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Creating nonlocality using geometric phases between partially distinguishable photons
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The geometric (Berry-Pancharatnam) phase originates from the intrinsic geometry of the space of quantum
states and can be observed in different situations, such as a cyclic evolution of a quantum system. Here, we
utilize the geometric phase to obtain a surprising insight: It is possible to create nonlocal correlations in a fixed
interferometer with independent photon inputs by varying the photons’ internal states. In particular, we consider
a cyclic interferometer that is fixed, i.e., that has no variable internal phase shifts or subsequent measurement
settings. Instead, the measurement choices of the different parties correspond to the internal states of the input
photons which influence the observed correlations via a collective N-photon geometric phase, constituting a
different approach for the generation of nonlocality with respect to the usual paradigm. We observe a trade-off
between the geometric phases and the visibility of the many-photon interference, impeding the generation of
nonlocality. However, by making use of the dynamical quantum Zeno effect, we show that nonlocality can be
created in the fixed cyclic interferometer using 12 (or more) independent photons.
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I. INTRODUCTION

The geometry of quantum state space can reveal itself in
observable quantities such as geometric phases [1–4]. Most
prominently, a geometric (Berry) phase was identified for
quantum systems that undergo a closed adiabatic evolution
[1]. This phase is termed geometric because it depends on only
the trajectory of the quantum state and not on the speed (or the
energy) of the state’s evolution: The phase is determined by
the solid angle in projective Hilbert space that is enclosed by
the state’s trajectory. Over the years, the geometric phase and
related notions have been shown to be connected to several
quantum effects [3–5], such as topological phases of quantum
matter [6–8] and the fractional statistics of anyons [9,10], and
they have been employed for different quantum information
processing tasks [11–15]. Geometric phases occur not only
in a closed adiabatic quantum evolution but also in a general
unitary evolution [16] that does not need to be closed [17].
Furthermore, the geometric phase can also be defined for a
(discontinuous) measurement-induced evolution [4,18,19], in
which case the discontinuous jumps of the trajectory are com-
pleted by the shortest geodesics in quantum state space. Such
measurement-induced geometric phases have been measured
for strong [18,20] and weak [21] measurements and can lead
to topological transitions with respect to the measurement
strength [22–25].

Measurement-induced geometric phases mirror earlier def-
initions of relative phases between optical beams [2] or
between quantum states [26,27]. In particular, the collective
(Pancharatnam) phase φg corresponding to the (ordered) tuple
of N quantum states (|ψ1〉, . . . , |ψN 〉) is defined as [2]

φg = arg [〈ψ1|ψ2〉〈ψ2|ψ3〉 · · · 〈ψN |ψ1〉]. (1)

This phase is identical to the geometric phase induced by a se-
ries of projectors |ψN 〉〈ψN |, . . . , |ψ1〉〈ψ1| (corresponding to a
sequence of outcomes of a series of projective measurements)

on the initial state |ψ1〉 [4,18,19]. Collective geometric phases
naturally arise in the interference pattern of optical beams [2]
and of different partially distinguishable particles [28] and
have been analyzed in theoretical [29–31] and experimental
[32,33] studies.

Observing nontrivial collective geometric phases requires
the quantum states to be neither distinguishable nor per-
fectly indistinguishable: Highly indistinguishable states result
in small geometric phases, while for highly distinguishable
states the visibility of the phase vanishes. Thus, such phases
appear to oppose a high amount of indistinguishability that
is known to be useful for different quantum information pro-
cessing tasks [34,35]: After the pioneering work of Hong,
Ou, and Mandel [36,37], the indistinguishability of quan-
tum states has been used to develop various widely used
techniques, such as entanglement swapping [38] and the cre-
ation of Greenberger-Horne-Zeilinger (GHZ) states [39–41].
In particular, the quantum phenomenon of Bell nonlocality
[42–44] can be created from the interference of independent
perfectly indistinguishable particles [45,46], using a cyclic
interferometer with tunable internal phase shifts. In this way,
one can generate bipartite [46], multipartite [45], and genuine
multipartite [47] nonlocality.

In this work, we show that Bell nonlocality can be observed
in a fixed interferometric setup with single-photon inputs.
In particular, we consider a cyclic interferometer with fixed
internal phase shifts and measurement stations. Instead, the
parties of the Bell scenario choose different internal states of
the photons that enter the interferometer. These states shape
the measured interference pattern by means of a collective
geometric phase between the partially distinguishable input
photons, a means that we show is essential to create nonlocal
correlations in any fixed interferometer with single-photon in-
puts. Creating nonlocal correlations in this way is complicated
by the intrinsic trade-off between the size of the geometric
phases and their interferometric visibility. We circumvent this
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FIG. 1. The N-photon cyclic interferometer [45]. The mth input
photon, prepared in the internal state |ψm〉, is distributed by a bal-
anced beam splitter between the mth and (m + 1)th measurement
stations. The mth measurement station consists of a phase shift φm

on the upper incoming mode, a balanced beam splitter, and two
number-resolving detectors of the outgoing modes.

obstacle by employing a dynamical version of the quantum
Zeno effect [19,48–50] such that, in the ideal noiseless case,
the cyclic interferometer results in bipartite nonlocal correla-
tions using a total of 12 photons, where the two parties each
control the preparation of five input photons.

II. THE CYCLIC INTERFEROMETER

We consider an N-photon cyclic interferometer, in which N
independent single photons interfere in a circular optical cir-
cuit consisting of two layers of beam splitters (as introduced
by Yurke and Stoler [45]; see Fig. 1). Note that the results of
this work can be derived for any bosonic or fermionic parti-
cles, but we restrict ourselves to photons for simplicity. We
assume that the photons are indistinguishable except for their
state in an internal degree of freedom (e.g., their polarization
or their spatial or temporal profile). In this degree of freedom,
the mth photon is prepared in the pure state |ψm〉. In the first
layer, the mth photon enters a balanced beam splitter with out-
going modes directed to the mth and (m + 1)th measurement
stations (the N th photon is distributed between the N th and
first measurement stations). Then, in the mth measurement
station, the upper incoming mode experiences a phase shift
φm, after which the two modes interfere in a second balanced
beam splitter. The outgoing modes of the beam splitters are
then measured using number-resolving detectors.

In the following, we focus on the coincidence events for
which every measurement station detects a single photon.1

We label the outcome om of the mth measurement station

1Coincidence occurs with a probability P = 1/2N−1. This can be
seen by counting the (2N ) different paths of the incoming photons

as om = 0 (om = 1) if the upper (lower) detector detects the
photon. Furthermore, we denote the number of measurement
stations that register om = 1 as k = ∑

m om. If each photon is
prepared in the same internal state (i.e., the incoming photons
are perfectly indistinguishable), the probability that k is even
(odd) is given by P(k = 0 mod 2) = [1 + (−1)N cos φ]/2N

(P(k = 1 mod 2) = [1 − (−1)N cos φ]/2N ) [45,51], where
φ = ∑

m φm. If, instead, the mth photon is prepared in the in-
ternal state |ψm〉, the outcomes o = (o1, o2, . . . , oN ) ∈ {0, 1}N

occur with probability

P(o) = 1

22N−1
{1 + (−1)N+k Re[Ve−iφ]}, (2)

where we defined the geometric factor

V = 〈ψ1|ψ2〉〈ψ2|ψ3〉 · · · 〈ψN |ψ1〉. (3)

For the derivation of Eq. (2), see Appendix A. The phase
φg = arg[V ] of the geometric factor is exactly the collec-
tive geometric phase, Eq. (1), corresponding to the states
(|ψ1〉, . . . , |ψN 〉) and acts as an offset to the phase φ. The
absolute value |V | can be seen as a decreasing many-photon
interference visibility due to increasing distinguishability be-
tween the incoming photons. We thus observe that, without
changing the internal phase shifts φm, we can affect the out-
come probabilities by varying the internal states of the input
photons. Finally, we note that also for the more realistic case
each photon is prepared in a mixed internal state, the outcome
probabilities depend on a geometric phase factor between
different mixed internal states (see Appendix B).

III. CREATING NONLOCALITY IN A FIXED
INTERFEROMETER

We now fix the cyclic interferometer; that is, we fix
the internal phase shifts φm, the beam splitters, and the
number-resolving measurement stations. In the following, we
demonstrate that one can generate nonlocal correlations by
preparing the input photons in different internal states. This
makes our approach distinct from earlier proposals in which
the internal phase shifts φm represent the measurement choices
of the different parties [45,47,52].2 Instead, we consider a
scenario in which the interferometer remains invariant and
the only choices made by the parties are the internal states
of the incoming photons, representing a different approach to
generate Bell nonlocality.3

after the first layer of beam splitters (each having the same amplitude
because the beam splitters are balanced). Exactly two of these paths
result in a single photon per party. For a detailed derivation see
Appendix A.

2It has been shown that a cyclic interferometer with N indepen-
dent (and perfectly indistinguishable) input photons and variable
internal phase shifts φm can generate genuine N-partite nonlocality
[45,47,52]. When postselecting on coincidence events, the outcome
statistics correspond to a specific measurement of an N-particle GHZ
state [39,45,53]. Furthermore, in the noiseless case, the required
postselection does not lead to any postselection loopholes [47,52].

3Note that for the (original) definition of nonlocality that we con-
sider here, a nontrivial influence of the parties’ measurement choices
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The influence of the internal states on the correlations
is mediated exclusively by the geometric phases in Eq. (2).
Moreover, these geometric phases are crucial to create non-
local correlations in any fixed interferometer, not just in the
cyclic one that we consider in this work: In Appendix C, we
prove that for an arbitrary fixed interferometer with indepen-
dent Fock-state single-photon inputs and number-resolving
measurements, nontrivial geometric factors [see Eq. (3)] are
necessary to generate nonlocality.

The first idea to generate nonlocality by varying the in-
ternal input states |ψm〉 is to identify the mth input photon
as the measurement setting of the mth party. However, since
each photon is distributed between two different measurement
stations, the relativistic causal structure of this scenario differs
from the one that is usually assumed in local hidden-variable
models [44], where each measurement setting has only one
measurement outcome in its future light cone. A causal struc-
ture in which each setting influences two outcomes requires a
more sophisticated analysis and possibly does not even allow
for quantum violations of Bell inequalities [58].4 We thus
restrict ourselves to a causal structure in which each party’s
input can influence only one measurement outcome. If each
party inputs a single photon to the interferometer, it must
therefore be associated with two measurement stations. In
the bipartite Bell scenario, this corresponds to a four-photon
cyclic interferometer.

A. Four-photon cyclic interferometer

We rearrange the four-photon setup such that each party
includes one photon source and two measurement stations
(see Fig. 2 with d = 1). The two remaining input photons are
prepared in the fixed internal states |w1〉 and |w2〉 and are dis-
tributed between the parties. The party Alice (Bob) prepares
their photon in the internal state |xi,1〉 (|y j,1〉) depending on
their measurement choice i ( j). As the interferometer and its
internal phase shifts are fixed, we can assume that we have
calibrated the internal phase shifts such that φ = 0 in Eq. (2).

As above, we postselect the events for which each mea-
surement station detects a single photon. Here, we must
employ the fair-sampling assumption to close the detection
loophole.5 The simplest Bell inequality in a bipartite scenario
is the Clauser-Horne-Shimony-Holt (CHSH) inequality [61]

on the outcome probabilities is necessary to generate nonlocality;
see, e.g., Ref. [54] for a detailed argument. This is not true for
the more recent definition of network nonlocality [55,56], in which
nonlocal correlations can be observed in setups without measurement
choices and, in particular, in a cyclic interferometer with fixed phase
shifts φm [57].

4The setup in which each setting can influence two outcomes (in a
cyclic configuration) is considered in Ref. [58] for N = 3, where it
is argued that it is not clear whether one can find a Bell inequality
that is violated by quantum correlations. Note that for N = 2, a
local hidden-variable model in which each setting influences two
outcomes can simulate any bipartite statistics and, in particular, those
generated by quantum mechanics.

5In a standard Bell scenario, the fair-sampling assumption is not
needed in an ideal loss-free experiment: Each party simply de-
tects their particle, and no events have to be postselected. Even in

Alice

Bob

FIG. 2. The rearrangement of the (2d + 2)-photon cyclic in-
terferometer (see Fig. 1) into two parties, each having (d + 1)
measurement stations and d input photons. Alice’s (Bob’s) in-
put photons are prepared in the initial states (|xi,1〉, . . . , |xi,d〉)
[(|y j,1〉, . . . , |y j,d〉)], representing Alice’s (Bob’s) measurement set-
ting. The two remaining input photons are prepared in the states
|w1〉 and |w2〉. The setup can be seen as a bipartite Bell scenario in
which the two intermediate photons (prepared in the fixed states |w1〉
and |w2〉) constitute the shared common source; each measurement
party has a binary measurement choice (among two different series
of initial photon states for their d local input photons), and each
measurement party has a binary measurement output, given by a
(local) postprocessing of their d + 1 local measurement outcomes).

that assumes two measurement settings and two measurement
outcomes per party. Since each party has two measurement
stations, we merge the four possible outcomes into two: Al-
ice’s outcome is defined as a = 1 (a = −1) whenever Alice
measures 00 or 11 (01 or 10). Bob merges his outcomes sim-
ilarly to b = 1 and b = −1. Using Eq. (2) (and renormalizing
the probabilities after the postselection), we obtain

P(a, b|i, j) = 1
4 (1 + ab Re[Vi j]), (4)

with Vi j = 〈xi,1|w1〉〈w1|y j,1〉〈y j,1|w2〉〈w2|xi,1〉. We thus ob-
tain the correlations

〈AiBj〉 =
∑
a,b

abP(a, b|i, j) = Re[Vi j]. (5)

scenarios with a constant number of particles and a postselection
of events in which each party detects a particle, such as the cyclic
interferometer proposed by Yurke and Stoler, the fair-sampling as-
sumption is unnecessary [47,52,59]. This is because the postselection
can be decided even when excluding any of the N parties from
the decision, the so-called all-but-one principle [47,59]. Instead, in
our setup, every party must be included in the postselection: Even
if Alice detects one photon in each of her measurement stations,
it is possible that Bob receives two photons in one of his mea-
surement stations, and the event should be discarded as it does
not depend on the N-photon collective phase. Therefore, we must
assume fair sampling, i.e., that the measurement setting of each party
does not influence the detection probability in possible local-realistic
explanations [54,60].
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To observe nonlocality, we must find states |xi,1〉, |y j,1〉, and
|wk〉 such that we violate the CHSH inequality,

ICHSH = 〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉
= Re [V11 + V12 + V21 − V22] � 2. (6)

If the internal Hilbert space of each photon is two-
dimensional (e.g., if we use the photon’s polarization as the
internal degree of freedom), we can numerically optimize
Eq. (6); see Appendix D for a detailed description. We find
that there are no combinations of |xi,1〉, |y j,1〉, and |wk〉 such
that the inequality (6) is violated. This is because to achieve a
significant violation, the geometric phases (i.e., the solid an-
gles) associated with the different |xi,1〉, |y j,1〉, and |wk〉 must
be large, reducing the visibility |Vi j | because the photon states
become more distinguishable. Thus, we must either consider
higher-dimensional internal Hilbert spaces6 or an N-photon
cyclic interferometer with N > 4 as we do in the following.

B. Multiphoton cyclic interferometer

The obstacle of a decreasing multiphoton visibility for
increasing geometric phases can be overcome by making use
of the dynamical quantum Zeno effect [19,48–50]. For a given
number of states, we can insert additional states along the
geodesics connecting the initial states, such that the geometric
phase remains the same but the visibility increases. Therefore,
we now consider a cyclic interferometer with 2d + 2 photon
sources (and 2d + 2 measurement stations) and combine d
photon sources and d + 1 measurement stations to form each
party (see Fig. 2). In the cyclic interferometer, the corre-
lations are dependent on the collective geometric phase φg

corresponding to the internal states (|ψ1〉, . . . , |ψ2d+2〉) [see
Eqs. (2) and (5)]. We define two sequences of input states
(|xi,1〉, . . . , |xi,d〉) for Alice and two sequences of input states
(|y j,1〉, . . . , |y j,d〉) for Bob, representing the respective mea-
surement settings i, j ∈ {1, 2}. As in Sec. III A, we merge
the d + 1 different measurement outcomes of each party into
two outcomes, defining a = 1 (b = 1) if Alice (Bob) observes
an even number of 1-outcomes and a = −1 (b = −1) oth-
erwise. Using Eq. (2), we show that each combination (i, j)
of measurement settings results in the correlation 〈AiBj〉 =
Re[Vi j] = |Vi j | cos(φg,i j ), where φg,i j is the collective geomet-
ric phase associated with the input states of the measurement
choices (i, j). Note that the probability is again renormalized
to events in which each measurement station detects a photon.

Let us emphasize in what sense the (2d + 2)-photon in-
terferometer of Fig. 2 can be thought of as a bipartite Bell
scenario. The basic requirements in a bipartite Bell scenario
are two measurement parties that each receive one part of
a shared common source (assumed to be a classical hid-
den variable to derive Bell inequalities) and then perform
local measurements (with independent choices of measure-
ment settings) at spacelike separation [44]. In Fig. 2, the
two distributed photons in the fixed internal states |w1〉 and
|w2〉 represent the shared source (and could, in principle,

6As a numerical check, we generated 107 random states |xi,1〉, |y j,1〉,
and |wk〉 for each d = 3, 4, 5, all of which satisfied ICHSH � 2.

FIG. 3. The trajectories on the Bloch sphere that define the input
photon states (|xi,1〉, . . . , |xi,d〉) [(|y j,1〉, . . . , |y j,d〉)] corresponding to
the measurement setting i = 1, 2 ( j = 1, 2) of Alice (Bob), seen
from the side (left panel) and from the top (right panel). The input
states are sketched for d = 3 input photons per party. The collective
geometric phase φg,i j is proportional to the solid angle enclosed by
the trajectories of measurement settings (i, j). The geometric phase
φg,11 is colored in blue, φg,12 is in red, and φg,21 is in yellow. The
latitude of the horizontal trajectories is given by cos(θ ). 〈σk〉 is the
expectation value of the Pauli matrices, k = x, y, z.

originate from a single laboratory). Each party implements
a binary measurement choice by the preparation of two pos-
sible sets of local input photon states [(|xi,1〉, . . . , |xi,d〉) and
(|yi,1〉, . . . , |yi,d〉), respectively]. Finally, each party produces
a binary measurement outcome by postprocessing their (d +
1) local measurement results. In principle, the two parties can
be placed at a large distance, in which case the two distributed
photons might be generated earlier than the party’s local input
photons to achieve coincidence. Therefore, all components of
a bipartite Bell scenario are given.

To find a set of internal photon states that generates nonlo-
cal correlations in this configuration, we build upon the ideas
of Ref. [62]: If one has a family of measurement observables
A(α) of Alice [B(β ) of Bob] that is described by a single
parameter α (β) and it holds that the correlations between
A(α) and B(β ) fulfill 〈A(α)B(β )〉 = cos(α − β ), then one can
create nonlocal correlations by using measurement settings αi

and β j such that

|α1 − β1| = |α1 − β2| = |α2 − β1| = |α2 − β2|/3. (7)

With these settings, one finds ICHSH = 3 cos(α1 − β1) −
cos[3(α1 − β1)], yielding the maximal violation of the CHSH
inequality, ICHSH = 2

√
2, for |α1 − β1| = π/4. As motivated

in Eq. (7), we choose the sequences such that, in the Zeno
limit d → ∞, we have φg,11 = φg,12 = φg,21 = φg,22/3. This
can be achieved by the trajectories depicted in Fig. 3 (shown
for d = 3); see Appendix E for the precise definition. In Fig. 3,
we have colored φg,11 in blue, φg,12 in red, and φg,21 in yellow,
and we note that φg,22 = φg,11 + φg,12 + φg,21.

In the limit of a large number of photons, d → ∞, the
quantum Zeno effects result in |Vi j | → 1. In Fig. 4, we show
ICHSH for d = 500 as a function of the latitude θ of the hor-
izontal trajectory in Fig. 3 (i.e., θ = arccos tr[σz|w2〉〈w2|]).
For increasing latitude θ , the solid angles enclosed by the
trajectories (and thus the geometric phases) increase, result-
ing in an increasing value of ICHSH. The maximal quantum
violation ICHSH = 2

√
2 is reached for θ = arccos 1/4 (vertical

dotted line in Fig. 4). This is consistent with the maximal

062420-4



CREATING NONLOCALITY USING GEOMETRIC PHASES … PHYSICAL REVIEW A 107, 062420 (2023)

FIG. 4. ICHSH as a function of the latitude θ of the horizontal
trajectories in Fig. 3 for different values of d , the number of in-
put photons per party. The Zeno limit d → ∞ is depicted as a
dash-dotted line. For d � 5 (d = 5 in green), it is possible to vio-
late the CHSH inequality, Eq. (6). The total number of photons is
N = 2d + 2. The horizontal lines correspond to the CHSH inequal-
ity ICHSH � 2 and the quantum bound (ICHSH � 2

√
2). The vertical

dotted line is the latitude θ = arccos 1/4 for which the maximal
violation of the CHSH inequality occurs.

value |α1 − β1| = π/4 in Eq. (7) because the geometric
phase corresponding to the latitude θ is given by φg,22 =
π (1 − cos θ ) [18], and for θ = arccos 1/4, we have φg,11 =
φg,22/3 = π (1 − cos θ )/3 = π/4.

We can thus violate the CHSH inequality up to the maximal
quantum violation in the Zeno limit d → ∞, and we saw in
Sec. III A that we cannot violate it for d = 1. Since the cyclic
interferometer with independent input photons is increasingly
difficult to implement for larger d , it is natural to ask what the
minimal value of d is that suffices to observe nonlocality. In
Fig. 4, we show the values ICHSH as a function of the latitude θ

for several values of d . Note that the d different states for each
measurement setting were chosen on the respective trajecto-
ries such that two adjacent states have the same (absolute)
overlap (see Appendix E). For our choice of input photon
states, we thus observe a violation of the CHSH inequality for
d � 5 (green curve), corresponding to a cyclic interferometer
with a total of 12 input photons.

We would like to note that, in an analogous way, one could
also create genuine multipartite nonlocality. Here, the N input
photons must be divided among at least three parties, and the
respective states should be chosen such that a corresponding
multipartite Bell inequality is violated [63]. However, due to
the larger number of parties, we expect the required number
of input photons to be much larger than in the bipartite case.

IV. CONCLUSIONS

In this work, we have employed a static cyclic N-photon
interferometer to generate Bell nonlocality from indepen-
dent partially distinguishable photon sources. Importantly, the
interferometer (i.e., its internal phase shifts and the subse-
quent measurements) is fixed, and the parties’ measurement
settings are instead provided by the choice of the internal
states of the input photons, representing a different approach
to generate nonlocality with respect to standard methods.
The internal states shape the outcome probabilities through a

collective N-photon geometric phase that can be used to (and
is necessary to) generate nonlocal correlations in a fixed
interferometer. The observation of nonlocal correlations in
this way is hindered by an intrinsic trade-off between the
N-photon interference visibility (which increases for less
distinguishable internal states) and the collective N-photon
geometric phases (which increase for more distinguishable
internal states). We have overcome this obstacle by us-
ing the dynamical quantum Zeno effect, yielding nonlocal
correlations for an interferometer with N � 12 independent
single-photon inputs.
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APPENDIX A: CYCLIC INTERFEROMETER
WITH PARTIALLY DISTINGUISHABLE PHOTONS

In this Appendix, we calculate the outcome probabilities of
the N-photon cyclic interferometer with partially distinguish-
able internal states of the input photons (see Fig. 1). Let the
mth incoming photon be prepared in the internal state |ψm〉.
We write |ψm〉 = a†

m(ψm)|0〉, where we index the creation and
annihilation operators by m indicating the mth input mode and
|0〉 is the vacuum mode. The first layer of beam splitters is
described by the transformations(

b†
m,1(ψ )

b†
m+1,0(ψ )

)
= 1√

2

(
1 −i
−i 1

)(
a†

m(ψ )

ã†
m(ψ )

)
, (A1)

where ãm corresponds to the second input port of the beam
splitters (which is always prepared in the vacuum state) and
the labels of the outgoing modes (b) are chosen such that
the mth input photon is divided between the lower (1-mode)
incoming arm of the mth measurement station and the upper
(0-mode) incoming arm of the (m + 1)th measurement station
(see Fig. 1). Note that the N th input photon is divided between
the N th and first measurement stations, so in the follow-
ing, the mode index should be understood mod N . Next,
each upper incoming arm obtains a phase shift, c†

m,0(ψ ) =
e−iφm b†

m,0(ψ ), while the lower incoming arm is unchanged,

c†
m,1(ψ ) = b†

m,1(ψ ). The second layer of beam splitters finally
produces the outgoing (detection) modes(

d†
m,0(ψ )

d†
m,1(ψ )

)
= 1√

2

(
1 −i
−i 1

)(
c†

m,1(ψ )

c†
m,0(ψ )

)
, (A2)

where the upper (lower) detection mode is labeled by 0 (1).
Using these transformations, one finds that

a†
m(ψm) = 1

2

{
d†

m,0(ψm) + id†
m,1(ψm)

+ eiφm+1 [id†
m+1,1(ψm) − d†

m+1,0(ψm)]
}
. (A3)

Let us first calculate the probability P(0) of all measure-
ment stations detecting a photon in the upper (0-mode) arm.
This outcome is associated with the projector proj0, which is
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given by

proj0 =
⊗

m

[∑
k

d†
m,0(ξk )|0〉〈0|dm,0(ξk )

]
, (A4)

where {|ξk〉}k is an arbitrary basis of the internal Hilbert
space. We must sum over the internal Hilbert space because

the detection does not depend on the internal state of the
photon. We need to calculate P(0) = 〈
| proj0 |
〉, where
|
〉 = ⊗

m a†
m(ψm)|0〉 is the initial state. The only terms of

|
〉 that contribute to P(0) are the ones for which each 0-mode
has one photon, i.e., the terms including

⊗
m d†

m,0(ψm) and the

terms including
⊗

m d†
m+1,0(ψm), such that we are left with

P(0) = 1

22N

∥∥∥∥∥
[⊗

m

d†
m,0(ψm) + (−1)N eiφ

⊗
m

d†
m+1,0(ψm)

]
|0〉

∥∥∥∥∥
2

(A5)

= 1

22N

{
2 + 2(−1)N Re

[
eiφ〈0|

⊗
m

dm,0(ψm)
⊗

m

d†
m+1,0(ψm)|0〉

]}
, (A6)

where we have used φ = ∑
m φm. By writing

⊗
m d†

m+1,0
(ψm)|0〉 = |ψN 〉⊗|ψ1〉⊗ . . . ⊗|ψN−1〉 and 〈0| ⊗m dm,0(ψm) =
〈ψ1| ⊗ · · · ⊗ 〈ψN |, we find

P(0) = 1

22N−1
{1 + (−1)N Re[Ve−iφ]}, (A7)

with V = 〈ψ1|ψ2〉〈ψ2|ψ3〉 · · · 〈ψN |ψ1〉 [see Eq. (3)].
To obtain P(o) for o 	= 0, note that for each 1-entry in

o, one of the two terms of |
〉 that contribute to P(o) is
multiplied by i (due to reflection instead of transmission),
while the other term is multiplied by −i (due to a transmission
instead of reflection), resulting in an additional relative phase
of −1 between the two terms. Thus, we find Eq. (2),

P(o) = 1

22N−1
{1 + (−1)N+k Re[Veiφ]}, (A8)

where k = ∑
m om is the number of measurement stations

detecting om = 1. We emphasize that this equation holds only
when each measurement station detects one photon. Analo-
gous to the results in Ref. [45], all other events have constant
probability; that is, the corresponding probabilities depend
neither on the phase shifts φm nor on the internal states |ψm〉.

APPENDIX B: MIXED INTERNAL STATES

In this Appendix, we analyze what happens in the (more
realistic) case in which each party can insert only mixed
states ρi instead of pure states |ψi〉 into the interferometer.
We first rewrite Eq. (3) for pure input states |ψi〉 as V =
tr[|ψ1〉〈ψ1| · · · |ψN 〉〈ψN |], where |ψi〉〈ψi| is the density ma-
trix corresponding to the pure state |ψi〉. If we use the mixed
states ρi instead, it follows from linearity and Eq. (2) that the
interference depends on the geometric factor

Vmixed = tr [ρ1ρ2 · · · ρN ]. (B1)

This geometric factor can be compared to different
(nonequivalent) generalizations of the geometric phase for
mixed states [64–69]. First, by decomposing the internal states
as ρi = ∑

k c(i)
k |c(i)

k 〉〈c(i)
k |, we see that Vmixed can be interpreted

as an average of different pure-state geometric factors V ,

Vmixed =
∑

k,...,m

c(1)
k · · · c(N )

m V
(∣∣c(1)

k

〉
, . . . ,

∣∣c(N )
m

〉)
, (B2)

where V (|c(1)
k 〉, . . . , |c(N )

m 〉) is the collective phase, Eq. (1),
corresponding to the states (|c(1)

k 〉, . . . , |c(N )
m 〉).

Second, in Ref. [66], the geometric factor Vsv acquired by
a mixed initial state ρ0 = ∑

k ck|ck〉〈ck| in a unitary evolution
U is defined as

Vsv(ρ0,U ) = tr [Uρ0] =
∑

k

ck〈ck|U |ck〉, (B3)

i.e., as a weighted average over the geometric factors
〈ck|U |ck〉 associated with the pure states in the decom-
position of ρ. This definition can be directly extended
to a projection-induced evolution P|ψ2〉,...,|ψN 〉 that maps
|ψ〉 
→ |ψ2〉〈ψ2|ψ3〉 · · · 〈ψN |ψ〉 [see Eq. (1)]: For such
an evolution, we define the mixed-state geometric fac-
tor Vsv(ρ0, P|ψ2〉,...,|ψN 〉) = ∑

k ckVproj(|ck〉, P|ψ2〉,...,|ψN 〉), where
Vproj is the geometric factor, Eq. (1), defined for a projection-
induced evolution [4,18,19]. In our setup, by expanding each
internal state ρi as above, we see that the factor Vmixed is
equivalent to a weighted average of the geometric factors
Vproj of different projection-induced evolutions of the initial
state ρ1,

Vmixed =
∑

l,...,m

c(2)
l · · · c(N )

m Vsv
(
ρ1, P|ψ (2)

l 〉,...,|ψ (N )
m 〉

)
. (B4)

Note that by adjusting the ensemble of projections accord-
ingly, any of the input states ρi can be treated as the initial
state.

Finally, each internal state ρi can also be seen as an op-
erator of a generalized (nonprojective) measurement [70]. In
this description, the geometric factor Vmixed corresponds to
the geometric factor defined for a series of Kraus operators
defined for a completely positive map [67,68].

APPENDIX C: FIXED INTERFEROMETER
WITH SINGLE-PORT SINGLE-PHOTON INPUTS

Here, we show why, in a general fixed interferometer with
N independent single-photon input states that are inserted in
fixed modes, nontrivial geometric factors [see Eq. (3) for pure
states and Eq. (B1) for mixed states] between the internal
input states are necessary to generate nonlocal correlations.
In particular, we show that in any such interferometer, the
only possible influence of the internal states of the input
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photons on the outcome probabilities is caused by geometric
factors (geometric phases and their visibilities). Furthermore,
for the cyclic interferometer considered in this work (see
Fig. 2), these geometric factors must include nontrivial geo-
metric phases. We also note that if we relax the assumption
that we use single-port photons that are inserted into the
fixed interferometer, geometric factors between the internal
states are not necessary to generate nonlocality anymore:
It can be shown that one can create nonlocal correlations
in a fixed interferometer by inserting the single photons in
measurement-setting-dependent superpositions of the input
ports, where all photons are prepared in the same inter-
nal state (thus corresponding to a trivial geometric factor).
However, these superpositions must be created by precedent
interferometers that must be variable, so strictly speaking, the
interferometer is not fixed in this case.

The importance of geometric phase factors follows directly
from the analysis performed by Shchesnovich [29,71,72],
which we will summarize in the following. Consider a general
interferometer with K input ports and K output ports. The
interferometer is described by a unitary U relating the input
modes a†

k to the output modes d†
l , a†

k = ∑K
l=1 Uk,l d

†
l . Note

that here, we label incoming and outgoing modes differently
from what we did in Appendix A. Since the interferometer is
arbitrary, we can assume that the ith input photon, prepared
in the internal state ρi, is inserted in the ith input port of the
interferometer. In Refs. [71,72], it is shown that the proba-
bility P(l) of measuring the photons in the outgoing modes
l = (l1, . . . , lN ) (detecting multiple photons in a single output
port is represented by repeating the output label correspond-
ingly in l) is given by

P(l) = 1

M(l)

∑
τ,σ∈SN

J (τ−1σ )
N∏

k=1

U ∗
k,lτ (k)

Uk,lσ (k) . (C1)

Here, M(l) = ∏K
i=1[(

∑N
j=1 δl j ,i )!] is a combinatorial factor

accounting for multiphoton detection in a single output port,
τ and σ are permutations (i.e., elements of the symmetric
group of degree N , SN ), and the function J describes the
distinguishability of the internal states ρi: If we denote the set
of disjoint cycles generating σ as cyc(σ ), the function J (σ ) is
given by [29,71,72]

J (σ ) =
∏

γ∈cyc(σ )

tr
[
ρkrγ

· · · ρk2ρk1

]
, (C2)

where γ = (k1 k2 · · · krγ
) denotes the different cycles in

cyc(σ ). Note that we assume perfect number-resolving detec-
tors and no losses in the interferometer.

Since we consider a fixed interferometer, the terms Uk,l are
constant, and we deduce from Eq. (C1) that the only influence

of the input states ρi on the output probabilities P(l) is due
to terms of the form tr[ρkr · · · ρk2ρk1 ]. These terms correspond
exactly to the geometric phases factors (i.e., geometric phases
and their visibilities) of different ensembles of internal states
[see Eqs. (3) and (B1)]. In particular, for pure internal states,
these terms include the collective phase of Eq. (1). We note,
however, that the possible geometric factors also include sim-
ple overlaps, such as tr[ρiρ j], that have a trivial geometric
phase. These overlaps play a crucial role, e.g., in the Hong-
Ou-Mandel effect [36].

We thus see that, if we use a fixed interferometer with an
input consisting of independent single-port photons, the only
influence of the internal states ρi on the output probability is
mediated by the geometric factors between different combina-
tions of ρi. Therefore, if these internal states correspond to the
measurement settings in a Bell scenario, nontrivial geometric
factors are necessary to create nonlocal correlations. Can we
also prove the stronger claim that nontrivial geometric phases
are necessary for nonlocality in a fixed interferometer with
single-port single-photon inputs?

For the cyclic interferometer considered in this work, this
is true: If the collective phase of the cyclic interferometer,
Eq. (3), is positive for all different settings (i, j), one can write

Vi j = ris j, (C3)

with ri, r j > 0. We then have P(a, b|i, j) = (1 + abris j )/4,
and one easily checks that this correlation cannot violate any
CHSH inequality and hence admits a local hidden-variable
model [73]. Even if we do not merge the measurement out-
comes of each party into only two possibilities, the local
hidden-variable model still holds because the probabilities of
all outcomes o contributing to the merged outcomes (a, b)
are equal [see Eq. (2)]. Therefore, if the collective phases of
the internal states are trivial, the induced correlations can be
described by a local hidden-variable model and thus do not
show nonlocality. We were not able to prove this result for
generating nonlocality in a general fixed interferometer.

APPENDIX D: FOUR-PHOTON INTERFEROMETER
CANNOT CREATE NONLOCAL CORRELATIONS

Here, we briefly sketch how to numerically optimize
Eq. (6),

ICHSH = Re [V11 + V12 + V21 − V22],

where Vi j = 〈xi,1|w1〉〈w1|y j,1〉〈y j,1|w2〉〈w2|xi,1〉, if the in-
ternal Hilbert space is two-dimensional. We first write
|xi,1〉〈xi,1| = (I + xi · σ)/2, with similar notation for the other
projectors, where I is the identity, σ are the Pauli matrices,
and xi is the corresponding Bloch vector. We can then use the
identity (r · σ)(s · σ ) = (r · s)I + i(r × s)σ and obtain, after
some simplifications,

ICHSH = 1
16 Re{Tr[(I + x1 · σ )(I + w1 · σ )(2I + (y1 + y2) · σ )(I + w2 · σ )

+ (I + x2 · σ )(I + w1 · σ )((y1 − y2) · σ)(I + w2 · σ)]} (D1)

= 1
8 {(1 + x1 · w1)[2 + (q0 + q1) · w2] + (x1 + w1) · (q0 + q1 + 2w2) − 2(x1 × w1) · [(q0 + q1) × w2]

+ (1 + x2 · w1)[(q0 − q1) · w2] + (x2 + w1) · (q0 − q1) − (x2 × w1) · [(q0 − q1) × w2]}. (D2)

062420-7



VALENTIN GEBHART PHYSICAL REVIEW A 107, 062420 (2023)

This expression can be numerically optimized over the Bloch
vectors x1, x2, w1, w2, y1, and y2, e.g., by using spherical co-
ordinates for each Bloch vector. The numerical optimization
yields ICHSH � 2.

APPENDIX E: INTERNAL PHOTON STATES
TO CREATE NONLOCALITY

Here, we describe how to find the trajectories on the
Bloch sphere that correspond to the different measurement
settings of the parties in such a way that the geometric phases
(approximately) fulfill φg,11 = φg,12 = φg,21 = φg,22/3. Since
φg,22 corresponds to the largest solid angle, we choose it to
be enclosed by a horizontal section of the Bloch sphere at
latitude θ , optimizing the solid angle with respect to a given
visibility (which is determined by the absolute value of the
overlaps between adjacent states in the trajectories). Thus,
we define the trajectories x2(t ) and y2(t ), corresponding to
Alice’s setting x2 and Bob’s setting y2, as

x2(t ) =
⎛
⎝sin θ cos t

sin θ sin t
cos θ

⎞
⎠, y2(t ) =

⎛
⎝− sin θ cos t

− sin θ sin t
cos θ

⎞
⎠, (E1)

with t ∈ [0, π ]. The fixed states |w1〉 and |w2〉 correspond
to the Bloch vectors w1 = (− sin θ, 0, cos θ )T and w2 =
(sin θ, 0, cos θ )T , connecting the two trajectories.

To define the trajectory corresponding to x1, we want the
trajectory to possesses the same starting and end points as
x2, x1(0) = x2(0) = w2 and x1(π ) = x2(π ) = w1 but have
it pass through x1(π/2) = (0,− sin θ/3, cos θ/3)T instead of
x2(π/2) = (0, sin θ, cos θ )T . We want to use this trajectory
because, as seen in Fig. 3, the points xi(π/2) and y j (π/2)
are equidistant (in geodesic distance), except for a 3 times
larger distance for i = j = 2. We note that, for θ 	= π/2, the
corresponding geometric phases do not precisely fulfill the
condition φg,11 = φg,12 = φg,21 = φg,22/3, but they approxi-
mately fulfill it such that they are sufficient for our purposes.

We now calculate the trajectory x1(t ). The plane that is
defined by the three points x1(t ) for t = 0, π/2, π correspond
to the solutions (x, y, z) ∈ R3 of the equation

[cos(θ/3) − cos(θ )]y + sin(θ/3)z − cos(θ ) sin(θ/3) = 0.

(E2)

We can eliminate z,

z = −2 sin(2θ/3)y + cos(θ ), (E3)

where we have used [cos(θ ) − cos(θ/3)]/ sin(θ/3) =
−2 sin(2θ/3). Inserting this expression for z in the spherical
equation x2 + y2 + z2 = 1, we find (after completing the
square for variable y) the equation

x2 + r

(
y − α

2β

)2

= 1 + α2

4β
− cos2(θ ), (E4)

where β = 1 + 4 sin2(2θ/3) and α = 4 sin(2θ/3) cos(θ ). Fi-
nally, after defining the new variables u = √

r[y − α/(2β )],
v = x, and R =

√
1 + α2/(4β ) − cos2(θ ), we obtain the

equation u2 + v2 = R2, which is solved by u(t ) = R cos(t +
t0) and v(t ) = R sin(t + t0) for some t0. Resubstitution yields

x1(t ) =
⎛
⎝ R sin(t + t0)

R/
√

r cos(t + t0) + 2α/β

−2 sin(2θ/3)[x1]2(t ) + cos(θ )

⎞
⎠. (E5)

Using the initial condition that [x1]1(0) = sin θ , we find t0 =
arcsin[sin(θ )/R]. The trajectory corresponding to y1(t ) can be
obtained from x1(t ) by symmetry (see Fig. 3) and is given by

y1(t ) = Ryx1(π − t ), (E6)

where Ry is the reflection along the y axis.
In the Bell scenario, each trajectory is replaced by d

states; for example, the trajectory xi(t ) corresponds to the
states (|xi,1〉, . . . , |xi,d〉). To maximize visibility, we choose
|xi,k〉 according to the Bloch vector xi[kπ/(d + 1)], such
that we have |〈xi,k|xi,k+1〉| = |〈w2|xi,1〉| = |〈xi,d |w1〉| for all
1 < j < d . Similarly, we choose the state |y j,k〉 correspond-
ing to y j[kπ/(d + 1)]. Finally, we note that the solid angles
corresponding to the above states approach the solid angles
enclosed by trajectories xi and y j only for d → ∞, while for
finite d , the solid angles correspond to trajectories that connect
adjacent states with geodesics. However, the solid angles for
finite d still fulfill φg,11 = φg,12 = φg,21 = φg,22/3 to a suffi-
cient approximation to lead to nonlocality (see Fig. 4).
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