground
state of the system [44,45]. Thermalization dynamics with a
time-dependent temperature and associated inverse tempera-
ture β can be described by the classical master equation

Ṗ(t ) = Q(β(t ))P(t ), (2)

where P denotes the probabilities of the classical states and
Q is the so-called transition rate matrix. This equation is
extremely similar to the Schrödinger equation, and the state
at time t can be obtained from the transition matrix

W (t ) = T exp

(∫ t

0
Q(β(τ )) dτ

)
, (3)

by P(t ) = W (t )P(0). If the temperature is constant, this de-
scribes equilibration at a constant temperature, but if it is
lowered from infinite (or very high) to zero (or very low) tem-
perature sufficiently slowly, the state remains in equilibrium,
and the system is annealed to the ground state.

Here one should note the similarity with the quantum case,
where one can define the time-evolution operator

U (t ) = T exp

(
−i

∫ t

0
H (τ ) dτ

)

analogously. Of course, the mathematical properties of Q and
W have to be different than the ones of H and U in the quan-
tum case, since the probabilities satisfy

∑
n Pn = 1 contrary

to the amplitudes an satisfying
∑

n |an|2 = 1 in the quantum
case (in both cases n refers to states in some arbitrary basis).
As such, a matrix like W , conserving the sum of probabilities,
is also called a stochastic matrix [46].

Here we do not want to focus on these details, though,
since one of the main advantages of SA is that one can avoid
simulating the master equation using the full probability vec-
tor and transition rate matrix, which would be exponentially
costly as in the case of QA. Rather, one can simulate the
equation stochastically, keeping only one state (or a relatively
small number of states) at a time and never using the full ma-
trix. Usually a Markov chain Monte Carlo approach is taken
here [19,47,48]. For this, one first assumes a discretization in
time, with the state of the system being one of the possible
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classical states, i.e., a state in the z basis. In each time step,
also called a Monte Carlo step (MCS), the state is either
changed or stays constant. This change is nondeterministic,
but depends on a random number, leading to the aforemen-
tioned stochastic simulation. If the transition rates Qi j or the
transition probabilities Wi j from state i to state j satisfy the
detailed balance [46,49]

Wjiρi = Wi jρ j ∀i �= j (4)

with the Boltzmann weights ρi = exp(−βEi )/Z (β ), averag-
ing over several simulations yields the solution of the classical
master equation [50]. Here the energies Ei are the eigenvalues
of the (classical) Hamiltonian, and it is important to note
that the detailed balance condition in Eq. (4) is reversed in
terms of the indices compared to most literature. The reason
is that historically Eq. (2) is typically written as P(t )Q, with
Q acting to the left, and the same applies to W . Here we
choose a different convention to highlight the similarities to
the Schrödinger equation.

For our simulations, we use a simple scheme based on
single spin flips, meaning that at each step a new state, dif-
fering from the current one by a single randomly flipped spin,
is proposed, and the acceptance probability is given by the
Glauber rule

Pacc(β,�E ) = 1

2

[
1 − tanh

(
β�E

2

)]
, (5)

with �E the energy difference between the proposed and the
current state. The Glauber rule is known to be very similar to
the Metropolis-Hastings rule but can have advantages at high
temperatures [49]. For the model defined in Eq. (7), the energy
difference upon flipping spin i is

�E = −σ z
i

∑
j

Ji jσ
z
j .

The annealing time is set by the number of MCS, where the
value of s changes linearly between 0 and 1 during the entire
run and the temperature is given by β(s) = (1/s − 1)−1. In
that sense, having more steps leads to a slower temperature
variation and gives the system more time to potentially equi-
librate in a temperature window. The temperature schedule is
derived by equating the temperature T with the ratio of the
transverse field strength to the Ising strength � following [1].
In our case, the ratio as a function of s is (1 − s)/s. We
typically perform simulations with 100–10 000 MCS for each
instance with a resolution of �MCS = 100. As we will see in
later sections, this is typically enough to reach the long-time
limit. Averaging over R runs at a fixed value of MCS yields
expectation values for the correlation functions, as well as the
distribution of the most probable 1000 states for each value of
s. These values are expected to converge with 1/

√
R [49], and

thus we perform R = 106 runs to resolve even relatively small
correlations.

To be precise, we start each run with a random state (state
here refers to a product state in the computational basis), such
that the average corresponds to infinite temperature, and then
keep a record of states after at every measuring step. There
are 100 measuring steps, independent of the number of MCS,
such that we get the same resolution in s, �s = 0.01, as in
QA. These records are kept for every run, such that at the

end we have a tally, of how often each state appeared at each
step over all runs. From this, we can obtain the expectation
value of the correlation functions as well as the distribution
of the 1000 most probable states at each step. Of course, we
actually have all states and not just 1000, but saving all states
for all instances and annealing times would require far too
much storage: a quick estimate for N = 20 assuming 100 in-
stances, 100 simulations per instance, and 100 measurements
per simulation gives 219 × 106 × 4 B ≈ 2 TB!

C. Simulated quantum annealing

Simulated quantum annealing (SQA), sometimes also re-
ferred to as quantum simulated annealing or path integral
Monte Carlo, is essentially again classical simulated anneal-
ing, but this time performed with a Hamiltonian derived
from the QA protocol via the quantum-classical correspon-
dence, rather than the solely classical Hamiltonian [19,47,48].
The main idea is that finite-temperature properties of a d-
dimensional quantum Hamiltonian can be mapped to the
finite-temperature properties of a (d + 1)-dimensional clas-
sical Hamiltonian. For our finite-size spin systems, this
mapping applied to the quantum Hamiltonian with N spins
at temperature β leads to a classical Hamiltonian with N × n
spins at temperature βSQA = β/n [51]. If β is chosen suffi-
ciently high, we can now follow the thermal properties close
to the ground state of the QA Hamiltonian. Hence, although
the unitary evolution of QA is not simulated in SQA [52],
the algorithm still uses some features of the quantum Hamil-
tonian and as such can even be exponentially faster than
SA [19,47,53–55], although the full conditions for which a
speedup occurs are not yet understood in full.

The quantum-classical mapping relies on relating the parti-
tion function Z (β ) of a suitable quantum model to the partition
function of a classical model. An introduction can be found in
many textbooks, for example, in [49]. For the Sherrington-
Kirkpatrick model from Eq. (7) in a transverse field, the
“extended” classical Hamiltonian is

Hcl = s

2

N∑
i, j=1

n∑
k=1

Ji jz
(k)
i z(k)

j + J⊥(s)
N∑

i=1

n∑
k=1

z(k)
i z(k+1)

i , (6)

and here the upper index is just a dummy index numbering the
corresponding insertion. The states numbered in this way are
sometimes called replicas, and we will use this terminology
as well. Periodic boundary conditions are assumed for the
interreplica interaction, whose coupling is ferromagnetic and
given by

J⊥(s) = 1

2βSQA
ln{coth[βSQA(1 − s)]}.

In the continuum limit, n → ∞, the ground state of this
Hamiltonian will correspond to the thermal state of the quan-
tum model. Varying s and therefore the coupling results in
dynamics which could feature properties of the full quantum
dynamics. For the simulations, we use n = 8 replicas. While
this is a relatively small number, which is far from the con-
tinuum limit, research suggests [19] that this number leads to
a very good performance from an optimization perspective.
We again perform SQA based on single spin flips using the
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Glauber rule with a fixed number of MCS, this time at a
constant β = 10, changing only the coupling J⊥. For each
simulation, we again use 100 measurements based on a resolu-
tion �s = 0.01 and average over R = 106 runs. Additionally,
we also again record the most probable 1000 states, this time
per replica.

III. MODEL AND INSTANCES

A. Sherrington-Kirkpatrick model

For the optimization problem, we choose the Sherrington-
Kirkpatrick model for N spins

Hfin ≡ HSK = 1

2

N∑
i, j=1

Ji jσ
z
i σ z

j , (7)

where the Jii = 0 and Ji j = Jji = ±1 are random variables
with ±1 being equally likely (bimodal distribution). Another
common choice for the bonds Ji j is a Gaussian distribution. In
fact, there are more analytical results for the latter; however,
the former seems simpler, while still being NP-hard [31],
since only the number of (un-)satisfied bonds is relevant with-
out weights. Satisfied bonds are those where the connected
spins are aligned in the low-energy configuration with respect
to the bond. Models where not all bonds can be satisfied
simultaneously are often called frustrated models, with ad-
ditional disorder, here in the form of random bonds, that
often leads to spin glass behavior [56]. While spin glasses
can feature fascinating and exotic behavior, due to a complex
energy landscape, a detailed discussion of spin glass physics is
beyond the scope of this article, and the observations we will
make and the arguments we will develop should not depend
on the general properties on the model. We will rather focus
on properties of specific instances, which may well be present
in instances of other Ising Hamiltonians. Whether these fea-
tures are more likely in instances of a particular model is a
different question. Nevertheless, we will briefly summarize
some known results on the Sherrington-Kirkpatrick model in
the following.

We start with the observation that the model in Eq. (7) is
not extensive. The energy density will grow with system size
due to the mean-field nature of the interaction. To make it
extensive the bonds have to be scaled with 1/

√
N . We use

the nonextensive version since this seems to correspond to the
situation in quantum annealers, and therefore such models are
used in the relevant literature [25]. This means, however, that
one should be careful when comparing results for different
system sizes, although the variation in our sizes is not ex-
tremely large when taking the square root. In the extensive
version, the model with Gaussian bonds has a thermal spin
glass transition at βcrit = 1 [56–58], which is expected to be
modified only slightly, if at all, for bimodal bonds [59]. In
our version this has to be scaled by 1/

√
N . The ground-state

energy density of the bimodal normalized model has been
investigated in [60]. Converted to our version it scales as

E0

N
≈ 0.76

√
N + aN−1/6.

Finally, in a transverse field the normalized model with
Gaussian bonds has a quantum phase transition at scrit ≈

0.397 [61]. To use this result for our version, we look at how
the versions transform between each other:

(1 − s̃)Hx + s̃√
N

HSK = A(s̃)(1 − s(s̃))Hx + s(s̃)HSK

⇒ A(s̃) = 1 + s̃

(
1√
N

− 1

)

⇒ s(s̃) = s̃

A
√

N
= s̃√

N + s̃(1 − √
N )

.

Here we see that in our version the value of s corresponding
to a given s̃ in the normalized version decreases with 1/

√
N .

Therefore, the quantum phase transition will be pushed to
scrit = 0 in the thermodynamic limit, while lying around
scrit ≈ 0.19 − 0.12 for sizes N = 8 − 22. Through the trans-
formation, static properties of the versions can be related,
and thus the properties of the instances, such as the minimal
gaps, will also occur with normalization. For the dynamic
properties, the situation is a bit more difficult since through the
nonlinear nature of the transformation the schedule of s, i.e.,
s(t ) = t/T , will not transform into a similarly simple schedule
for s̃. Therefore, we make no claims concerning the dynamics
of the normalized model.

In the Ising limit (s → 1) the eigenstates are product states
in the z basis. The energy differences are multiples of 2,
due to the discrete values of the couplings (Ji j = ±1). As a
result, the energy difference from any bond when changing
one of the connected spins is ±2. Since the spectral width
grows as

√
N as discussed earlier, while the Hilbert space

dimension scales as 2N , one can expect a large degeneracy
for each energy. As we will discuss in the next subsection,
though, we focus on the case of a ground state which features
only the always present double degeneracy due to spin-flip
symmetry. Nevertheless, we typically expect the first excited
state to be largely, perhaps even exponentially degenerate, for
some instances. In the literature [21,62], perturbation theory
in the Ising limit for similar problems with a large degeneracy
in the excited sector was discussed with inconclusive results,
concerning the range of applicability and the predictions for
minimal gaps, to our best understanding.

Generally, a large difficulty is that the transverse field
term, which acts as the perturbation, has only matrix elements
between states with a single flipped spin. Another character-
ization of this situation is that the states have a Hamming
distance of 1, where the Hamming distance is the number
of flipped spins. However, it is very well possible that many
states in the first excited sector have a large Hamming distance
to the ground state and between themselves. In fact, there are
many indications that a large Hamming distance between the
ground state and the first excited state(s) is common for hard
instances [6,63]. The order of the perturbation theory is then
accordingly large and the convergence difficult to analyze.
A more recent work [24] used a different approach for the
Hopfield model (a different spin glass model) and found that
on the Ising side of the phase diagram, there are multiple small
gaps where the gap size scales with system size as a stretched
exponential, before scaling featuring a power-law scaling at
the transition point, consistent with a second-order transition.
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For the hard instances in our example, to be discussed in the
next subsection, we also see the minimal gap at values of
s deviating from the approximated transition point from the
earlier discussion. However, ultimately we cannot tell whether
this is due to the same reasoning as in the reference or to
the finite-size effects and/or corrections from the bimodal
distribution, as opposed to the Gaussian distribution, of the
bonds.

B. Instances

Having discussed the underlying model briefly, we now
focus on an overview of the concrete instances which were in-
vestigated. We have studied instances for various system sizes
up to N = 22 using quantum annealing, simulated annealing,
and simulated quantum annealing. We focused mostly on even
system sizes with an outlier in N = 15 acting as a “bridge”
between the smallest and largest sizes. In principle, it does
not matter if the system size is even or odd; however, for odd
sizes there can be “free spins,” i.e., spins that in the ground
state have the same number of satisfied and unsatisfied bonds.
These free spins cause a degeneracy, and therefore the fraction
of configurations with degenerate ground states may be larger
for odd sizes [64]. The instances were chosen at random;
however, only instances with a unique ground state (modulo
spin flip) were selected. Furthermore, we checked that the
instances do not have simply permuted bonds, by comparing
the full spectrum of each instance. It is unclear (to us) whether
the restriction to a nondegenerate ground state (modulo the
spin-flip symmetry) changes the complexity, but [25] suggests
it does not. Among these, we also identified “hard” instances
based on the appearance of a diabatic bump in intermediate-
time quantum annealing, to be discussed in detail in Sec. IV A.
The number of instances and hard instances is summarized in
Table I. Other measures of hardness include solution time and
the minimal energy gap [2]. The hardness also was found to
correlate with a large Hamming distance between the ground
and first excited states of the model [6]. These measures seem
to be mostly consistent with our definition; for example, the
minimal energy gaps for each instance of the larger system
sizes plotted in Fig. 1 show that the identified instances are
among those with the smallest gaps. Also, for the smaller
sizes, for which we do not find hard instances, the variation
in the gap sizes seems much smaller, so the absence of hard
instances is supported by the data. Concerning the Hamming
distance, a similar picture emerges. The average distances
between the ground state and the first excited sector for each
instance are shown in Fig. 2. Note that while the Hamming
distance ranges between 0 and N in principle, due to the
spin-flip symmetry the fully flipped states with distance N are
equivalent. Therefore, we use the minimal distance between
the pairs of states, which lies between 0 and N/2. Of course,
it is only 0 for the ground state itself, which is not included
in the averaging. The main conclusion is the same as for
the gaps. None of the identified hard instances have a small
average distance, while other instances with a large average
distance exist. Most instances have a small average distance
though. This remains true if we consider the distance of the
ground state to the first excited sector or to the first and second
sector combined, which we do not show here explicitly. We

TABLE I. Number of investigated instances and identified hard
instances for each system size.

N Instances “Hard”

8 100 –
10 100 –
12 200 –
15 200 –
18 200 –
20 200 6
22 300 9

would like to end the discussion of the model with a figure,
visualizing some of the aforementioned concepts for a single
hard instance with N = 20 in Fig. 3. The figure consists of
three main parts based on the states in the first two excited
subspaces of the instance, i.e., states including the ground
state, all first excited states, and all second excited states of
the Ising part.

In the upper left plot, the Hamming distance between the
eigenstates of the Ising part is plotted as a matrix: the lower
left corner corresponds to the ground state followed by the
first excited sector and the second sector, with the states not
having any particular order within the sectors. There are black
lines indicating the boundary of the ground state and the first
and second excited state sectors. The coloring, corresponding
to the distance, reveals that for this particular instance many
states in the first and second sectors have a large distance
to the ground state, while the distances within and between
the excited sectors seem to vary, but mostly to be on the
smaller side. We find it noteworthy that there is a state with
a very small distance to the ground state in the first sector,
which also features rather large distances to other states in
the sector. We cannot tell whether this scenario leads to hard
instances in general, but at least it illustrates the complexity
of a perturbation theory and strengthens the intuition that the
Hamming distance is relevant, as we will see shortly.

The lower plot on the left shows the (instantaneous) spec-
trum of a number of states corresponding to the first sectors
as before [65]. These were obtained using a sparse matrix
algorithm from SciPy, which computes a specified number of
eigenstates and eigenenergies. The energies are measured with
respect to the instantaneous ground-state energy, which there-
fore always lies at 0. The energies in both limits are discretized
with the lowest excitation energy being 4 in the transverse
field limit and 2 in the Ising limit. As expected from a hard
instance, the minimal gap at s ≈ 0.4 is rather small, in fact, not
visible by the eye. This is different from many other instances.
The color here is based on the entropy in base 2 computed
from the weights of the eigenstates in the Ising basis. Natu-
rally, the entropy is high in the transverse field limit, since
therein the eigenstates are almost equal weight superpositions.
In the Ising limit, the entropy is lower, but nonvanishing,
indicating that the eigenstates at a low transverse field are
superpositions of a fair number of Ising eigenstates. Close
to the minimal gap, the entropy of individual states changes
relatively rapidly with an intermediate value in the vicinity
of the minimum. This suggests that a significant number of
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FIG. 1. Minimal gaps between the ground state and excited state of all instances for system sizes N = 15, 18, 20, and 22. The gaps are
based on a resolution of �s = 0.01. The colored circles correspond to the instances identified as hard as described in the text. As we can see,
those also correspond to instances with the smallest minimal gaps, with some additional instances at N = 22 having small gaps.

Ising states is involved, and as a consequence, the usefulness
of perturbation theory may be limited here.

Finally, in the right part of the figure, we decompose each
of the 10 lowest instantaneous eigenstates in the basis of the
10 lowest Ising eigenstates, with the same order as in the Ham-
ming distance plot. The (logarithmic) color scale shows these
weights as a function of s. The plot is divided into segments
separated by white lines, with each segment corresponding
to an eigenstate with the lowest (the ground state) being at
the bottom and energy increasing to the top. Within each
segment, the weights are in the same order. For example, the
lowest colored bar shows that the instantaneous ground state
has a high overlap with the Ising ground state on the right
side of the minimum, also mixing slightly with the lowest
distance excited state mentioned earlier. On the left side, it is
a mixture of several states, not including the lowest distance
state. The mixture fits well with the states contributing to the
first instantaneous excited state, as seen in the second segment
from the bottom. In case this is not clear, the state in the
second segment also corresponds to the state with the lowest
energy above the ground state in the spectral plot. Here one
can see clearly that the first excited state on the Ising side
consists of states with a large Hamming distance to the ground
state explaining the very small energy gap at the minimum.
With this, we finish the, admittedly exhaustive, discussion of

Fig. 3 and the static properties of the model. In particular, the
interplay between the instantaneous and the Ising basis can be
useful in understanding dynamical properties, which we turn
to in the next section.

IV. FIDELITY

In the next sections, we will discuss different quantities
from the simulations. We start with the most relevant quantity
for optimization, which is the fidelity F , i.e.„ the probability
of finding the ground state. We will start with a thorough
discussion of quantum annealing and then comment on both
classical algorithms.

A. Quantum annealing

Let us begin the discussion by analyzing the dynamics of
a hard and a “normal (simple)” instance; the hard instance is
the same as in Fig. 3. In Fig. 4 the fidelity at the end of an
annealing run is plotted as a function of the annealing time T
for N = 20. The upper plot shows the normal instance and the
lower the hard one.

Additionally, the fidelity at larger annealing times is fitted
to an exponential form F ∼ 1 − e−αT , and the fit exponent in
each case is shown in the legend. For the normal instance, we
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FIG. 2. Average Hamming distance between the ground state and states in the first excited sector of all instances for system sizes N =
15, 18, 20, and 22. The red bars correspond to the identified hard instances. The distance lies between 1 and N/2, and not N , since the states
have a spin-flip symmetry, and we take the minimal distance of each pair. As is evident from the colored bars, all identified instances have
relatively large average distances, but there also exist other instances with a large distance. However, most instances have a smaller distance.
This picture remains similar if the second excited sector is included.

observe an (almost) monotonic increase of the fidelity with
time, with unit fidelity almost reached in the time window up
to T = 50.

The inset shows that an exponential approximates the
behavior only roughly at longer times. Since the plots are
logarithmic, an exponential would show as a (strictly) linear
behavior. For the hard instance, the situation is richer: at short
times up to T ≈ 10 the fidelity behaves comparably to the
normal case, rising monotonically to around 10%. This is
well seen in the inset showing the same time window. Then,
however, a striking difference appears signified by a very rapid
decrease of the fidelity by about a factor of 5. This fidelity
peak, which we take as the defining feature of hard instances
in this study, was observed in some earlier works [66,67]
and referred to as a diabatic bump. We will comment on the
mechanism behind it and why we expect it to appear for hard
instances a bit later. After the bump, we observe an exponen-
tial behavior persisting up to T = 1000, at which point in time
unit fidelity is still not reached for this instance.

We will explain why one would expect asymptotic expo-
nential behavior asymptotically, at least for hard instances,
later. First, we note that if it manifests, one can define the

time to solution tsol sensibly by the inverse of the exponent
tsol = 1/α. As we again will see later, a scaling with the
inverse minimal gap squared is expected for the solution time.
We test this for two larger system sizes N = 18 and N = 20 in
Fig. 5. Unfortunately, for N = 22 we did not reach simulation
times large enough to resolve the exponents well for hard
instances. Here we see the solution time as defined above,
plotted against the minimal gap already discussed in Sec. III B
and shown in Fig. 1. For the largest gaps, the solution times
are also small, but there is not any visible scaling. This is not
surprising, since we have already seen that the exponential is
only a very rough fit for instances with small solution times.
But in any case, small solution times are still visibly related to
large gaps. For smaller gaps, a trend consistent with an inverse
square scaling is discernible visually, though, guided by the
exact line in the background. In particular the hard instances
colored in red follow the trend rather well. Here one should
also keep in mind that the smallest gaps may also be limited
by the resolution as discussed in Sec. III B.

In Fig. 4 and the corresponding discussion, we have seen
three different behaviors of the fidelity: rapid increase at short
times, diabatic bump at intermediate times for hard instances,
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FIG. 3. Spectrum of a hard instance for N = 20. The upper left plot shows the Hamming distance between the eigenstates of the Ising
Hamiltonian within the first two degenerate subspaces. The lines indicate the subspace boundary; the lower left corner is the ground state. The
lower left plot shows the spectrum, relative to the ground state, of a number of states corresponding to the subspaces. We see a very small gap
between the ground and the first excited state around s = 0.4. The color shows the entropy, in base 2, of the eigenstates in the Ising basis. At
the minimal gap, a fair number of states contribute to the ground and first excited states, which could imply limited applicability of perturbation
theory. The right plot, showing the decomposition of the 10 lowest states between themselves reveals, though, that at least the ground state has
a small contribution at the Ising side of the minimal gap.

and asymptotic exponential growth at long times, at least
for hard instances. In the following, we will explain how to
interpret the intermediate- and long-time behavior, while a
discussion of the short-time behavior will be delayed until
Sec. VI, where we will analyze the entire distribution using
short-time expansions.

1. Intermediate times—Diabatic bump

As we have seen, some instances, which we refer to as
hard instances, feature a peak in the fidelity as a function
of the annealing time, in contrast to the (almost) monotonic
growth in other instances. How can one interpret this phe-
nomenon? As a starting point, we will take the same instance,
now analyzing the full time evolution during a protocol with
annealing time T . In Fig. 6 the time evolution of the weights
with respect to the four instantaneous states with the lowest
energies is shown. These are obtained by decomposing the
full time-evolved state in the instantaneous eigenbasis using a
Krylov method with an order of 40.

In the figure, four different annealing times are shown,
starting at a short time T = 1, moving to a time around
the beginning of the bump T = 10, transitioning to a time
around the end of the bump T = 50 and finishing with a
time well after the bump T = 150. For all annealing times,
the ground-state probability starts at 1 and all other states
have a probability of 0. This is due to the preparation of
the initial state, which is the ground state of the transverse
field at s = 0. The dynamics then leads to transitions between
the states, depleting the instantaneous ground state over time.
For the shortest time, it is fully depleted towards the end of
the protocol along with the other low excited states, indi-
cating that the probability distribution is spread over many
states, presumably including higher excited states as well. For
T = 10, the depletion at the beginning is slower, but around
s = 0.4 there is a sudden drop in the ground-state probability,
accompanied by a rise in the probability of the first excited
state. The occurrence is related to the minimal gap between
being located at this value of s, as seen previously in Fig. 3.
Note that the “spiky” features of the probabilities just at the
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FIG. 4. Fidelity as a function of the annealing time for N = 20.
Shown are a normal instance (upper) and a hard instance (lower).
Exponential fits to larger annealing times are plotted in red, with the
exponent α indicated in the legend. The normal instance reaches an
almost unit fidelity at T = 50 with the fidelity being only roughly
approximated by an exponential. For the hard instance unit fidelity
is not yet reached even for T = 1000, but seems to be well approxi-
mated by an exponential asymptotically. The fidelity of the normal
instance grows monotonically, while the hard instance features a
diabatic bump at intermediate times. The inset, showing the same
time window as for the normal instance, suggests that before the
bump the fidelity is around 10% in both instances.

minimal gap may be remnants of the numerics, stemming
from the need to resolve two states lying very close in en-
ergy at that point, but we expect the curves outside of the
immediate vicinity to be accurate. For T = 50 and T = 150,
the same observations can be made, where the ground state
gets depleted increasingly less before the minimal gap, and
there is a rapid transition at the minimal gap point, whereafter
the probabilities are almost constant. Two further observations
will help to understand the bump: with increasing time higher
excited states play a lesser role in the dynamics. Already at
T = 50, they are almost invisible in the plot. Furthermore, we
notice that the ground-state probability for T = 10 at the end
of the protocol is higher than for T = 50 while being lower
before the minimal gap. For the transition, the initial ground
state and excited state occupations, as well as the annealing
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FIG. 5. Solution times obtained from exponential fits to the fi-
delity dynamics, plotted against the inverse square of the minimal
gap for each instance of system sizes N = 18 (upper) and N = 20
(lower). The colored circles represent the hard instances. The line in
the background serves as a guide for the expected linear scaling. This
scaling seems consistent with the data at small gaps, while at large
gaps the solution times show no clear scaling, while still being small
at those gap values.

time, are relevant. The exact dependence is presumably very
complicated since at small times multiple states are involved.
The annealing time could also have two competing effects.
On one hand, it sets the time to traverse the gap and therefore
the time effectively available for a transition. On the other
hand, though, at long times the transition will be suppressed
with increased annealing time, and the system remains in the
ground state, even though the available time for a transition is
sufficient. The rough explanation for the diabatic bump based
on these observations seems to be the following: with increas-
ing annealing time the ground-state probability before the
minimal gap increases, while the first excited state remains at
a low probability. At the minimal gap, the transition amplitude
between the ground and excited state is large, resulting in a
rapid transition. Before the bump, the ground-state probability
is relatively small and the effective transition time possibly
limited. Here the macroscopic fidelity of the first excited state
before the avoided crossing is also an important factor as
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FIG. 6. Probabilities of the four instantaneous eigenstates with the lowest energy during annealing runs with varying annealing time T , for
a hard instance of size N = 20.

noted in [66], leading to a macroscopic fidelity in the ground
state after the crossing. As seen in the figure, this excited
state fidelity increases with increasing time at small times.
During the bump, the initial probability will increase as will
the effective transition time, such that the final ground-state
probability is lower with increased annealing time. Only once
the annealing time is large enough to cause a suppression of
the transition does the final probability increase again with
annealing time. We will discuss a possible mechanism for the
suppression at large times as well as the exponential growth
of the fidelity in the next subsection. First, we note that the
process can also be viewed from another perspective, using a
fixed basis instead of the instantaneous basis. Here transitions
between states are suppressed at short times, since the state
then does not have enough time to change significantly. In
fact, for infinitely short times, the state simply remains con-
stant (modulo a possibly acquiring a phase). This situation is
also known as a quench or the sudden approximation. Since
the initial state is not the ground state of the final Hamil-
tonian, the fidelity at the end is small in this case. At the
minimal gap, a narrow avoided crossing occurs; the states in
the constant basis are the same before and after the avoided
crossing, but their order is changed. Hence, if the state being
close to the ground state initially changes only slightly, it is
close to the first excited state afterward. Only at long times
does the system have enough time to perform the transition
between the ground state and excited state at the avoided
crossing, resulting in the ground state after the avoided
crossing.

2. Long times—Landau-Zener physics

As we have seen, at longer annealing times, only the two
lowest energy states in the instantaneous basis are involved in
the dynamics. A two-level system with a changing basis can
be treated analytically. In the literature, the model

H (t ) = λtσ z + �σ x (8)

is often referred to as the Landau-Zener model [68–72]. The
state is initially prepared in the ground state of the Hamilton
at t → −∞, and the fidelity is measured with respect to the
ground state at t → ∞. Finite-time setups, more akin to our
case, have been studied in [68,69]. We will not summarize
the exact solution for all times, as it involves several special
functions, but we would like to note that asymptotically the
fidelity scales as

F ≈ 1 − e−π �2

λ , (9)

where we note that λ being the “rate of parameter change”
is roughly related to the inverse annealing time 1/T . Since
� is precisely the minimal gap in this model, we recover the
inverse square dependence of the solution time.

Clearly, for a many-body system, the applicability is lim-
ited, since there are more possible transitions. There are
studies of multiple levels in the context of multistate Landau-
Zener models [71,72]. To our best understanding, though, the
treatment in that case is significantly more involved, while still
being limited to a relatively small number of levels. Yet, in
the context of the adiabatic theorem, many results suggest a
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timescale dictated by the inverse square gap even for many-
body systems [2,9,11], although these rely on bounds rather
than exact solutions of the dynamics. Therefore, it is perhaps
not surprising that the formula works well for the long-time
dynamics of hard instances, where the minimal gap between
the ground and excited state can be orders of magnitude
smaller than gaps to the other levels. For simpler instances
such a separation of scales is not given, and therefore a multi-
state description is probably necessary, even for long times.

We finish the subsection by reminding the reader that the
exponential behavior discussed in the section appears for a set
system size. The main question in the research on quantum
and classical annealing is how the corresponding timescale
scales with system size. While for quantum annealing a rough
classification is possible based on the order of the phase tran-
sition, the treatment of classical annealing is rather limited
to our best knowledge. In this study, we do not investigate
this question, though, but rather focus on understanding the
dynamics of selected hard or normal instances for fixed sizes
across a range of annealing times.

B. Classical annealing

For both classical annealing methods, such qualitative dif-
ferences between instances cannot be observed. Instead, the
fidelity grows monotonously, albeit at different rates depend-
ing on the instance. As an example, in Fig. 7 the fidelity for
the same instance as before is shown. As one can see, there is
a monotonous growth with a roughly exponential behavior at
long annealing times (measured in Monte Carlo steps). The-
oretical approaches to estimate the timescale exist [9,73,74],
but we will not discuss them in detail here.

V. CORRELATION FUNCTIONS

Important and experimentally accessible observables dur-
ing the dynamics are the correlation functions

Gi j = 〈
σ z

i σ z
j

〉
. (10)

Since 〈σ z
i 〉 = 0 for all times due to symmetry, we do not

distinguish between (un-)connected correlation functions. As
a further motivation to study these objects, we note that Ising
energy 〈HSK〉 is fully determined by their values and that all
spin-flipped pairs in the computational basis can be identified
uniquely by their correlations. This can be done by choosing
the sign of the first spin arbitrarily, and then determining
the sign of the second by the value of G12 and continuing
accordingly. The diagonal entries Gii = 1 and due to commu-
tativity Gi j = Gji; therefore we will consider only i > j in the
following.

In Fig. 8 the entire sweep for QA with varying annealing
times is shown. Going through the sweep, we notice the fol-
lowing features, which seem to be general across our data:

– Due to the choice of the initial state, correlations vanish
at the start of the protocol. For QA this is strict, while for
the classical methods we expect a small finite value due to
averaging over the finite number of runs.

– For short times, correlations forming have the same
sign structure for all methods. The signs are determined by
the bonds, such that sign(Gi j ) = −Ji j . The term short time
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FIG. 7. Fidelity as a function of the annealing time for N = 20.
Shown are a normal instance (upper) and a hard instance (lower).
Exponential fits to larger annealing times are plotted in red, with the
exponent γ indicated in the legend. The normal instance lies around
90% after 10 000 Monte Carlo steps, while the hard one reaches
around 40% quickly and features an extremely slow growth from
thereon.

here could mean a short sweep or a short portion of a long
sweep. Later, in Sec. VI, we will show that these correlations
follow from a short-time expansion and also appear in high-
temperature expansions of the Ising Hamiltonian.

– After some time, some bonds start to change their signs.
Several sign changes can follow, and the sign of a given corre-
lation function can also change more than once. Correlations
with the incorrect initial signs can change as well as those with
correct initial signs.

– Once the signs are all correct, we do not observe further
sign changes, and during the remaining evolution, the magni-
tude saturates.

This general behavior is also observed in simulated anneal-
ing and simulated quantum annealing. As an example, Fig. 9
shows the sweep of the same instance as above at long times
for the different methods. A striking observation is that the
sign changes of the methods are very similar to each other. In
fact the same signs change in roughly the same order, except
for one double sign change in QA, which is actually present
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FIG. 8. Correlations in quantum annealing during a protocol at different annealing times for an instance with N = 10. Plotted are the
correlations Gi j for i > j, with the correlations of the first spin G1· at the bottom and correlations of other spins in increasing order from
bottom to top; the black lines indicate the different blocks Gi•. For T = 1 the correlations are determined by the bonds, and their signs are
sign(Gi j ) = −Ji j . For T = 10 we observe a sequence of sign changes. Finally, for T = 50 there is a saturation phase once the correlations
reach their correct signs. Note that correlations with the incorrect as well as the correct initial signs can feature sign changes. Also, the location
of the sign changes as well as the total number depends on the annealing time. See, for instance, the double sign change at the bottom visible
for T = 10 is “closed” for T = 50.

in the other methods at shorter annealing times. A sensible
comparison may be possible between all three methods in
the short-time limit, where, however, it is unclear if this limit
extends to the first sign changes, which will be discussed in
more detail in Sec. VI, as well as between QA and SQA in
the very long-time limit. The latter can be justified by the fact
that the correlations in QA are the ground-state correlations
at long times, which will also be the case for SQA, albeit
formally only at zero temperature and an infinite number of
replicas. The data suggest that at long times SA also has the

same correlations, but this observation lacks a justification,
as here the correlations in the long-time limit correspond to
thermal correlations at the temperature set by β(s). The reason
is that at long times the system should have enough time to
equilibrate at every temperature along the sweep.

While sign changes are not standard observables, they are
still related to the underlying distribution in configuration
space. Therefore, similarities here also indicate similarities
in the dynamics of the distribution between the methods. A
rough approach to quantify these similarities is to count the

FIG. 9. Comparison of quantum annealing, simulated annealing, and simulated quantum annealing of an instance with N = 10 with
annealing times of T = 50 and 10 000 MCS in both classical methods. Plotted are the correlations during the protocol with annealing times
sufficient to find the correct solution. The sign changes are remarkably similar for all three methods. The main differences are two double
changes in quantum annealing, which, however, are observable in the other methods for shorter annealing times.
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FIG. 10. Number of sign changes in a full sweep averaged over all instances for N = 10 (top) and 20 (bottom). The filled-in region shows
the standard deviation. For N = 10 the average and deviations seem almost equivalent between the methods, while for larger N a large peak
with large deviation is developed at intermediate times for quantum annealing, while simulated and simulated quantum annealing remain very
similar.

number of sign changes during the sweep. Since the number,
as well as the location of the changes, depends on the an-
nealing time, which one cannot “map” between the different
methods, comparisons of single sweeps cannot be sensibly
performed. Therefore, we need an overview of all timescales.
One approach to get an overview is to look at the total number
of sign changes over a sweep as a function of the annealing
time. The averages of this number over all instances for each
system size are shown Fig. 10. Here the average number,
as well as the standard deviation, is plotted over different
annealing times for N = 10 and N = 20. For the smaller
size, the averages and deviations seem almost equivalent. For
increasing size, though, a higher number at intermediate times
along with larger deviations are observed in QA compared
to the other methods, which are similar also for the larger
size. Here one should note that not only the timescales but
also the time resolution is different for the methods, although
the resolution in s, �s = 0.01, is the same for all methods:
for QA the resolution is �T = 1 and for SA and SQA it is
�MCS = 100. Hence, some changes that appear and close
very quickly might be missed, but it seems very unlikely that
the much higher number for QA is solely due to resolution.
These results indicate that the distribution dynamics is very

similar between SA and SQA (for the model investigated),
while there are differences to QA.

With this, we finish the qualitative discussion of correla-
tions and will focus on the probability distribution for short
times in the next section.

VI. SHORT-TIME EXPANSION

We have argued above that the correlation functions are
related to the underlying distribution in configuration space.
In this section we work out the short-time distribution ex-
plicitly and use the result to explain the initial sign structure.
Furthermore, we show that the distribution corresponds to a
high-temperature thermal distribution, and hence QA can be
related to thermal sampling at short times.

A. High-temperature expansion

For the high-temperature expansion, we expand the Boltz-
mann density matrix

ρ(β ) = e−βHSK /Z, Z =
∑

z

e−βEz ,
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FIG. 11. Scaled occupations of the 100 most probable states in the computational basis at the end of the protocol for two annealing times
T = 0.05 and T = 0.1. Three sizes, N = 10, 15, 20, with one instance each are shown. In the upper plots, the occupations are ordered by their
magnitudes. Plateaus arise, due to the high degeneracy of the energy levels, as discussed in Sec. III A. For a thermal distribution, the plateaus
would be exact for any temperature; therefore deviations seen at larger times indicate a nonthermal state and not just higher order thermal
corrections. In the lower plots, the occupations are plotted as a function of the energy Ez. The lines indicate the high-temperature estimate with
β = T 2/3. For the shorter time, these estimates agree well at all sizes, while there are clear deviations for the larger time. Furthermore, the
occupations do not perfectly overlap for the larger time, again indicating that they are not a function of energy at this time.

at β = 0 with the goal of obtaining the occupations in the
computational basis ρz and the correlation functions Gi j =
〈σ z

i σ z
j 〉 = Tr[ρσ z

i σ z
j ]. The index z here indicates a state in

the computational basis, i.e., z ≡ |z1, . . . , zn〉 with zk = ±1,
and Ez the corresponding energy. The expansion up to second
order is derived in detail in Appendix A. The resulting density
matrix is

ρz ≈ 1

D

{
1 − βEz + β2

2

[
E2

z − N (N − 1)

2
(1 − Ez )

]}
, (11)

where D is the Hilbert space dimension. Using this, the ex-
pression for the correlation functions can also be obtained to
be (see Appendix A for details)

Gnm ≈ −βJnm + β2

2

(
2(J2)nm + N (N − 1)

2
Jnm

)
. (12)

Note that the first term implies that for high temperature the
correlation functions Gnm are proportional to −Jnm, which
is precisely the behavior we have seen in the short-time
dynamics of the correlation functions in the earlier section.
This suggests that there could be a relation between the dy-
namical distribution to the high-temperature distribution. We
will derive such a relation for quantum annealing in the next
subsection.

B. Quantum annealing

In a short-time expansion, we approximate the propagator
U using the Dyson series up to second order, from which we
then obtain the occupations ρz ∝ | 〈z|U |+, x〉 |2. The detailed
derivation is shown in Appendix B and leads to the result

ρz = | 〈z|U (t )|+, x〉 |2 ≈ 1

D

[
1 − T 2

3
Ez + O(T 4)

]
, (13)

wherein only even powers of T appear, due to the different
factors of i in the Dyson series. It is remarkable that even for
very short times the ground state is already the most proba-
ble state, although the absolute probability is presumably too
small to be useful in applications. Comparing the first terms to
the high-temperature expansion from Eq. (11), we see that the
first terms agree if we define βQA = T 2/3. This also implies
that the second-order term in the high-temperature expansion
would have to be matched to the T 4 term if a matching order
by order should be possible. We strongly doubt that it is, since
the correction terms we get from the Dyson series already
include expressions not seen in the high-temperature expan-
sion. While it cannot be ruled out at this point that some are
canceled by contributions from the fourth-order Dyson series,
this seems exceedingly unlikely. This detail notwithstanding,
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FIG. 12. Distribution of the most probable occupations in the computational basis after simulated quantum annealing. The data for three
small sizes N = 4, 6, 8 and the shortest possible annealing times MCS = 1, 2 are shown. The upper plots show the occupations sorted by
their magnitude, while the lower ones show them as a function of Ez. For the smallest size, the results resemble the thermal distribution, but
already at the next size, the corrections become significant.

it is clear from the numerical simulations that the time-evolved
state is not close to a thermal state at all annealing times, and
therefore there have to be corrections at some order. These
corrections can include powers of N and Ez and some expres-
sions based on the bond matrix. Since both N and Ez grow
with system size, albeit with different scaling, we expect that
the corrections grow with system size and lead to a vanishing
range of applicability of the expansion, as long as the value
of T is not scaled down with system size accordingly. Finally,
we notice that the distribution in Eq. (13) is normalized to the
required order, since Tr[HSK] = 0.

We test the calculations by directly probing the occupations
in the computational basis ρz. We do this by computing and
analyzing the 100 most probable states in that basis. The
results are depicted in Fig. 11. Here we plot the occupations
scaled by the Hilbert space dimension Dρz for two annealing
times (T = 0.05 and T = 0.1). For each instance, the occu-
pations are plotted twice: sorted by their magnitude in the
upper plot and as a function of the energy Ez on the lower
plot. For a thermal distribution at any temperature, we would
expect the occupations to be pure functions of the energy. Due
to the degeneracy of the energies, explained in Sec. III A,
this would lead to multiple “sharp” equidistant plateaus in
the upper plots. Indeed, we observe plateaus whose sharpness
however decreases with annealing time. Already for T = 0.1,
deviations are seen, which increase only for even larger times
(not shown in the figure). Therefore, already at this time the

state is nonthermal and cannot be described by a higher order
thermal expansion. The same conclusion is confirmed by the
lower plots. For a thermal state, all points would overlap and
collapse to a single point at each energy; however, the points
are separated for the larger time. The lines in the lower plot
show the estimates based on the high-temperature expansion
(β = T 2/3), with a good agreement seen at T = 0.05 and
some deviations at T = 0.1. The deviations increase with
system size, in agreement with the observations for the cor-
relation functions.

To finish the discussion, we would like to emphasize that
this is a nontrivial result. Even the fact that the ground state
is the most probable state at short times is not obvious (to
us) a priori, let alone the observation that the occupations are
ordered in a thermal manner. To our best knowledge, the only
other work investigating similar questions for short sweeps
is [30]. While that work uses different methods, it seems that
some of the results, for example, an increase of the energy
expectation value, are consistent with our calculations.

C. Classical annealing

As for the fidelity, an analytical treatment of classical
annealing is more involved than the one for quantum an-
nealing. Given the similarity of the Schrödinger equation and
the master equation, described in Sec. II, one might have the
idea to use a Dyson series analogously for the classical case.
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This requires a representation of the transition rate matrix,
suitable for computing the integrals and the matrix elements.
Representations using the Pauli matrices have been reported
in the literature [75,76], but while we could use them to
represent the transition matrix in our model, we did not find a
way to integrate the corresponding expressions and determine
appropriate matrix elements. Generally, it seems reasonable,
though, that an algorithm like simulated annealing produces
a distribution resembling a high-temperature distribution at
short times since the relaxation and mixing times at those
temperatures can also be small as noted in Sec. IV B. As
before, we performed short-time simulations for simulated
quantum annealing, which are shown in Fig. 12. The layout
is the same as in Fig. 11: the upper plots show the occupations
ordered by magnitude and the lower as a function of Ez.
However, even for a single Monte Carlo step [77], a thermal
distribution is observed only at N = 4. Thus, a relationship
between the annealing time and β cannot sensibly be extracted
from our simulations. Again, the power-law growth of correla-
tion functions has origins different from the high-temperature
expansion.

VII. CONCLUSION AND OUTLOOK

In this work we have studied quantum and classical an-
nealing of the Sherrington-Kirkpatrick model with various
annealing times. Our comparative study with the same in-
stances and a range of annealing times for each method is
particularly suited to discern qualitative differences between
those methods. While the long-time adiabatic behavior is rel-
atively well studied, the behavior at faster annealing times is
less well understood but could be useful.

We identified simple and hard instances, which show strik-
ing differences in quantum annealing, highlighted by the
appearance of a diabatic bump in the evolution of the fidelity
for hard instances. Such strong differences were not observed
for the classical methods. An open question is the accurate
estimation of the time at which the diabatic bump appears.
We have discussed the relevant factors but did not develop
a quantitative theory. A good estimate may have important
practical implications, though, as at the bump we observe a
relatively high fidelity; hence it could be more advantageous
to make multiple measurements around the bump time than to
use fewer but larger annealing runs.

An analysis of two-point correlation functions indicated
three dynamical regimes based on annealing times for all
methods. We then used the number of sign changes as a quali-
tative measure of similarity, finding that the average number of
sign changes is higher in quantum annealing than in the clas-
sical variants, which both show very similar numbers. Finally,
we used a short-time expansion to show that quantum anneal-
ing produces a high-temperature thermal state at very short
times. This also explains the qualitative short-time behavior
of the correlation functions, although as was observed, the
powers match only for very short times, while the qualitative
behavior seems to persist longer.

The computations and figures in this work have been ob-
tained mostly using Python [78], in particular with the (free
and open) libraries Numba [79], Numpy [80,81], SciPy [82],
and Matplotlib [83], and partially using Mathematica [84].

The data and code for this article are accessible in an open
Zenodo archive [85].
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APPENDIX A: HIGH-TEMPERATURE EXPANSION

The high-temperature expansion is derived starting from
the Taylor series

ρ = e−βHSK /Z =

∞∑
n=0

(−β )n

n! Hn
SK

∑
z

∞∑
n=0

(−β )n

n! En
z

≈ 1

D

(
1 − HSK + β2

2
H2

SK

)

×
(

1 + β
Tr[HSK]

D + β2

(
2Tr[HSK]2 − DTr

[
H2

SK

])
2D2

)
.

We can simplify the expression, by evaluating the traces in-
volved. Since the Pauli matrices are traceless, the sum over all
configurations of any product, for example, σ z

1σ z
3 , vanishes.

For this reason,

Tr[HSK] = 0, (A1)

since all indices involved are different. For the square term,
however, we have a nonvanishing trace, since this also in-
cludes products with the same index and (σ z

i )2 = I , which is
not traceless. The evaluation gives

Tr
[
H2

SK

] =
∑

z

∑
i1> j1,i2> j2

Ji1 j1 Ji2 j2σ
z
i1
σ z

j1
σ z

i2
σ z

j2

=
∑

z

∑
i1> j1,i2> j2

Ji1 j1 Ji2 j2δ(i1, j1 ),(i2, j2 )

=
∑

z

∑
i1> j1

J2
i1 j1 = DN (N − 1)

2
,

since the only way to remove the Pauli operators, and hence
make the trace nonvanishing, is to choose equal indices. Since
the indices are ordered, only one assignment i1 = i2, j1 = j2
is possible. The occupations to second order in β are therefore

ρz ≈ 1

D

[
1 − βEz + β2

2

(
E2

z − N (N − 1)

2
(1 − Ez )

)]
.

Let us now evaluate the necessary expressions to compute
the correlation functions Gnm for n �= m:

Tr
[
σ z

nσ z
mHSK

] =
∑

z

∑
i> j

Ji jσ
z
nσ z

mσ z
i σ z

j =
∑

z

Jnm = DJnm.
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For the next terms, we get

Tr
[
σ z

nσ z
mH2

SK

] = 1

4

∑
z

∑
i �= j

∑
k �=l

Ji jJklσ
z
nσ z

mσ z
i σ z

j σ
z
k σ z

k

= D
4

∑
i �= j

∑
k �=l

Ji jJkl (δn jδ jkδkm + δn jδ jlδlm

+ δm jδ jkδkn + δm jδ jlδln + δinδikδkm

+ δinδilδlm + δimδikδkn + δimδilδln)

= 2D
∑

n �= j �=m

Jn jJjm

= 2D
∑

j

Jn jJjm = 2D(J2)nm,

where the last expression denotes the matrix elements of the
squared bond matrix. In total therefore we get

Gnm ≈ −βJnm + β2

2

(
2(J2)nm + N (N − 1)

2
Jnm

)
,

where the terms of ρz without factors of Ez do not contribute,
due to the aforementioned tracelessness of Pauli matrices.

APPENDIX B: SHORT-TIME EXPANSION

For the short-time expansion, we will start from Dyson
series, since this combines the expansions of dynamics with
expanding into powers of operators. If we used the Magnus
expansion instead, we would need to evaluate the matrix ele-
ments of exponentials of operators, rather than powers, which
is generally not possible. The series up to the second order is

U (t ) ≈ 1 − i
∫ t

0
dt1 H (t1/T )

+ (−i)2
∫ t

0
dt1

∫ t1

0
dt2 H (t1/T )H (t2/T ).

Evaluation of these terms gives

(−i)T
∫ s

0
ds1 H (s1) = −i

sT

2
[sHfin + (2 − s)Hini]

(−i)2T 2
∫ s

0
ds1

∫ s1

0
ds2 H (s1)H (s2)

= − (sT )2

8

[
s2H2

fin + (2 − s)2H2
ini + s(8 − 3s)

3
HfinHini

+ s(4 − 3s)

3
HiniHfin

]
,

where with the use of ini and fin we emphasize that this
depends only on the schedule and not on the particular
Hamiltonians at this point. We see that different powers of
s and T can be mixed, so the ordering by powers of sT will be
useful only if T is the dominant factor. In the following, we
focus on the full sweep (s = 1), where the expansion becomes
an expansion in T .

In our setup, Hini = Hx and Hfin = HSK, and we need to
evaluate the matrix elements of the operators in the expan-
sion, between the x-polarized state and a product state in the
computational basis 〈z|O|+, x〉. For the operators appearing
in the expansion, these are

〈z|Hn
SK|+, x〉 = En

z /
√
D,

〈z|Hn
x |+, x〉 = (−N )n/

√
D,

〈z|Hn
SKHm

x |+, x〉 = (−N )mEn
z /

√
D,

〈z|HxHSK|+, x〉 = −(N − 4)Ez/
√
D.

The first three can be derived simply by using the eigenvalues

Hx |+, x〉 = −N |+, x〉 , HSK |z〉 = Ez |z〉 ,

and the decomposition of the x-polarized state

〈z|+, x〉 = 1√
D

, ∀z.

For the last expression, some more steps are needed after
inserting the decomposition

〈z|HxHSK|+, x〉 = 1√
D

∑
z̃

Ez̃ 〈z|Hx|z̃〉 .

Since the transverse field has a matrix element of −1 between
states differing by a single spin flip and vanishes otherwise,
the sum includes the energies from all states differing by a
single spin flip. Writing the excitation energy from a flip of
spin n as (�E )n = −zn

∑
m Jnmzm, we can evaluate the sum

1√
D

∑
z̃

Ez̃ 〈z|Hx|z̃〉 = −
∑

n

(
Ez − zn

∑
m

Jnmzm

)

= −NEz +
∑
n,m

Jnmznzm = −(N − 4)Ez,

where in the last line we used the definition of the en-
ergy Ez = 1

2

∑
n,m Jnmznzm. Substituting these results into

| 〈z|U (t )|+, x〉 |2, we obtain the density matrix from Eq. (13).
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