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Optimizing quantum circuits with Riemannian gradient flow
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Variational quantum algorithms are a promising class of algorithms that can be performed on currently
available quantum computers. In most settings, the free parameters of a variational circuit are optimized using
a classical optimizer that updates parameters in Euclidean geometry. Since quantum circuits are elements
of the special unitary group, we can consider an alternative optimization perspective that depends on the
structure of this group. In this work, we investigate a Riemannian optimization scheme over the special unitary
group and we discuss its implementation on a quantum computer. We illustrate that the resulting Riemannian
gradient-flow algorithm has favorable optimization properties for deep circuits and that an approximate ver-
sion of this algorithm can be performed on near-term hardware. We highlight the connections of our work
with previously proposed heuristics like ADAPT-VQE and show that they can be understood as variants of
our algorithm.
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I. INTRODUCTION

With quantum computing hardware still in its infancy, vari-
ational quantum algorithms offer a way to probe the power of
noisy intermediate-scale quantum (NISQ) devices [1,2]. In a
typical setup, one calculates gradients with respect to gate pa-
rameters in a quantum circuit to minimize a cost function that
depends on the variational state. Since these approaches often
involve minimizing nonconvex cost functions, the choice of
optimizer can greatly affect the result [3]. Unlike in deep
learning, where back propagation can remain effective despite
a large number of parameters, calculating gradients in a vari-
ational quantum circuit quickly becomes inefficient. This is
due to the fact that the gradients for single parameters can-
not be calculated concurrently, but require additional circuit
evaluations for each parameter [4,5].

Gradient-based methods can be improved by considering
additional structure of the model under consideration. For
instance, when dealing with a statistical model, one can make
use of the Fisher information to quantify the statistical dis-
tance between probability distributions [6]. This induces a
metric on parameter space, which provides the direction of
steepest descent with respect to the information geometry [7].
The resulting gradient is called the natural gradient, and forms
the basis of a second-order optimization algorithm called nat-
ural gradient descent. This method is used in deep learning
[8,9] but can also be extended to variational quantum Monte
Carlo [10] and variational quantum circuits, where the dis-
tance between rays in Hilbert space provides an analog of the
Fisher information [11,12].

Optimization algorithms that rely on the Fisher information
fall into the category of Riemannian optimization algorithms
[13,14]. However, they are limited to optimizing over a real
parameter space Rn with a non-Euclidean metric. Rieman-
nian optimization has a much broader application: We can

consider minimizing a function over a differentiable manifold
M equipped with a nondegenerate, positive metric. This con-
struction is more general, and allows one to take the structure
of the manifold into account during the optimization. Such
applications have been considered in the context of quan-
tum control [15–20], tensor networks [21,22], or optimization
of neural networks [23–27]. In the quantum circuit setting,
the Riemannian manifold perspective has been considered to
study the computational complexity of constructing specific
circuits by approximating geodesics on the unitary group
[28,29].

In this work, we introduce the optimization of quantum cir-
cuits over the special unitary group SU(p) using Riemannian
gradient flows [15]. We show the resulting algorithm can pro-
duce quantum circuits with favorable optimization properties
but which may be exponentially deep. To obtain a practically
feasible circuit optimizer, we make approximations that keep
gate costs under control. We explore several toy problems to
illustrate the properties of the resulting exact and approximate
Riemannian gradient flow.

In Sec. II, we introduce the necessary theory of gradient
flows on the special unitary group. Then in Sec. III, we show
how these flows can be adapted to the variational quantum
circuit setting. To make these algorithms practical, we have
to consider approximations in Sec. IV, for which we present
numerical results for some toy models in Sec. V. In addition,
we argue how some of the literature on adaptive variational
approaches can be re-contextualized from the Riemannian op-
timization point of view. In Sec. VI we summarize our results.

II. BACKGROUND

A. Gradient flows in quantum circuits

An archetypal example of a widely used gradient flow in
quantum computing is the variational quantum eigensolver

2469-9926/2023/107(6)/062421(11) 062421-1 ©2023 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.062421&domain=pdf&date_stamp=2023-06-27
https://doi.org/10.1103/PhysRevA.107.062421


ROELAND WIERSEMA AND NATHAN KILLORAN PHYSICAL REVIEW A 107, 062421 (2023)

(VQE) [1]. Consider the cost function L : Rn → R,

L(θ ) = Tr{HU (θ )ρ0U (θ )†} ≡ 〈H〉θ , (1)

where U (θ ) is a parametrized quantum circuit, H a Hamil-
tonian whose ground state we want to approximate, and θ ∈
[0, 2π )n is a vector of gate parameters. Here, ρ0 = |ψ0〉〈ψ0| is
some initial state of the system, usually taken to be the zero
state |0〉〈0|. We are interested in minimizing L(θ ) with respect
to the parameters θ .

To solve the optimization problem minθ L(θ ), we can con-
sider the flow

θ̇ = ∇θL(θ ), (2)

where ∇θ = ∑n
i ∂θi is the standard gradient operator. Equa-

tion (2) provides a differential equation for the evolution of
the parameters based on the gradient of the function at a point
θ . This flow equation can be discretized as

θk+1 = θk − ε∇θL(θ ), (3)

where ε is the step size that controls the precision of the
discretization. Using this equation to update the parameters
of L(θ ) is called steepest descent since we follow the gradient
of the function to a minimum.

To understand why this works, we can look at the level
curves of L, i.e., curves through parameter space where the
function L is constant. We can define such a curve as γ :
(−a, a) → Rn with γ (0) = θ such that L(γ (t )) = const. Dif-
ferentiating with respect to t then gives

∑
i

∂θi L(γ (t ))γ ′
i (t )

∣∣∣∣
t=0

= 0, (4)

which we identify as ∇L · v, the gradient of L in the direc-
tion of v = γ ′(t ). In other words, the gradient of a function
produces a vector orthogonal to the level curves through a
point. As a result, infinitesimal steps in the direction of the
gradient will decrease the function’s value until we reach a
local minimum [30].

One issue with VQE is that the parametrization of the
variational circuit U (θ ) is an arbitrary choice that we have to
make. This implies that one must try different Ansätze and
assume that the state of interest can be expressed with the
chosen Ansatz. Moreover, due to the nonconvexity of the cost
landscape, we have no guarantees that our optimizer can find
a good approximation to the desired state.

B. Gradient flows on Lie groups

An N-qubit quantum circuit U is a unitary operation that
is an element of the special unitary group SU(p) where p =
2N . Hence, instead of minimizing the cost Eq. (1) over Rn

for a particular parametrization U (θ ), we can instead directly
optimize over SU(p).

For such a construction to make sense, we need to intro-
duce a gradient on SU(p). Since SU(p) is a finite-dimensional
Lie group, it carries a differentiable manifold structure. We
thus need to use the language of differential geometry to
define a gradient on the group [31–34]. In particular, a p-
dimensional manifold M is a set that locally looks like Rp.
This local description is given by charts, which smoothly map
open subsets of the manifold onto coordinate patches in Rp. If

all charts between two subsets of the manifold are compatible,
the manifold is differentiable (see Appendix A 1).

The tangent space TU SU(p) of the manifold at a point U
is a vector space that consists of a collection of vectors 	 ∈
TU SU(p) that provide the possible directions one can move in
on the manifold from point U . The tangent vectors 	 can be
defined as derivatives of curves going through the point U (see
Appendix A 2). For example, on a sphere, the tangent space at
a point p consists of a plane tangent to p.

The introduction of an inner product on the tangent space
turns the manifold into a Riemannian manifold, with well-
defined notions of angles and distance (see Appendix A 3).
Given this metric, the Riemannian gradient grad L(U ) of a
function L : SU(p) → R at U can be constructed by satisfy-
ing two conditions:

(i) The Riemannian gradient grad L(U ) at a point U must
be an element of the tangent space TU SU(p). This ensures that
it is always tangential to the manifold at each point, hence
grad L(U ) ∈ TU SU(p).

(ii) Because there are many different ways to set coordi-
nates on a manifold, and because the function itself should be
invariant under a change of coordinates (i.e., its level curves
are at the same locations on the manifold), we need to en-
force a coordinate-invariant notion of a gradient. This can be
achieved with the compatibility condition,

〈grad L(U ),	〉 = Tr{∇L(U )	} (5)

which expresses the fact that the inner product (under some
chosen metric) of the Riemannian gradient with any other
tangent vector 	 is independent of the choice of metric (see
Fig. 2) [18,23]. Here, we take the reference inner product on
the right-hand side to be the Hilbert-Schmidt inner product in
the local coordinates Rp.

With the two conditions for the Riemannian gradient given
above, we can explicitly construct grad L(U ). First, we rewrite
Eq. (1) as a scalar function on the special unitary group L :
SU(p) → R to obtain

L(U ) = Tr{HUρ0U
†}, (6)

where U ∈ SU(p). To solve the optimization problem
minU L(U ), we can consider the Riemannian gradient flow

U̇ = grad L(U ). (7)

Next, we realize that the tangent space of SU(p) at the
identity element X0 = I is given by the Lie algebra su(p),
the set of p × p skew-Hermitian matrices 	 with Tr{	} = 0.
The elements of TU SU(p) can then be found by right multiply-
ing an element of the Lie algebra with U (see Appendix B):

TU SU(p) := {	U |	 ∈ su(p)}. (8)

With the notion of a tangent vector on SU(p), we can enforce
the compatibility condition (see Appendix C 1) and derive the
resulting Riemannian gradient flow on SU(p):

U̇ = grad L(U ) = [Uρ0U
†, H]U . (9)

Analogous to the gradient in Rn, the Riemannian gradient
flow of Eq. (9) converges to a critical point of L(U ) on SU(p)
by descending along the level curves of the function [16].
To numerically compute the flow, we need to discretize the
gradient steps.
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(a) (b)

FIG. 1. Difference between the Riemannian gradient flow and Euclidean gradient flow. (a) At the top, we have a mapping from real
parameters θ ∈ Rn to a unitary in U ∈ SU(p). Gradient updates in the parameter space from θ to θ ′ result in a new unitary U ′ on the group.
Starting instead at U , we first obtain the Riemannian gradient at U in the tangent space TU SU(p). Since the Riemannian gradient can be
written as 	U with 	 ∈ su(p), we can move to the Lie algebra su(p) by multiplying the Riemannian gradient with U † from the right. Then,
the exponential map and subsequent right multiplication with U projects the Riemannian gradient back onto the manifold which results in a
new unitary U ′. (b) At the top, we see how a standard gradient flow optimizes a quantum circuit: The circuit stays fixed and the gradient is
calculated via the parameter-shift rule. Next, the free parameters describing the unitary are updated via gradient descent. In the bottom figure,
we see that a step of the Riemannian optimization corresponds to appending a new unitary to the original circuit.

The commutator [Uρ0U †, H] is a skew-Hermitian matrix
in the tangent space of SU(p) at U , hence, left multiplication
of U with the commutator will in general not keep us on the
manifold. To perform a discrete gradient update step, we have
to retract the Riemannian gradient from the tangent space onto
SU(p) [35]. In contrast, for the Euclidean case of Eq. (2)
where M = Rn this is not necessary since the tangent space
of Rn coincides with the manifold at all points: TθRn ∼= Rn.

The canonical retraction for our setting is the Lie exponen-
tial map expU : TU SU(p) → SU(p), 	 	→ expU {	}, so that
expU {t	} for t ∈ [0, 1] describes a unique geodesic at U with
initial “velocity” 	 ∈ TU SU(p). The operator expU can be de-
composed as follows. We realize that grad L(U ) = 	U with
	 = [Uρ0U †, H], hence, right multiplication with the inverse
U † yields an element of the Lie algebra. Taking exp 	 and
multiplying with U from the right then produces the retracted
gradient [see Fig. 1(a)]. If we discretize Eq. (9) and perform

FIG. 2. The compatibility condition. By taking the Euclidean
inner product as the reference inner product, we can enforce the in-
variance of the inner product under a change of metric and explicitly
construct grad L(X ).

the retraction, we finally obtain

Uk+1 = exp ε[Ukρ0U
†
k , H]Uk, (10)

where ε is the step size and Uk ∈ SU(p) the unitary at step k.
To analyze the convergence properties of Eq. (10), we rely

on the fact that the map ρ0 	→ Ukρ0U
†
k can be understood as

a so-called double-bracket flow on the adjoint orbits of the
group [36–38].

Double-bracket flows can be used to solve a variety of
tasks such as sorting lists [39], describing Toda flows [40],
or diagonalizing Hamiltonians in many-body physics [41–43].
Additionally, they have been studied in the context of quan-
tum gate design [44]. The properties of this optimization
scheme are well understood, in particular, if H is nondegen-
erate there exist exactly p! minima on SU(p), and (p − 1)!
global minima. Amazingly, only the global minima are stable
attractors of the optimization dynamics, and one can show
that almost all points will converge to these minima given a
suitable step size [16]. Hence, the Riemannian gradient flow
is guaranteed to find the ground state of a nondegenerate
Hamiltonian H .

III. EXACT RIEMANNIAN GRADIENT
FLOW IN QUANTUM CIRCUITS

If Uk in Eq. (10) is implemented by a quantum circuit,
then left multiplication of Uk with the retracted Riemannian
gradient is nothing more than appending a set of gates to
that circuit, as illustrated in Fig. 1(b). However, it should
come as no surprise that an implementation of the Riemannian
gradient flow on a quantum computer will require an expo-
nential number of gates as the number of qubits N increases
since an element in the Lie algebra su[2N ] is described by
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4N − 1 parameters in general. Nevertheless, we describe an
approach for implementing the Riemannian gradient in a cir-
cuit in order to set up an approximate scheme that requires
only a polynomial number of operations.

An exact approach to implement the Riemannian gradient
on a quantum circuit is to decompose the skew-Hermitian
operators [Ukρ0U

†
k , H] in terms of a basis of the Lie algebra

su[2N ]. One such basis is the set of Pauli words PN = {P j},
where P j = ⊗N

l=1 p̃l and p̃ ∈ {I, X,Y, Z} multiplied by i to
ensure skew-Hermiticity.

We can write the commutator in the exponent of Eq. (10)
in terms of this basis:

[Ukρ0U
†
k , H] = − 1

2N

4N −1∑
j=1

Tr{[Ukρ0U
†
k , H]P j}P j . (11)

The coefficients

ω
j
k = Tr{[Ukρ0U

†
k , H]P j} = 〈[H, P j]〉ρk , (12)

with ρk = Ukρ0U
†
k , can then be calculated on a quantum de-

vice with the parameter-shift rule [4,5,45,46]

〈[H, P j]〉 = i

〈
V †

(π

2

)
HV

(π

2

)
− V †

(
−π

2

)
HV

(
−π

2

)〉
ρk

,

(13)

with V (t ) = exp{itP j/2} and the expectation value is cal-
culated with respect to the state Ukρ0U

†
k . Hence, estimating

the coefficients ω
j
k requires taking the gradient of 〈H〉t with

respect to t given the state V (t )Uk|ψ0〉. The resulting Rieman-
nian gradient flow can be compactly written as

Uk+1 ≈
4N −1∏
j=1

exp −εω
j
kP jUk, (14)

where we absorbed the exponential factor into ε and took the
sum out of the product via the Trotter formula at the cost of
an error of O(ε2). In addition to requiring 4N − 1 estimates of
ω

j
k , this also requires applying the corresponding multiqubit

gates generated by all Pauli words of size N , which will be
very difficult in practice.

Note that instead of splitting the exponent of the sum
with a Trotter decomposition, we could directly use a Car-
tan decomposition algorithm, e.g., the Khaneja-Glaser or
D’Alessandro decomposition to recursively decompose the
Riemannian gradient into products of single- and two-qubit
unitaries [47–49].

IV. APPROXIMATE RIEMANNIAN GRADIENT
FLOW IN QUANTUM CIRCUITS

To circumvent the exponential resources required for the
exact Riemannian gradient, we consider an approximation
scheme that requires only a polynomial number of parameters
and gates. A natural approximation is restricting the Rie-
mannian gradient to a subspace k ⊆ su[2N ] via an orthogonal
projection onto k. We show this schematically in Fig. 3. If we

su

su(

su

FIG. 3. Restricting the algebra to a subspace and projecting the
Riemannian gradient onto this subspace. Schematically, one can also
break down the projected subspace into further component subspaces
(represented for simplicity as single lines).

let {K j} ⊂ PN for j = 1, . . . , k be a basis of the subspace k,
then from Eq. (14) we obtain the local Riemannian gradient
flow

Uk+1 ≈
k∏

j=1

exp −εω
j
kK jUk, (15)

where now ω
j
k = 〈[H, K j]〉ρk . This approximation gives us

control over which directions in the Lie algebra we want to
explore. Depending on the choice of k, we append a sequence
of k gates at each optimization step. This approximation is an
example of a stochastic Riemannian gradient algorithm [50].

Interestingly, the approximate Lie algebra optimization co-
incides with some VQE approaches for particular choices
of k. For instance, if we restrict the Riemannian gradient to
single-qubit Paulis,

PN
1-local := {I⊗i−1 ⊗ σi ⊗ I⊗N−i|σi ∈ {X,Y, Z}}, (16)

where σi acts on qubit i, then we are performing a variant
of the circuit structure learning algorithm called Rotosolve
[51–53], where instead of minimizing the expectation value
〈H〉 per added gate, we follow the Riemannian gradient with
a step ε. Additionally, we can choose the subspace k in such a
way that the terms in the product (15) become two-qubit gates.
For example, we could take the subspace to consist only of
2-local Paulis,

PN
2-local := {I ⊗ σi ⊗ I . . . I ⊗ σ j ⊗ I|σi, σ j ∈ {X,Y, Z}},

which contains |PN
2-local| = 9N (N − 1) terms. We can also

consider the nearest neighbor 2-local Paulis,

PN
2-local n.n. := {I ⊗ σi ⊗ σ j ⊗ · · · ⊗ I|σi, σ j ∈ {X,Y, Z}},

which contains |PN
2-local n.n.| = 9(N − 1) terms. If instead of

appending all K j in our set we only append the unitary gen-
erated by the K j with the largest ω

j
k , we are performing a

popular metaheuristic first introduced in [54] called Adapt-
VQE. The difference being that we do not reoptimize the
parameters of previous layers at each step. Additionally, the
Lyapunov control strategy FALQON [55] can be understood
as a Trotterized time evolution where the step size of the drift
Hamiltonian is set to the Riemannian gradient.
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2
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Y
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VQE Opt.
Riemannian Opt.
QNG Opt.
Minimum

FIG. 4. Two-qubit example for the Hamiltonian H = X1 + X2 +
Y2. The circuit at initialization for both the VQE and Riemannian
optimzer is given by the hardware-efficient Ansatz [61]. This circuit
Ansatz consists of two RY gates with initial parameters (0.1,2.1),
followed by two RZ gates with initial parameters (0.3,0.1) and finally
a CNOT where the second qubit is the target. The step size for both
the Riemannian gradient and parameter-shift VQE are ε = 0.5. The
VQE optimization gets stuck in a local minimum, whereas the Rie-
mannian gradient-flow optimizer rapidly reaches the optimal solution
of 〈H〉 ≈ −2.40. We see that the use of the quantum natural gradient
(QNG) does not improve the overall convergence [11].

Analogous to these methods, the choice of operator pool
that will be appended to the circuit will affect the quality
of the ground-state approximation. From the optimal control
literature, we know that if {K j} spans su(2N ) under nested
commutation, the system is controllable and any state can be
reached given sufficient depth [56,57]. In the ADAPT-VQE
setting, there are various proposals for which operators K j

to choose if one considers a fermionic Hamiltonian [58–60].
With the subspace restriction, the fixed-point analysis be-
comes highly nontrivial. Although we still have the same
convergence criterion as before, grad L(U )|k = 0 can be sat-
isfied if the Riemannian gradient has nonzero components
orthogonal to the restricted subspace of the algebra, i.e.,
grad L(U )|k ∈ p where su(p) = p ⊥ k. As a result, we lose
the global minima guarantees from the exact optimization.
However, with the right choice of subspace, it is possible that
the local Riemannian gradient information is enough to give a
good approximation of the global minimum of Eq. (6).

V. NUMERICAL EXAMPLES

Here, we provide several numerical experiments on toy
models to test the Riemannian gradient descent algorithm.
Our Riemannian and VQE optimization procedures mini-
mize the costs in Eqs. (6) and (1), respectively. We have
implemented the Riemannian optimizer in PennyLane as the
LieAlgebraOptimizer [62].

0 20 40 60 80
Step

−2

−1

0

1

2

〈X
1
+

Y
1
+

X
2〉

Riemannian Opt.
Riemannian Opt. Pert.
Minimum
Eigenvalue 1
Perturbation

FIG. 5. Two-qubit example for the exact Riemannian gradient
for the Hamiltonian H = X1 + Y1 + X2. The circuit at initialization
consists of two Hadamards on each qubit. The learning rate is set
at ε = 0.2. After 20 steps, the optimization gets stuck in an eigen-
state. We generate a stochastic 4 × 4 matrix X ∼ N (0, 0.1)4×4 and
obtain a random direction in the Lie algebra K = i

2 (X − X T ). After
five perturbations, we escape the saddle point, and the optimization
reaches the ground state of H .

First, we consider the exact Riemannian gradient flow,
which can be implemented on a circuit for small system sizes.
In Fig. 4, we compare the optimizer with the parameter-shift
rule for a two-qubit circuit. We see that the Riemannian
gradient flow can reach the ground state of a simple Hamil-
tonian, whereas the VQE optimization can only reach a
suboptimal solution.

To further illustrate the optimization properties of the exact
Riemannian gradient flow, we study a two-qubit example in
Fig. 5 where the optimization gets stuck in an eigenstate,
which corresponds to a saddle point in the optimization land-
scape. After performing a small perturbation in the Lie
algebra, we escape the saddle-point minimum and converge
to the ground state.

In Fig. 6, we see a simple example of the approximate
Riemannian gradient flow, where we restricted the full Lie
algebra to a subset of directions. We see that after a few steps,
we get close to the minimum of the function. For this example,
the Lie algebra restriction still allows us to reach the ground
state of the Hamiltonian.

Although the local approximation provides an accurate
solution for the previous toy example, we can run into issues
for more nontrivial problems, as we see in the final example.
We consider the problem of finding the ground state of the
transverse field Ising model on four qubits, whose Hamilto-
nian is given by

H = −
∑

i

(ZiZi+1 + gXi ). (17)

We assume periodic boundary conditions and set g = 1. The
ground state of this model can be reached with a depth
N/2 Ansatz for an N-qubit chain using gradient-based VQE
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FIG. 6. Nonzero components of the Riemannian gradient versus
the optimization step. The initial circuit consists of two Hadamard
gates. The Hamiltonian is H = X1 + Y1Z2. At each step in the op-
timization, the Riemannian gradient grad L(U ) = −[Ukρ0U

†
k , H ]

only has components in the YY and ZZ directions, keeping the state
in the submanifold spanned by the states reachable by (XX ,YY , ZZ ).
We can therefore restrict the Lie algebra to the subspace k spanned
by {YY, ZZ} and perform the approximate Riemannian gradient flow.
At each step, we need to calculate {ωYY

k , ωZZ
k }. In the inset we see the

residual energy εres = E0 − 〈H〉 versus the optimization steps. As the
optimization progresses, we get exponentially closer to the ground
state of H .

[63–65]. We find that the approximate Riemannian gradi-
ent optimizer can get close to the ground state. But, unlike
standard VQE, we cannot approximate the ground state closer
than 1 × 10−2, as can be seen in Fig. 7.

Here, we see a limitation of the approximate Riemannian
gradient flow. If we restrict the Lie algebra to su(2) and su(4)
operators, the Riemannian gradient only has a local view of
the cost landscape, and cannot access higher-order Lie algebra
directions. On the contrary, VQE can access these directions
since the Ansatz is often universal, i.e., made from a product of
single- and two-qubit unitaries. In principle, the unitary that is
implemented by such an Ansatz could have a generator W (θ )
such that

UVQE(θ ) = exp −iW (θ ), (18)

that can explore additional su(p) directions in the Lie algebra
for p = 8, 16, . . ., albeit with a restricted parametrization.

A bottleneck for gradient-based VQE is that the number
of circuit evaluations per optimization step scales linearly in
the number of parameters, which is difficult in practice since
parallel evaluation of quantum gradients requires multiple
quantum devices. The approximate Riemannian gradient flow
does not suffer from this issue since the amount of circuit
evaluations is constant independent of circuit depth: We only
require |k| gradient calculations at each step. However, the
Riemannian gradient flow may produce a circuit that is much
deeper than the VQE Ansatz since we are appending gates to
the circuit at each step k.

Ultimately, the approximate Riemannian gradient flow
may not provide an accurate approximation to the ground state
of a given Hamiltonian H . However, it could dynamically
produce an Ansatz that serves as a good starting point for
further VQE optimization, similar to ADAPT-VQE.

VI. CONCLUSION

In this work, we proposed Riemannian gradient flows in
the context of variational quantum circuits. We showed that
one can perform these types of optimizations on a quantum
circuit, with strong convergence guarantees holding for expo-
nentially deep variants of this algorithm. The usefulness of the
local approximations to the Riemannian gradient flow merits
further investigation in order to understand the power of this
class of algorithms.

We hope that this alternative optimization paradigm can
lead to new variational quantum algorithms, and provide
insight for existing variational methods in noisy intermediate-
scale quantum hardware. Additionally, we believe that the
differential geometry and quantum control perspective can
be a fruitful direction of research to further our understand-
ing of the optimization properties such algorithms [67,68].
In particular, these ideas could be used to investigate over-
parametrization in VQE [65,69–72]. Perhaps the global
convergence guarantees of double-bracket flows can be used
to understand the convergence properties of deep quantum cir-
cuits and provide deeper insight into the power and limitations
of VQE.
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APPENDIX A: DIFFERENTIAL GEOMETRY

To establish notation, we briefly summarize some of the
key concepts in differential geometry needed for our purposes.
There exist many excellent references on the topic: see [31,32]
for the physicist-friendly references and [33,34] for the more
technical expositions on the subject.

1. Manifolds

A space M is called an n-dimensional topological mani-
fold if it is locally homeomorphic to Rn. Specifically, there
must exist a family of open subsets Ua ⊆ M such that

(1) the family covers M, i.e.,
⋃

a Ua = M,
(2) ∀ a, ∃ϕa : Ua → ϕa(Ua) ⊂ Rn where ϕa is homeomor-

phic.
The pair (Ua, ϕa) is called a chart and a collection of charts

that covers M is called an atlas A. In order to develop a
differential calculus, we require that all charts in A are Ck

compatible. This means that if we have two charts (Ua, ϕa),
(Ub, ϕb), we require that ϕa(Ua ∩ Ub) and ϕb(Ua ∩ Ub) are
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(a) (b)

FIG. 7. Comparison of Riemannian gradient optimization versus gradient-based VQE for the four-qubit transverse field Ising model. The
Riemannian gradient circuit is initialized with a Hadamard on each qubit. To minimize gate costs, we use an adaptive scheme to reduce the
amount of gates appended at each step of the Riemannian optimization. We obtain the ω

j
k ’s on all qubits or pairs of qubits for su(2) and su(4),

respectively. Then, we select the largest ω
j
k and use we use a structure optimization algorithm to calculate the optimal step size ε [45,46,52,66].

The gradient-based VQE optimizer has step size ε = 0.01. Finally, we append a single gate corresponding to the chosen Lie algebra direction
with this step size. (a) The residual energy εres = E0 − 〈H〉 plateaus for the Riemannian gradient close to the ground-state energy. We verify
that the optimizer is not stuck in an eigenstate close to the ground state, and so the optimization gets stuck due to the projection of the gradient
onto the local algebra. The VQE optimization on the other hand is still getting closer to the ground state. In addition, the QNG optimizer
finds the ground state much more rapidly than the vanilla gradient descent optimizer by taking the geometry of the Hilbert space into account.
(b) Here, we plot the magnitude of all components of the Riemannian gradient versus the optimization steps. We see that Riemannian gradient
becomes zero in the su(4) direction, but higher-order Lie algebra directions are still nonzero. This explains why we cannot converge close to
the ground state: we need to access higher-order elements of the Lie algebra. The transverse field Ising model has symmetries that we can
exploit. In particular, we can use the dynamical Lie algebra of the model to construct a Riemannian gradient flow within a subgroup (see
Appendix 2 C).

open and that ϕa ◦ ϕ−1
b is Ck differentiable. The tuple (M,A)

is called a k-differentiable manifold if all charts in A are
Ck compatible. A function f : M → N is said to be Ck

differentiable if for all charts (Ua, ϕa) on M, (Vj, ψ j ) on N
in the atlas we have that ψ j ◦ f ◦ ϕ−1

a is Ck differentiable.

2. Tangent spaces

We are interested in generalizing the concept of a derivative
to arbitrary manifolds. Consider a curve γ : I → M where
I = (−a, a) is an open subset of R and M is a differentiable
manifold. We can construct a curve on M so that γ (0) = p.
Then we can ask the following: what is the derivative of
a function f : M → R in the direction of this curve? By
working in a chart (U, φ), p ∈ U and φ(p) = {xi} called the
coordinate basis where xi is the ith coordinate of the vector
φ(p), we find

df (γ (t ))
dt

∣∣∣∣
t=0

= ∂ ( f ◦ φ−1)

∂xi

d (φ ◦ γ )(t )

dt

∣∣∣∣
t=0

= ∂ f

∂xi

dxi(γ (t ))
dt

∣∣∣∣
t=0

. (A1)

This allows us to define a tangent vector at p as

v = vi ∂

∂xi
, vi = dxi(γ (t ))

dt

∣∣∣∣
t=0

. (A2)

So a tangent vector is an operator that differentiates a function
in the direction of some curve γ (t ) going through a point p
as v( f )(p). There exist many such curves, and these curves
form an equivalence class. The collection of these equivalence
classes is called the tangent space TpM of M at p. The
tangent space is then a vector space over linear maps called
tangent vectors v : C∞(M) → R, and can be spanned by a
basis of differential operators {∂/∂xi} ≡ {∂i}. Since TpM is a
vector space, there exists a dual vector space T ∗

p M called the
cotangent space. Elements of the cotangent space are called
cotangent vectors or one-forms ω : TpM → R, which accept
a tangent vector and produce real number. A one-form can be
expanded into a basis that is dual to {∂i},

ω = ωidxi, (A3)

where ∂idx j = δi
j . The most important one-form for our

purposes is the (exterior) derivative or differential df that
takes a function and creates a one-form. The action of df is
defined as

df (v) = v( f ), (A4)

df = ∂i f (x1, . . . , xn)dxi. (A5)

3. Riemmanian manifolds

A Riemannian manifold is a manifold M equipped with
a symmetric, nondegenerate metric g : TpM × TpM → R.
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Given a basis {dxi} on T ∗
p M, the metric can be written as

g = gi jdxi ⊗ dx j . (A6)

The metric thus defines an inner product between tangent
vectors, which we denote by 〈. . . , . . . 〉. This inner product
induces an isomorphism � : TpM → T ∗

p M called a musical
isomorphism,

�(v) = 〈v, 〉., ∀ v ∈ TpM (A7)

with corresponding inverse, � : T ∗
p M → TpM given by

�(v) = �(v)−1, ∀ v ∈ TpM. If we choose a basis {∂i} on TpM
such that ∂idx j = δ

j
i , we see that

�(v) = 〈vk∂k, . . . 〉 (A8)

= vk (gi jdxi ⊗ dx j )∂k (A9)

= vigi jdx j (A10)

and so

�(dxi) = gi j∂ j, (A11)

so that �(�(v)) = v. Hence, the metric allows us to convert
tangent vectors into one-forms and vice versa. More impor-
tantly, the metric allows us to talk about distance and angles
and provides a natural way to generalize the idea of a gradient
to a Riemannian manifold. Remember from the previous sec-
tion that the differential df creates a one-form from a tangent
vector. If we define

�(df (v)) := grad f (A12)

to be the Riemannian gradient with respect to the metric g,
then the differential of a vector v ∈ TpM can be written as

df (v) = 〈 grad f , v〉. (A13)

We can see that, by construction, the Riemannian gradient is
an element of the tangent space, grad f ∈ TpM, since the �

operation produces a tangent vector. Additionally, grad f is
perpendicular to the level curves at each point x ∈ M under
the metric. To see this, consider a tangent vector v that points
along the level curves of f , clearly we then have df (v) = 0
and thus grad f ⊥ v.

Note that if we take the metric gi j to be the standard
Euclidean metric in the standard coordinate basis, we recover
the gradient from multivariable calculus:

�(df (v)) = (∂i f )vi = ∇ f · v. (A14)

Since df (v) is metric independent, we can understand the
construction of the Riemannian gradient as requiring that
df (v) = 〈 grad f , v〉 ≡ ∇ f · v in the standard chart. This
is called the compatibility condition of the Riemannian
gradient.

APPENDIX B: THE GROUP SU(p)

Consider the special unitary Lie group SU(p):

SU(p) := {X ∈ Cp×p|X †X = I, det X = 1}. (B1)

This group is equal to U(p) up to a global phase, and has
dimension p2 − 1. Consider now a curve X (t ) : R → SU(p),

where ∀ t , X †X = I and det X = 1. If we differentiate this
condition with respect to t , we obtain

d

dt
(X †(t )X (t )) = 0, (B2)

Ẋ †(t )X (t ) + X †(t )Ẋ (t ) = 0. (B3)

If X (t ) passes through X at time t = 0, then we see that
Ẋ (0) = V must satisfy

TX SU(p) := {V ∈ Cp×p|V †X + X †V = 0}, (B4)

so V must be a skew-Hermitian matrix [23]. The Lie algebra
is the tangent space of a Lie group at the identity. Hence, for
SU(p),

su(p) := {	 ∈ Cp×p|	† = −	}. (B5)

We see that the elements 	 ∈ su(p) are related to Hermitian
matrices H by 	 = iH . By multiplying elements X of SU(p)
to the right or left with an element of the algebra, we can move
from the tangent space at the identity to the tangent space
at X :

TX SU(p) := {V = 	X |	 ∈ su(p)}. (B6)

APPENDIX C: RIEMANNIAN GRADIENT FLOW

The following is due to Ref. [15].

1. SU(p) flow

For SU(p) there exists a bi-invariant metric 〈. . . , . . . 〉 :
TX SU(p) × TX SU(p) → R that induces a Riemannian gra-
dient on the group [36]. This bi-invariant metric is
given by 〈W X,V X 〉 = Tr{X †W †V X } = 〈W,V 〉, ∀ W,V ∈
TX SU(p). Consider the function

h : SU(p) → Cp×p, h(X ) := C†XAX †, (C1)

where C and A are Hermitian matrices on Cp×p. For a tangent
vector 	X ∈ TX SU(p), the derivative D of h is

D h(X )(	X ) = [C†(DX )AX † + C†XA(DX )†](	X ) (C2)

= C†	XAX † − C†XAX †	. (C3)

Because DX (	X ) = 	X , the derivative of f : SU(p) → R,
f (X ) = Tr{h(X )} at 	X is

D f (X )(	X ) = Tr{D h(X )(	X )} (C4)

by the linearity of the trace. Defining Ã := XAX † we find

D f (X )(	X ) = Tr{C†	Ã − C†Ã	} (C5)

= Tr{[Ã,C†]	} (C6)

= 〈[Ã,C†]†,	〉 (C7)

= 〈−[Ã,C†]X,	X 〉, (C8)

where we used that 〈V,W 〉 = 〈V X,W X 〉 in the final line. We
can now identify the Riemannian gradient from the compati-
bility condition

D f (X )(	X ) = 〈 grad f (X ),	X 〉, (C9)
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(a) (b)

FIG. 8. Comparison of Riemannian gradient optimization versus gradient-based VQE for the four-qubit transverse field Ising model. The
Riemannian gradient circuit is initialized with the identity. The VQE circuit is initialized in the same way as in Fig. 7 in the main text. The
available directions for the Riemannian optimizer are the Pauli words in the dynamical Lie algebra: g := {Xi, ZiZ j,YiZ j, ZiYj,YiYj |1 � i, j �
N, i < j}, where Xi,Yi, Zi are Paulis on location i [68]. Even though the gradient flow stays within the dynamical Lie algebra at every step
during the optimization, we see that the ground state is still unreachable and the optimization gets stuck in a local minimum.

so that

grad f (X ) = −[Ã,C†]X. (C10)

Plugging in Ã = Uρ0U † and C = H and flipping the sign to
find the minimum of Eq. (6) instead of the maximum gives the
Riemannian gradient flow of Eq. (9).

2. Dynamical Lie algebra gradient flow

Given a Hamiltonian H = ∑
n On, let g denote the set

of operators spanned by consecutive applications of the Lie
bracket to the set {On}, i.e., the closure of {On} under commu-
tation. The resulting dynamical (or Hamiltonian) Lie algebra
is a subalgebra of su(2N ) and determines the set of states that
can be reached by applying unitaries generated by elements of
g [56,57,68]. Let H ∈ g and

ρ0 = 1

2N
I +

∑
l

Pl , ∀ Pl ∈ g. (C11)

We then find that the commutator

[ρ0, H] = 1

2N
[I, H] +

∑
l

[Pn, H] (C12)

=
∑

i

[Pn, H] (C13)

is also an element of g because g is closed under commutation.
Since g is a subalgebra, there is a corresponding subgroup G
whose elements are generated by exponentiation of elements
in g. Hence,

U = exp ε[ρ0, H] (C14)

is an element of the subgroup G. But then

Uk+1 = exp ε[ρ0, H]Uk (C15)

will stay in the group G as long as U0 is an element of G.
We therefore see that an appropriate choice of ρ0 and U0 will
keep the Riemannian gradient flow within the subgroup G.
Unfortunately, it is possible that H cannot be diagonalized by
elements of G and so the ground state may be unreachable for
a flow that stays in the dynamical Lie algebra (see Fig. 8).
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