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Vector dc magnetic-field sensing with a reference microwave field
using perfectly aligned nitrogen-vacancy centers in diamond
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The measurement of vector magnetic fields with high sensitivity and spatial resolution is important for both
fundamental science and engineering applications. In particular, magnetic-field sensing with nitrogen-vacancy
(NV) centers in diamond is a promising approach that can outperform existing methods. Recent studies have
demonstrated vector dc magnetic-field sensing with perfectly aligned NV centers, which showed a higher readout
contrast than NV centers having four equally distributed orientations. However, to estimate the azimuthal angle
of the target magnetic field with respect to the NV axis in these previous approaches, it is necessary to apply
a strong reference dc magnetic field, which can perturb the system to be measured. This is a crucial problem,
especially when attempting to measure vector magnetic fields from materials that are sensitive to applied dc
magnetic fields. Here, we propose a method to measure vector dc magnetic fields using perfectly aligned NV
centers without reference dc magnetic fields. This method can be performed even with a single NV center.
More specifically, we use the direction of linearly polarized microwave fields to induce Rabi oscillation as
a reference and we estimate the azimuthal angle of the target fields from the Rabi frequency. We further
demonstrate the potential of our method to improve sensitivity by using entangled states to overcome the standard
quantum limit. Our method of using a reference microwave field is an alternative technique for sensitive vector
dc magnetic-field sensing.
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I. INTRODUCTION

The detection of dc magnetic fields on the nanoscale plays
an essential role in a wide range of fields, from biology to
condensed-matter physics [1,2]. Substantial effort has been
devoted to the development of devices for measuring small
magnetic fields in a local region [3–6]. The electron spin in
the nitrogen-vacancy (NV) center in diamond is known to be
sensitive to magnetic fields, and it combines the advantages
of noninvasiveness, high sensitivity, and nanoscale resolution
[7–10]. The NV center is a spin-1 system, and the frequencies
of the ground-state manifolds can be shifted by magnetic
fields. Vector magnetic-field sensing with NV centers has been
attracting much attention [11–16]. It has a variety of poten-
tial applications, including the imaging of living cells [17],
mapping of current distribution [18–21], and reconstruction of
vector magnetic fields from ferromagnetic materials [22,23].

The sensing of dc magnetic fields is conventionally per-
formed using Ramsey interferometry or optically detected
magnetic resonance (ODMR) [24,25]. Using different NV

*Current address: Department of Nuclear Science and Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, USA; isogawa@mit.edu; tisogawa@keio.jp

†Current address: Department of Electrical, Electronic, and Com-
munication Engineering, Chuo University, Bunkyo-ku, Tokyo 112-
8551, Japan; ymatsuzaki872@g.chuo-u.ac.jp;
matsuzaki.yuichiro@aist.go.jp

‡hayase@appi.keio.ac.jp

orientations, the vector components of the magnetic field
along each quantization axis can be used to reconstruct dc
or ac vector fields [11,13]. However, one drawback of these
methods is the reduction of the fluorescence contrast. The
contrast decreases by a factor of 4 compared to that of a single
NV, which degrades the sensitivity. Multifrequency control
of the NV centers has been proposed and demonstrated as a
solution to this problem, but complex microwave pulse se-
quences are required to implement these schemes [26–29]. For
more practical applications, previous studies have devised an
ingenious method of measuring vector magnetic fields using a
single NV center or perfectly aligned NV centers [30–36]. It is
known that the longitudinal and transverse components of the
target vector dc magnetic fields are estimated from the shifts
in frequencies of the transitions between ground-state mani-
folds [9], whereas a reference dc field is used to estimate the
azimuthal angle of the target field with respect to the NV axis
[31,35]. However, the reference dc field can be invasive when
measuring the magnetic properties of ferromagnets and super-
conductors that are sensitive to dc magnetic fields. Therefore,
it is desirable to measure the azimuthal angle without a ref-
erence dc field for the investigation of various phenomena of
magnetic-field-sensitive materials [22,23,37,38].

In this study, we propose a scheme to measure the az-
imuthal angle of the target magnetic field without using a ref-
erence dc field. In our scheme, the azimuthal angle of the tar-
get magnetic field can be estimated from the Rabi frequency
using the direction of linearly polarized microwave fields as a
reference. The transverse component of the dc field changes
the direction of the quantization axis of the NV center.
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On the other hand, when we apply the resonant microwave
field, only the component perpendicular to the quantization
axis contributes to the change in the Rabi frequency [39].
Thus, the change in the direction of the quantization axis can
be estimated from the Rabi frequency, and thus, the direction
of the dc magnetic field can be measured. Similar to the
previous methods, our method can be performed with a single
NV center, which improves the spatial resolution. Our scheme
provides a practical approach to achieve full vector dc magne-
tometry without additional reference dc fields using a single
NV center or a perfectly aligned ensemble of NV centers.

In addition, by using perfectly aligned NV centers, we
investigate whether the use of entanglement improves the
sensitivity of our scheme. By using an entangled state with
L spins to measure magnetic fields, the uncertainty of the
estimation decreases by 1/L, which is called the Heisenberg
limit, under ideal conditions, while the uncertainty decreases
by 1/

√
L with L separable spins, which is called the standard

quantum limit (SQL) [40,41]. However, because the quantum
state is fragile against decoherence, it is unclear whether the
entangled sensor shows sensitivity better than that of the clas-
sical one. For certain types of noise, the entangled states can
outperform the SQL [42–46]. In our case, the NV centers are
affected by magnetic-field noise. Contrary to the conventional
belief that entanglement provides no advantage over separable
states in standard Ramsey interferometry in the presence of
Markovian dephasing [40], our scheme is one of the cases
where this is not the case. Therefore, we investigate the perfor-
mance of the entanglement sensor in estimating the azimuthal
angle with magnetic noise in our scheme. Furthermore, we
numerically show that our sensing scheme with entanglement
has sensitivity better than that of separable sensors, even under
the effect of noise.

The remainder of this paper is organized as follows. In
Sec. II, we review the conventional vector magnetic-field
sensing scheme with standard Ramsey interference using a
reference dc magnetic field. In Sec. III, we explain our scheme
of vector magnetic-field sensing with Rabi oscillation using a
reference microwave field. In Sec. IV, we discuss the sensitiv-
ity of our scheme and investigate the potential improvement
when using entangled states. Finally, Sec. V concludes the
paper.

II. CONVENTIONAL SCHEME

A. Measurement of longitudinal and transverse components
of target magnetic fields

Here, we review a conventional scheme that measures the
longitudinal and transverse components of target magnetic
fields. The Hamiltonian of the NV center is given as

H0 = DŜ2
z + γeBzŜz + γeB⊥(cos φsŜx + sin φsŜy), (1)

where D = 2π × 2.87 GHz is the zero-field splitting,
γe = 2π × 28 GHz/T is the gyromagnetic ratio, {Ŝx, Ŝy, Ŝz}
are the spin-1 operators, and {Bz, B⊥, φs} are the lo-
cal magnetic-field components in cylindrical coordinates.
Throughout this paper, we assume that h̄ = 1. Following
Refs. [9,35], we consider the characteristic equation given by

(D − x)2x + 1
2γ 2

e B2[D(1 − cos 2θ ) − 2x] = 0, (2)

FIG. 1. Schematic of our vector dc magnetic-field sensing
scheme. In panel (a), we show a configuration of the NV axis, the
target vector magnetic field, and the reference dc magnetic field. In
panel (b), we show a configuration of the NV axis and the reference
microwave field. In panel (c), relations between the quantization
axis and the direction of the microwave fields in a Bloch sphere are
illustrated. In panels (d) and (e), we show the Bloch sphere projected
onto the y and z planes at φmw = 270◦ and φmw = 90◦, respectively,
with φs = 90◦.

where θ = arctan(B⊥/Bz ), B =
√

B2
s + B2

⊥ , and x denotes the
eigenenergy of the Hamiltonian. If we express the frequency
of the ground state as x0, the frequencies of the other energy
eigenstates can be expressed as x+ = x0 + ω+ and x− = x0 +
ω−. By substituting these expressions into Eq. (2), we obtain
the following equations:

x0 = 1
3 (2D − ω+ − ω−), (3)

B =
√

1

3γ 2
e

(ω2+ + ω2− − ω+ω− − D2), (4)

sin θ =
√

−x3
0 + 2Dx2

0 + (
γ 2

e B2 − D2
)
x0

Dγ 2
e B2

. (5)

Thus, from the transition frequencies ω±, which can be
measured by Ramsey interferometry or ODMR, we can deter-
mine the longitudinal and transverse components of the target
magnetic fields.

B. Measurement of the azimuthal angle of the target fields

Next, we review a conventional scheme that measures the
azimuthal angle of the target magnetic field using a dc mag-
netic field as a reference [Fig. 1(a)]. By applying a reference
magnetic field with known amplitude and direction, we can
determine the azimuthal angle of the target magnetic field

062423-2



VECTOR DC MAGNETIC-FIELD SENSING WITH A … PHYSICAL REVIEW A 107, 062423 (2023)

from the change in resonant frequency of the NV centers. The
frequency shift can be measured via Ramsey interferometry.

Our goal here is to determine the azimuthal angle φs. When
we apply a reference dc magnetic field perpendicular to the
NV axis, an additional term,

Hr = γeBr (cos φr Ŝx + sin φr Ŝy), (6)

is added to the system Hamiltonian, where Br and φr are
the amplitude and the azimuthal angle of the reference field,
respectively. This allows us to measure the change in transi-
tion frequency between the ground state |g〉 � |ms = 0〉 and
another energy eigenstate. By using the perturbation theory
for small γeBtot/D, such transitions frequencies are approxi-
mately given by [47]

ω± � D ± γeBz + 3

2

(γeB′
⊥)2

D
, (7)

where B′
⊥ =

√
B2

⊥ + B2
r + 2B⊥Br cos (φs − φr ) and Btot =√

B2
s + B′2

⊥. We consider the subspace spanned by |g〉 and the
first excited state |e〉 and define � = D − γeBz. In a rotating
frame defined by U = exp (−i�Ŝzt ), the effective Hamilto-
nian of this subspace is given by

H (dc)
eff = δω

2
(|e〉〈e| − |g〉〈g|), (8)

where δω = 3(γeB′
⊥)2/2D is the frequency shift. We create

a superposition |+〉 = (|e〉 + |g〉)/
√

2 by using a π/2 pulse,
and a relative phase can be accumulated during the interac-
tion time t . Then, we perform a projective measurement on

|+〉 with a probability of P = [1 + cos (δωt )]/2, which can
be constructed using a π/2 pulse and a subsequent optical
readout. Thus, we can estimate φs by sweeping φr via the
Ramsey scheme.

III. OUR SCHEME

Here, we explain our scheme for measuring the azimuthal
angles of the target fields without reference dc magnetic fields.
In analogy to the conventional method using the dc mag-
netic field as a reference, we apply the reference microwave
field, the amplitude and the direction of which are known
[Fig. 1(b)]. The azimuthal angle of the target magnetic field
can be estimated by measuring the Rabi oscillations caused
by the reference microwave field.

To illustrate our idea, we start with a simple model by
considering a subspace spanned by |ms = 0〉 and |ms = −1〉,
which we call the qubit approximation. The Hamiltonian for
this subspace is

H (1/2)
0 = −�

2
σ̂z + γeB⊥√

2
(cos φsσ̂x + sin φsσ̂y), (9)

where {σ̂x, σ̂y, σ̂z} are the Pauli matrices. The quantization
axis is along the direction ( γeB⊥√

2
cos φs,

γeB⊥√
2

sin φs,−�
2 ). Any

state of a two-level system can be represented by a Bloch
sphere [Fig. 1(c)]. By diagonalizing H (1/2)

0 , we have H (1/2)
0 =

ω(1/2)(|g(1/2)〉〈g(1/2)| − |e(1/2)〉〈e(1/2)|)/2, where

ω(1/2) =
√

�2 + 2γ 2
e B2

⊥, (10)
and

|g(1/2)〉 = cg

⎛
⎜⎝e−iφs

(
� +

√
�2 + 2γ 2

e B2
⊥
)

√
2γeB⊥

|ms = 0〉 + |ms = −1〉

⎞
⎟⎠,

|e(1/2)〉 = ce

⎛
⎜⎝e−iφs

(
� −

√
�2 + 2γ 2

e B2
⊥
)

√
2γeB⊥

|ms = 0〉 + |ms = −1〉

⎞
⎟⎠

are the eigenstates. Here, cg and ce denote normalization constants. When the dc field is applied in a direction different from
that of the NV axis, the quantization axis is slightly tilted owing to the perpendicular component of the dc field. Let us consider
the Hamiltonian when we apply the microwave field. The Hamiltonian becomes H (1/2) = H (1/2)

0 + H (1/2)
mw , where H (1/2)

mw is the
driving microwave Hamiltonian expressed as

H (1/2)
mw =

(
γeBz

mw

2
σ̂z + γeB⊥

mw√
2

(cos φmwσ̂x + sin φmwσ̂y)

)
cos ω(1/2)t, (11)

and we define θmw = arctan(B⊥
mw/Bz

mw). In a rotating frame defined by U = exp (−iH (1/2)
0 t ), the effective Hamiltonian is

H (1/2)
eff = 1

2 (
|g(1/2)〉〈e(1/2)| + 
∗|e(1/2)〉〈g(1/2)|), (12)

where

λ = |
| = cgce

∣∣∣∣−γeBz
mw + �

B⊥
B⊥

mw[cos (φs − φmw) + i
√

1 + 2(γeB⊥/�)2 sin (φs − φmw)]

∣∣∣∣ (13)

is the Rabi frequency between |g(1/2)〉 and |e(1/2)〉. Here,
we used rotating-wave approximation (RWA). We plot λ

of Eq. (13) against φ = φs − φmw in Fig. 2 (orange dashed

curve). Because λ is given by the absolute value of a
complex number, we can interpret this as the distance from
the origin of the complex plane (Fig. 3). On the complex
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FIG. 2. Rabi frequency as a function of the azimuthal angle φ between the target magnetic field of B = 8 mT and the driving microwave
field of Bmw = 1 mT. We set the polar angle of the microwave fields as θmw = 20◦. The polar angles of the target field θ are (a) 10◦, (b) 40◦,
(c) 70◦, (d) 85◦, (e) 87◦, and (f) 89◦. We use the numerical (blue solid curve), qubit-approximation (orange dashed curve), and perturbation
(green dotted curve) values, given by Eqs. (16), (13), and (18), respectively.

plane, λ is the distance between the origin and a point on an
ellipse having a width, height, and center of cgce�B⊥

mw/B⊥,
cgce(�B⊥

mw/B⊥)
√

1 + 2(γeB⊥/�)2, and (cgceγeBz
mw, 0),

FIG. 3. Plot of 〈g|γe 
Bmw · 
S|e〉 in Eq. (16) on the complex plane.
Each ellipse is obtained by sweeping the azimuthal angle φ between
the target magnetic field and the driving microwave field. The param-
eters are the same as those used in Fig. 2. In panel (a), we numerically
plot 〈g|γe 
Bmw · 
S|e〉 without approximations. In panel (b), we use the
qubit approximation. In panel (c), we use the perturbation theory
described in Eq. (17).

respectively [Fig. 3(b)]. Because 2(γeB⊥/�)2 � 1, the ellipse
is close to a circle. If Bz

mw is sufficiently large, the change
in λ also becomes large, resulting in better sensitivity. This
results from the fact that, in the Bloch-sphere description, the
Rabi frequency is proportional to the microwave component
perpendicular to the quantization axis.

We illustrate this point in Fig. 1. This shows the case when
the azimuthal angles of the quantization axis are equal to [see
Fig. 1(d)] or equal but opposite in sign to [see Fig. 1(e)] that
of the applied-microwave-field direction. As can be observed
from geometrical interpretation, when the azimuthal angles of
the quantization axis and the microwave field are equal (equal
but opposite in sign), the component of the microwave perpen-
dicular to the quantization axis is minimized (maximized).

Let us consider a more general model: The spin-1 Hamil-
tonian. We define |g〉 and |e〉 as the ground state and the first
excited state of the Hamiltonian H0. When a resonant mi-
crowave is applied, the Hamiltonian becomes H = H0 + Hmw,
where Hmw is the driving microwave Hamiltonian,

Hmw = γe 
Bmw · 
S cos ω−t,


Bmw = (
Bz

mw, B⊥
mw cos φmw, B⊥

mw sin φmw
)
. (14)

In a rotating frame defined by U = exp (−iH0t ), the effective
Hamiltonian is

H (mw)
eff = 1

2 (
|g〉〈e| + 
∗|e〉〈g|), (15)

where

λ = |
| = |〈g|γe 
Bmw · 
S|e〉| (16)

is the Rabi frequency between |g〉 and |e〉. Here, we have used
the RWA. We cannot obtain a simple analytical form of the
eigenstates of H0. Instead, we perform numerical simulations
to calculate the Rabi frequency in Fig. 2 (blue solid curve) and
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Fig. 3(a). As can be observed in Fig. 2, when θ approaches
90◦, the difference between the results with numerical sim-
ulations and those with qubit approximations becomes more
pronounced because the eigenstates become superpositions of
all three states.

To understand this point, we use perturbation theory to
calculate the Rabi frequency under the assumption that D
and B⊥ are much larger than Bz. In this case, the eigen-
states of the Hamiltonian are expressed as |g〉 � |ms =
0〉 − ε|B〉, |d〉 = |D〉, and |b〉 � |B〉 + ε|ms = 0〉, where ε =
γeB⊥/D, |B〉 = (|ms = +1〉 + |ms = −1〉)/

√
2, and |D〉 =

(|ms = +1〉 − |ms = −1〉)/
√

2. We call |B〉 (|D〉) a bright
(dark) state. This representation is particularly useful when we
apply a magnetic field orthogonal to the NV axis or electric
(strain) fields [48–51]. The first-order corrections to |g〉 and
|d〉 are

|g(1)〉 = cgd |d〉, |d (1)〉 = cdg|g〉 + cdb|b〉,

cgd = −cdg = − εγeBz

D + εγeB⊥
, cdb = − Bz

εB⊥
, (17)

which allow us to obtain the Rabi frequency between |g′〉 =
cg′ (|d〉 + |d (1)〉) and |d ′〉 = cd ′ (|g〉 + |g(1)〉),

|〈d ′|Hmw|g′〉| � cg′cd ′ | − εγeBz
mw + γeB⊥

mw[cdb cos (φs − φmw)

+ i sin (φs − φmw)]|, (18)

where cg′ and cd ′ are normalization constants. Here as well,
we have used the RWA. We also plot |〈d ′|Hmw|g′〉| of Eq. (18)
against φ = φs − φmw in Fig. 2 (green dotted curve). As in
the case of the qubit system approximation, we can interpret
this as a distance on the complex plane (Fig. 3). In this case,
the width, height, and center of the ellipse are cg′cd ′cdbγeB⊥

mw,
cg′cd ′γeB⊥

mw, and (−cg′cd ′εγeBz
mw, 0), respectively. Because

ε, cdb � 1, the ellipse has a long, narrow shape [Fig. 3(c)].
Thus, λ is maximized when the point on the ellipse is lo-
cated at either the top or the bottom of the ellipse, that is,
φs − φmw = 90◦ and 270◦.

The Rabi oscillation can be probed by measuring the popu-
lation of |g〉 with the probability P = [1 + cos (λt )]/2. Thus,
we can estimate φs by sweeping φmw via the measurement of
Rabi frequencies.

IV. SENSITIVITY

A. Separable states

In this section, we calculate the uncertainty of estimation
of our scheme and make a comparison with the conventional
scheme. Although our scheme has the qualitative advantage of
not using the reference dc field, we show that, in some cases,
the sensitivity of our scheme is comparable to or better than
that of the conventional scheme.

If we have an approximate value of the azimuthal angle φs,
we can rewrite it as φs = φa + φ′, where φa is the approximate
value and φ′ is a small difference from the true value. The
Rabi frequency is then given by λ = λa + λ′, where λa is
the approximate value and λ′ is a small difference from the
true value. We can adjust the interaction time as

τ = (2n − 1)π

2λa
, (19)

and we obtain P � (1 + λ′τ )/2, where we assume λ′τ � 1.
By repeating this experiment many times, we can obtain the
probability from the experimental results; thus, the value of φs

and λ can be estimated.
The uncertainty of the estimation is given by

δφ =
√

P(1 − P)

| dP
dφ

|√N
, (20)

where N is the number of repetitions of the experiment and
φ = φs − φmw denotes the azimuthal angle to be estimated.
We assume that the interaction time τ is much longer than the
state preparation time and the measurement readout time. In
this case, we have N � T/τ , where T is a given time for the
sensing. We can calculate the uncertainty as

δφ � 1

| dλ
dφ

|√T τ
. (21)

Now, we consider the magnetic-field sensing under the effect
of decoherence. The dominant noise is due to small fluc-
tuations in the magnetic field due to nitrogen impurities or
environmental nuclear spins, which lead to fluctuations in the
energy splitting [52]. With D � γeB, the noise from B⊥ is
suppressed by a large D and becomes negligible as compared
to Bz, as expressed in Eq. (7). Thus, the effect of decoherence
can be described by the standard Lindblad-type master equa-
tion:

dρ(t )

dt
= −i[Heff , ρ(t )] − �[Ŝz, [Ŝz, ρ(t )]], (22)

where � is the decay rate. In this case, the probability
of projecting the state onto |g〉 can be calculated as P =
Tr[|g〉〈g|ρ(t )]. We numerically calculate the probability P
with the initial state ρ(0) = |g〉〈g|, and we observe a linear
dependence of the probability on a small λ′ for B⊥ between
0.1 and 10 mT). The probability P is, thus, expressed as

P � 1
2 (1 + cτ,�λ′), (23)

where the factor cτ,� represents the signal decay, and we can
numerically calculate this factor. By substituting Eq. (23) into
Eq. (20), we obtain the uncertainty of the estimation:

δφ � 1

cτ,�

∣∣ dλ
dφ

∣∣√T/τ
. (24)

We can calculate the uncertainty for the conventional
scheme in a way similar to that for our scheme, and we ob-
tain δφ � 1/ ˜cτ,�| dδω

dφ
|√T/τ (see a derivation in Appendix A).

Thus, to compare the performance of our method with that of
the conventional method, we need to calculate cτ,� , ˜cτ,� , | dλ

dφ
|,

and | dδω
dφ

|.
First, we performed numerical simulations to calculate | dλ

dφ
|

and | dδω
dφ

|, as shown in Fig. 4. When the reference field is par-
allel to the target field, both λ and δω reach a local maximum
or minimum, and the uncertainty δφ tends to infinity at these
points. As can be observed in Figs. 4(a) and 4(b), when Bmw

is comparable to Br , | dλ
dφ

| is of the same order of magnitude

as | dδω
dφ

|. Let us consider a case with a small amplitude of the
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FIG. 4. (a) The derivative of the Rabi frequency | dλ

dφ
| with respect

to the amplitude of the microwave field Bmw and the azimuthal angle
φ = φs − φmw. (b) The derivative of the resonant frequency | dδω

dφ
|

with respect to the amplitude of the reference dc field Br and the
azimuthal angle φ = φs − φr . Here, the polar angle of the target field
θ is 40◦, while B = 8 mT and (a) θmw = 20◦. (c) The derivative
of the Rabi frequency | dλ

dφ
|, with respect to the amplitude and the

polar angle of the target field B. (d) The derivative of the resonant
frequency | dδω

dφ
|, with respect to the amplitude and the polar angle

of the target field B. Here, we use the azimuthal angle φ to maxi-
mize the derivative, while (c) Bmw = 1.0 mT, (d) Br = 1.0 mT, and
(c) θmw = 20◦.

target field. In this case, | dλ
dφ

| and | dδω
dφ

| decrease for a smaller
B⊥, as shown in Figs. 4(c) and 4(d).

To consider the effect of the factors cτ,� and ˜cτ,� , we next
obtain δφ by directly calculating Eq. (20) using the probability
P obtained by numerically solving Eq. (22) [53]. Figure 5
shows the dependence of δφ on φ and B, respectively, cor-
responding to | dλ

dφ
| and | dδω

dφ
| shown in Fig. 4.

In addition, we take into account the fluorescence contrast
and calculate the sensitivity for a wide range of the target mag-
netic field’s amplitude in Fig. 6. In such cases, the uncertainty
of the estimation is calculated as [8]

δφ′ = δφ/C( 
B), (25)

where C( 
B) is the fluorescence contrast that depends on the
total applied dc magnetic field. The contrast C( 
B) depends
on the amplitude and the polar angle of the applied dc field
and can be calculated using the seven-level classical rate
equations [14]. Increasing the amplitude of the magnetic field
reduces the value of δφ, but also reduces the contrast C( 
B).
There are trade-off relationships between them, and we obtain
δφmin, the minimum values of uncertainty, as shown in Fig. 6.
Let us define the detectable range as the difference between
the two magnetic fields at which δφ becomes half of δφmin.
We calculate the the detectable range as 27 mT (28 mT),
23 mT (24 mT), and 20 mT (38 mT) for θ = 10◦, θ = 40◦, and
θ = 80◦, respectively, by using our (conventional) method.

For simplicity, we use the same � for the conventional
Ramsey scheme and our Rabi scheme in Figs. 5 and 6. How-
ever, in actual experiments, the coherence time of the Rabi

FIG. 5. (a) Uncertainty of the conventional scheme (blue lower
curve) and our scheme (red upper curve) as a function of the az-
imuthal angles φ = φs − φr (blue lower curve) and φ = φs − φmw

(red upper curve) for θ = 10◦ (solid curve), θ = 40◦ (dashed curve),
and θ = 80◦ (dotted curve). We calculate the uncertainty using
Eq. (20) for τ = (2n − 1)π/2λa and plot the minimum (optimal)
value. Here, B = 8 mT, Bmw = 1 mT, Br = 1 mT, θmw = 20◦, and
� = 1.0 MHz. (b) Uncertainty of the conventional scheme (blue
lower curve) and our scheme (red upper curve) as a function of
the amplitude of the target field B for θ = 10◦ (solid curve), θ =
40◦ (dashed curve), and θ = 80◦ (dotted curve). We calculate the
uncertainty using Eq. (20) for τ = (2n − 1)π/2λa and plot the mini-
mum (optimal) value. Here, we use the azimuthal angle φ = φs − φr

(φ = φs − φmw) to minimize the uncertainty of the conventional
(our) scheme and fix Br = 2 mT, Bmw = 2 mT, θmw = 10◦ (solid
curve), θmw = 20◦ (dashed curve), θmw = 20◦ (dotted curve), and
� = 1.0 MHz.

oscillation TRabi is usually longer than that of the Ramsey
measurements TRamsey [47]. The coherence time is determined
by the power spectral density of the noise S(ω) [54–58].
Here, we consider an electron spin bath as a source of
environmental noise, which can be modeled by the Ornstein-
Uhlenbeck process [54]. The correlation function is given

FIG. 6. Uncertainty of our scheme [panels (a) and (c)] and the
conventional scheme [panels (b) and (d)] considering the effect of
the fluorescence contrast C( 
B) as a function of the amplitude and the
polar angle of the target field [Eq. (25)]. Here, we have calculated
the uncertainty δφ as in Fig. 5 and the fluorescence contrast as in
Ref. [14], where we use the contrasts C( 
B) [panesl (a) and (c)] and
C( 
B + 
Br ) [panels (b) and (d)]. We use the same parameters as those
in Fig. 5.
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by
∫

dωS(ω)e−iωt dt = b2e−|τ/τc|, where b is the coupling
strength of the bath to the spin, and τc is the correlation time.
The ratio between the coherence time of our method and
that of the conventional method is given by TRabi/TRamsey =
S(0)/4S(λ) [54–58]. In Appendix A, we adopt this ratio and
compare the performance of our method with that of the
conventional method.

B. Entangled states

Here, we investigate whether a quantum strategy with en-
tanglement outperforms the classical strategy. It is known that
entanglement provides no advantage over separable states in
standard Ramsey interferometry in the presence of Markovian
dephasing [40]. However, Chaves et al. showed that entangled
states could improve the sensitivity when the transversal noise
is dominant, where the direction of the noise is orthogonal to
that of the system Hamiltonian [59,60]. Because our scheme
converts the information of the target dc field into the am-
plitude of the driving microwave, the NV center is mainly
affected by transverse noise, which makes our scheme one of
the cases where entanglement provides sensitivity improve-
ment.

The effective Hamiltonian of the total system in this sce-
nario is given by

Heff =
L∑

j=1

1

2
(
|g〉 j〈e| + 
∗|e〉 j〈g|), (26)

where L is the number of NV centers. By the same calculation
of the master equation as in the case of separable states, we
obtain the uncertainty of the estimation:

δφ � 1

cτ,�,LL
∣∣ dλ

dφ

∣∣√T/τ
, (27)

where we choose the Greenberger-Horne-Zeilinger (GHZ)
state |ψ〉 = 1√

2
(|+〉⊗L + |−〉⊗L ) as an initial state and the

parity operator defined by P̂z = ⊗L
j=1(|g〉 j〈g| − |e〉 j〈e|) as the

observable, as proposed in Ref. [60] (see a detailed derivation
in Appendix B).

Figure 7 plots the ratio between the uncertainty of the sepa-
rable sensor and that of the entanglement sensor, up to L = 6,
when θ is not zero. We use the same parameters as those
used in Fig. 2. It should be stated that we cannot define δφ

for θ = 0. Instead, we calculate δλ for θ = 0 up to L = 10 in
Fig. 7, based on an analytical solution introduced in Ref. [60],
which we explain below.

It is worth mentioning that our results are a generalization
of previous results. For the case of θ = 0◦, our model corre-
sponds to that used in Ref. [60], and the uncertainty scales
as δω = �(L−5/6) in this case for a large limit of L. On the
other hand, when θ is not zero, the noise operator Ŝz is not
completely transverse to the system Hamiltonian, deviating
from the model used in Ref. [60]. In this case, our numerical
simulation shows that the improvement due to entanglement
decreases as θ increases. To understand this point, we use per-
turbation theory to solve the master equation in the interaction
picture. When the effective Hamiltonian given by Eq. (26)
can be analytically diagonalized, we can calculate the time

FIG. 7. Ratio between the uncertainty of the separable sensor
and that of the entanglement sensor as a function of L. When θ is
not zero, we numerically calculate the uncertainty using Eq. (21)
for τ = (2n − 1)π/2Lλa and select the minimum value. For θ = 0,
we plot the uncertainty based on an analytical solution introduced in
Ref. [60]. Here, we fix B = 8 mT, Bmw = 1 mT, and � = 1.0 MHz.

evolution of ρI(t ) up to the first order as

ρI(t ) � ρI(0) − �

L∑
j=1

∫ t

0

[
Ŝ( j)

z (t ),
[
Ŝ( j)

z (t ), ρI(0)
]]

, (28)

where Ŝ( j)
z (t ) = eiHeff t Ŝ( j)

z e−iHeff t with �t � 1. Using this ex-
pression, we can calculate the expectation value of P̂I =
eiHeff t P̂ze−iHeff t .

The analytical formula for θ = 0◦ is given up to the third
order by

Tr[P̂IρI(t )] = 1 − 1
2 L2λ2t2 + 1

6 L(3L − 2)�λ2t3 + O(t4),

(29)

which shows a cubic decay against time. It is shown that the
entanglement strategy outperforms the classical strategy in
scaling for such a cubic decay [60]. On the other hand, for
θ = 90◦, we obtain

Tr[P̂IρI(t )] = 1 − 1
2 L�t + O(t2), (30)

which shows a linear decay. It is known that an entanglement
sensor does not have any advantage over separable sensors
when the system exhibits a linear decay with time [40].
For 0◦ < θ < 90◦, we cannot obtain an analytical form of
Tr[P̂IρI(t )], because we cannot analytically diagonalize the
effective Hamiltonian. However, we can guess that the sensi-
tivity of the entanglement sensor should be between the two,
which is consistent with our numerical results.

Many theoretical and experimental studies have been
carried out for the entanglement-enhanced sensing
[40,42,43,61,62]. Dolde et al. created an entanglement
between two NV centers [63], and Haruyama et al.
demonstrated the fabrication of strongly coupled three
NV centers [64]. Also, there are theoretical proposals to
generate an entanglement between many NV centers [65,66].
Although an experimental demonstration of an entanglement
sensor with NV centers has not been reported yet, we foresee
that entanglement will play an essential role in quantum
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sensing and that the use of an entanglement between multiple
NV centers will be feasible in the future. As such, our results
will provide practical applications in entanglement sensing.

V. CONCLUSION

In conclusion, we have proposed a scheme for vector dc
magnetic-field sensing that uses microwave fields as a refer-
ence to determine the azimuthal angle of the target magnetic
field. We have shown that the direction of the dc magnetic
field can be measured from the Rabi frequency because the
component of the resonant microwave field perpendicular to
the quantization axis contributes to driving the Rabi oscilla-
tion. In addition, we investigated the potential of our method
to improve the sensitivity by using entangled states and found
that our sensing scheme with entanglement has sensitivity
better than that of separable sensors, even under the effect
of noise for most of the parameters. Our results pave the
way for investigating various phenomena of materials that are
sensitive to static magnetic fields.
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APPENDIX A: DETAILED CALCULATION
AND DISCUSSION ON SENSITIVITY

1. Derivation of the uncertainty of the estimation
of the conventional scheme

The uncertainty of the estimation of the conventional
scheme can be obtained in a way similar to that of our scheme
shown in the main text. Assuming we have an approximate
value of the azimuthal angle φs, we can rewrite it as φs =
φa + φ′, where φa is the approximate value and φ′ is a small
difference from the true value. The frequency shift δω is then
given by δω = δωa + δω′, where δωa is the approximate value
and δω′ is a small difference from the true value. We can
adjust the interaction time as

τ = (2n − 1)π

2δωa
, (A1)

and we obtain P � (1 + δω′τ )/2, where we assume δω′τ �
1. By using Eq. (20), we can calculate the uncertainty as

δφ � 1∣∣ dδω
dφ

∣∣√T τ
. (A2)

The effect of decoherence can be described by the standard
Lindblad-type master equation, Eq. (22). For the conventional
case, the probability of projecting the state onto |+〉 can be
calculated as P = Tr[|+〉〈+|ρ(t )]. We numerically calculate

the probability P with the initial state ρ(0) = |+〉〈+|, and we
observe a linear dependence of the probability on a small δω′
for B⊥ between 0.1 and 10 mT. The probability P is, thus,
expressed as

P � 1
2 (1 + ˜cτ,�δω′), (A3)

where ˜cτ,� denotes a factor calculated using numerical simu-
lations. By substituting Eq. (A3) into Eq. (20), we obtain the
uncertainty of the estimation:

δφ � 1

˜cτ,�

∣∣ dδω
dφ

∣∣√T/τ
. (A4)

2. Effect of the coherence time on sensitivity

Here, we calculate the uncertainty of our scheme using
a decay rate obtained from the ratio between the coher-
ence time of our method and that of the conventional
method. To compare the performance, we assume �Ramsey =
1.0 MHz, as in the main text, and use relation �Ramsey/�Rabi =
TRabi/TRamsey = S(0)/4S(λ), which can be obtained by the
standard technique of open quantum systems [6,54]. The
power spectral density (PSD) of the noise is calculated as

S(ω) = 2b2
(

1
τc

)
(

1
τc

)2 + ω2
, (A5)

where b is the coupling strength of the bath to the spin,
and τc is the correlation time. As the frequency becomes
smaller, the PSD tends to be larger, which makes the co-
herence time of the Ramsey scheme shorter. In contrast, the
sensitivity of our scheme is mainly affected by the PSD
whose frequency is near the Rabi frequency, thereby avoiding
the effect of strong low-frequency noise. This provides the
intuitive understanding of the ratio of the coherence time
TRabi/TRamsey = S(0)/4S(λ). We numerically solve Eq. (22)
with �Rabi = 1.0 × 4S(λ)/S(0) MHz and calculate the uncer-
tainty of the estimation by using Eq. (20). We adopted a value
of τc = 23 μs, as estimated in Ref. [54]. Figure 8 shows the
dependence of δφ on φ and B, respectively. For any φ and B,
more than a fivefold improvement is obtained compared to the
conventional scheme when we compare the results in Fig. 8
with those in Fig. 5.

APPENDIX B: DERIVATION OF THE UNCERTAINTY
OF THE ESTIMATION USING ENTANGLED STATES

Let us consider an ensemble of L NV centers aligned along
only one axis. In our study, we assume that the effect of the
dipole-dipole interaction between the probe spins is negligible
during the Rabi oscillation. This is valid, especially when the
main noise source is the magnetic noise induced by nitrogen
impurities and/or carbon nuclear spins in the environment
[67,68].

The Hamiltonian of the total system is, thus, given by

H =
L∑

j=1

H ( j)
0 + H ( j)

mw,

H ( j)
0 = D

(
Ŝ( j)

z

)2 + γeBzŜ
( j)
z + γeB⊥

(
cos φsŜ

( j)
x + sin φsŜ

( j)
y

)
,

H ( j)
mw = γe 
Bmw · 
S( j) cos ω−t . (B1)
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FIG. 8. (a) Uncertainty of our scheme as a function of the az-
imuthal angle φ = φs − φmw for θ = 10◦ (solid curve), θ = 40◦

(dashed curve), and θ = 80◦ (dotted curve). We calculate the uncer-
tainty using Eq. (20) for τ = (2n − 1)π/2λa and plot the minimum
(optimal) value. Here, B = 8 mT, Bmw = 1 mT, θmw = 20◦, and
�Rabi = 1.0 × 4S(λ)/S(0) MHz. (b) Uncertainty of our scheme as
a function of the amplitude of the target field B for θ = 10◦ (solid
curve), θ = 40◦ (dashed curve), and θ = 80◦ (dotted curve). We
calculate the uncertainty using Eq. (20) for τ = (2n − 1)π/2λa and
plot the minimum (optimal) value. Here, we use the azimuthal angle
φ = φs − φmw to minimize the uncertainty and fix Bmw = 2 mT,
θmw = 10◦ (solid curve), θmw = 20◦ (dashed curve), θmw = 20◦ (dot-
ted curve), and �Rabi = 1.0 × 4S(λ)/S(0) MHz.

We define |g〉 j and |e〉 j as the ground state and the first-
excited state of the Hamiltonian H ( j)

0 , respectively. In a
rotating frame defined by U = exp (−i

∑L
j=1 H ( j)

0 t ), the ef-
fective Hamiltonian is

Heff =
L∑

j=1

λ

2
(|g〉 j〈e| + |e〉 j〈g|). (B2)

As an initial state, we choose the GHZ state

|ψ〉 = 1√
2

(|+〉⊗L + |−〉⊗L ), (B3)

where |+〉 = (|g〉 + |e〉)/
√

2 and |−〉 = (|g〉 − |e〉)/
√

2.
As the observable, we choose the parity operator

defined by

P̂z =
L⊗

j=1

(|g〉 j〈g| − |e〉 j〈e|), (B4)

as proposed in Ref. [60]. First, let us consider the noiseless
case. The expectation value of the measurement is given by
P = cos (Lλt ). Assuming that we know the approximate value
of the azimuthal angle φs, we obtain P � Lλ′τ by adjusting
the interaction time t , where λ′ is a small difference between
the approximate and true values. The uncertainty is defined as

δφ =
√

1 − P2∣∣ dP
dφ

∣∣√N
, (B5)

and we obtain δφ � 1
L| dλ

dφ
|√T τ

for a small λ′, where we use

P̂2
z = Î . Thus, we obtain δφ = �(L−1), and this scaling is

called the Heisenberg limit.
Second, we investigate how the decoherence affects the

performance of the entanglement sensor. To account for
the decoherence, we adopt the Lindblad-type master equa-
tion given by

dρ(t )

dt
= −i[Heff , ρ(t )] −

L∑
j=1

�
[
Ŝ( j)

z ,
[
Ŝ( j)

z , ρ(t )
]]

. (B6)

We numerically obtain the expectation value P = Tr[P̂zρ(t )]
with the initial state ρ(0) = |ψ〉〈ψ |. We observe a linear
dependence of the expectation value on a small λ′ for B⊥
between 0.1 and 10 mT with τ = (2n − 1)π/2Lλa. Thus, the
expectation value P can be described by

P � cτ,�,LLλ′, (B7)

where cτ,�,L denotes a factor calculated using the numerical
simulations. By substituting Eq. (B7) into Eq. (B5), we obtain
the uncertainty of the estimation:

δφ � 1

cτ,�,LL
∣∣ dλ

dφ

∣∣√T/τ
. (B8)
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