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In recent years, in quantum information theory, there has been a remarkable development in the general theo-
retical framework for studying symmetry in dynamics. This development, called resource theory of asymmetry, is
expected to have a wide range of applications, from accurate time measurements to black-hole physics. Despite
its importance, the foundation of resource theory of asymmetry still has room for expansion. An important
problem is in quantifying the amount of resource. When the symmetry prescribed U(1) or R, i.e., with a single
conserved quantity, the quantum Fisher information is known as a resource measure that has suitable properties
and a clear physical meaning related to quantum fluctuation of the conserved quantity. However, it is not clear
what is the resource measure with such suitable properties when a general symmetry prevails for which there
are multiple conserved quantities. The purpose of this paper is to fill this gap. Specifically, we show that the
quantum Fisher information matrix is a resource measure whenever a connected linear Lie group describes the
symmetry. We also consider the physical meaning of this matrix and see which properties that the quantum
Fisher information has when the symmetry is described by U(1) or R can be inherited by the quantum Fisher
information matrix.
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I. INTRODUCTION

Resource theory measures quantum resources (e.g., entan-
glement and coherence) and considers the difference between
what tasks are possible with and without the resources. The
generality of resource theory enables us to analyze fundamen-
tal physical problems in resource-theoretical settings. Within
this background, resource theory has produced many variants
[1–23]. These variants differ in the types of situations and
resources they treat, depending on the target problem, and
each of them constitutes a field in quantum physics. One
of the most fundamental variants is the resource theory of
asymmetry (RTA) [5–21,24–26], which is the subject of this
paper.

RTA is a resource theory that treats symmetries of dy-
namics [5–9,24]. Because it is related to symmetry, a
fundamental concept in physics, it has a wide range of appli-
cations including constructing accurate clocks [8,27], accurate
measurements on nonconserved quantities [10–12,25,26],
unitary gate implementation [13–15,26], coherence distri-
bution [16,17], quantum speed limits [18], quantum error
correction [15,19–21,26], coherence cost for thermodynamic
processes [26], and the black-hole information-loss problem
[15,26]. Despite these applications, the foundations of RTA
still have several parts that can be extended. One such part is
in quantifying resources. In resource theories, we often try to
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clarify the limitations of performance given a certain amount
of a resource. Therefore, quantifying resources is important
in every variant of resource theory. Given its importance, a
quantification has also been done in RTA [6–9]. When the
symmetry is described by U(1), i.e., with a single conserved
quantity, a good resource measure is known. Quantum Fisher
information [28] satisfies the suitable properties of a resource
measure and has a clear physical meaning related to quantum
fluctuation of the conserved quantity corresponding to the
symmetry [6–8]. Quantum Fisher information is also useful
in constructing a theory for the convertibility of pure states
in the non independent and identically distributed (non-i.i.d.)
regime in RTA [9]. However, it is not clear what is the resource
measure with similar properties for general symmetries, for
which there are multiple conserved quantities.

In this paper, we show that the quantum Fisher informa-
tion matrix is a resource measure whenever the symmetry is
described by a connected linear Lie group. More precisely,
we show that the following: (i) For an arbitrary connected
Lie group symmetry, we can take a proper set of Hermitian
operators {Xl}l=1,...,N . (ii) The Fisher information matrix of the
state family exp[−i

∑
l Xltl ]ρ exp[+i

∑
l Xltl ] is a resource

measure. Here, all the basic properties of the resource mea-
sure, including monotonicity, are given as matrix inequalities.
So far, resource measures have never been given as matrices,
and our result is the first example in resource theory where
a matrix provides a resource measure. Our result also corre-
sponds to the multivariable extension of the results that Fisher
information is a resource measure if the symmetry described
by U(1) or R [6–8]. If we restrict the symmetry to that
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described by U(1) or R, our results recover the known results
produced so far.

We also consider the physical meanings of the quantum
Fisher information matrix. In each variant of resource theory,
each resource has a physical meaning much like entanglement
means a type of quantum correlation. Quantum Fisher infor-
mation, which is a resource measure when the symmetry is
described by U(1) or R, relates to the quantum fluctuation
of the conserved quantity corresponding to the symmetry
[8,29–32]. In this paper, we extend the above meaning of
quantum Fisher information to the quantum Fisher informa-
tion matrix and give three results.

The first result is a proof that the quantum Fisher informa-
tion matrix satisfies the conditions that characterize quantum
fluctuation. There are several criteria given by Luo for the
characterization of quantum fluctuations [31], and it is known
that Fisher information satisfies them [6,7,33]. We extend
Luo’s criteria to matrices and show that the quantum Fisher
information matrix satisfies these extended criteria. The sec-
ond result is a comprehension of the relationship between the
quantum Fisher information of a mixed state and the covari-
ance matrix of its purification. It is known that the quantum
Fisher information of a mixed state is equal to the minimum
of the variance of its purification [8]. We extend this result to
situations having multiple conserved quantities. As a result,
we show that the quantum Fisher information matrix is equal
to four times the minimum of the covariance matrix of its
purification. The third result is the relationship between the
quantum Fisher information matrix of the mixed state and
the average of the covariance matrix when decomposing the
mixed state into its pure state. It is also known that quantum
Fisher information is equal to four times the minimum average
of the variances [29,30]. We show by giving a counterexam-
ple that this theorem does not hold in the case of multiple
conserved quantities.

The structure of this paper is as follows: In Sec. II, we
overview the elementary basics required for this paper. In
particular, we review that, given U(1) or R symmetry, the
quantum Fisher information is a resource measure and is a
measure of the quantum fluctuation of the conserved quantity.
In Sec. III, we show the main results of this paper. Specifically,
the quantum Fisher information matrix is a resource measure
whenever symmetry is described by a connected linear Lie
group, and then we consider how other properties of the quan-
tum Fisher information are inherited by the quantum Fisher
information matrix. In Sec. IV, we summarize this paper. All
proofs of the theorems in Sec. III are given in the Appendix.

II. PRELIMINARY

In this section, we outline the prerequisites required in this
paper.

A. Resource theory

In resource theory, we define “free states” as states that
we can easily prepare and “free operations” as operations
that we can easily perform. We consider “resource states”
as states that we cannot realize by combining free states and
free operations. Depending on the definition of free state and

free operation, resource theory treats different resources. For
example, suppose we define free states as separable states
and free operations as local operations and classical com-
munications (LOCC). In this scenario, the resource is called
entanglement, and quantum teleportation can be performed
using it.

To consider what operations are possible with a certain
amount of a resource, knowing how much of that resource is
available in a state is essential. We call a function a resource
measure when the function of a quantum state R(ρ) satisfies
the following conditions [34]:

(1) R(ρ) � 0;
(2) R(ρ) = 0 ⇐⇒ ρ is free state;
(3) E is free operation �⇒ R(ρ) � R(E (ρ));
where we call a linear map a operation when it is a com-

pletely positive and trace preserving (CPTP) map. The above
conditions describe the desired properties of resource mea-
sures. The first condition means that the function R assesses
the amount of the resource. The second condition implies that
a free state is a state without resources, and the third condition
implies that a free operation is a quantum operation that does
not increase the resource. When ⇐ also holds in the third
condition, we call R a faithful resource measure.

B. Groups and symmetry

When a system’s properties are invariant under a class of
operations, e.g., rotations and translations, we say the system
is symmetric under the operations. In general, symmetries of
a system are described by a group, which we now define:

Definition 1. A group is a set G together with a binary op-
eration on G that combines any two elements a, b ∈ G to form
an element ab ∈ G such that following three requirements are
satisfied:

(1) ∀ a, b, c ∈ G, (ab)c = a(bc);
(2) ∃ e ∈ G,∀ a ∈ G, ae = ea = a;
(3) ∀ a ∈ G, ∃ a−1 ∈ G, a−1a = aa−1 = e.
When a quantum system is isolated from the environment,

its time evolution is described by a unitary operator. That is,
a state ρ on the system evolves as ρ → UρU −1 where U is
a unitary operator that acts on the Hilbert space describing
the system. When the isolated quantum system has symmetry
described by a group G, the unitary dynamics U is an element
of the projective unitary representation of the group G. A
projective unitary representation of group G on a Hilbert space
H is a map from group G to the Hilbert space H satisfying

U (g1)U (g2) = eiω(g1,g2 )U (g1g2). (1)

In particular, if eiω(g1,g2 ) = 1 holds for any g1, g2 ∈ G, then
U (g) is a unitary representation. In general, situations where
the group G is U(1) or R correspond to situations where there
is one conserved quantity. In contrast, symmetries described
by the more general group G correspond to situations with
multiple conserved quantities.

C. Linear Lie groups and Lie rings

When a system has continuous symmetry, a linear Lie
group describes the symmetry. In this section, we introduce
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the basic knowledge about Lie groups and Lie rings, following
Ref. [35].

Let M(n,C) be the set of complex matrices and
GL(n,C) := {X ∈ M(n,C) | det X 	= 0} be the set of regular
matrices, which is called a general Lie group.

Definition 2. A linear Lie group is defined as a closed
subgroup of the general Lie group GL(n,C).

A closed set implies that any sequences of points in G
converge to the element in G. The unitary group of degree
n, denoted U (n), is a linear Lie group for which the elements
satisfy uu† = 1 = u†u for all u ∈ U (n).

Definition 3. A Lie ring V is a vector space over real
numbers R or complex numbers C together with a binary op-
eration [·, ·] : V × V → V , called the Lie bracket, satisfying

[x + y, z] = [x, z] + [y, z], (2)

[ax, y] = a[x, y], ∀ a ∈ R (or a ∈ C), (3)

[x, y] = −[y, x], (4)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. (5)

If the vector space V is a real vector space, V is called a real
Lie ring.

Defining a set g as g := {X ∈ M(n,C) | ∀ t, exp tX ∈ G}
for a Lie group G, the set g is a real Lie ring and called the Lie
ring of the linear Lie group G for which the Lie bracket [·, ·]
is defined as [X,Y ] = Y X − XY . For example, the Lie ring
of a general linear Lie group GL(n,C) is gl(n,C) = M(n,C)
and the Lie ring of the unitary group U (n) is u(n) = {X ∈
M(n,C) | X † = −X }.

A representation of a Lie ring g is a homomorphism from
the Lie ring g to the Lie ring gl(n,C), formally, a map � :
g → gl(n,C) satisfying three conditions:

�(aX ) = a�(X ), (6)

�(X + Y ) = �(X ) + �(Y ), (7)

�([X,Y ]) = [�(X ),�(Y )]. (8)

The following theorem implies that a representation of a linear
Lie group G naturally yields a representation of its Lie ring g

[35]:
Theorem 1. Let G and H be linear Lie groups and � : G →

H be a continuous homomorphism. Let g and h be the Lie
rings of the linear Lie groups G and H , respectively. Then,
there exists a unique linear map L(�) = ϕ : g → h satisfying
exp ϕ(X ) = �(exp X ). Furthermore, the following holds:

(1) ϕ([X,Y ]) = [ϕ(X ), ϕ(Y )];
(2) ϕ(X ) = d

dt �(exp tX )|t=0.
Next, we consider a connected linear Lie group.
Definition 4. A set G is said to be path-connected if, for

any x and b in G, there exists a continuous function f :
[0, 1] → G such that f (0) = x and f (1) = y.

If a set G is a linear Lie group, connectedness and path-
connectedness are equivalent. The following theorem holds
for a connected linear Lie group G [35]:

Theorem 2. For a linear Lie group, the following condi-
tions are equivalent:

(1) G is connected.

(2) G is generated by exp g. That is, for any
g ∈ G, there exists x1, x2, . . . , xm ∈ g such that g =
exp x1 exp x2 · · · exp xm.

D. Resource theory of asymmetry

RTA is a resource theory that treats the sensitivity of quan-
tum states for the transformations caused by dynamics with
symmetry. We first define within RTA the free states and free
operations, which are known as symmetric states and covari-
ant operations, respectively. We define them for a group G and
its projective unitary representation {U (g)}g∈G as follows [5]:

Definition 5. A symmetric state is a quantum state ρ satis-
fying

U (g)ρU (g)−1 = ρ, ∀ g ∈ G. (9)

Otherwise, the state is called asymmetric.
Definition 6. A covariant operation is a completely positive

and trace preserving (CPTP) map E satisfying

E (Uin(g)ρUin(g)−1) = Uout (g)E (ρ)Uout (g)−1 (10)

for any g ∈ G where {Uin(g)} and {Uout (g)} are projective uni-
tary representations of G on input and output Hilbert spaces
Hin and Hout, respectively.

From the above definition, we see that asymmetric states
cannot be produced by symmetric states and covariant opera-
tions. Indeed, if E is a covariant operation, we know that, for
any symmetric state ρ, E (ρ) is also a symmetric state:

Uout (g)E (ρ)Uout (g)−1 = E (Uin(g)ρUin(g)−1)

= E (ρ) ∀ g ∈ G. (11)

For simplicity in the following discussion, we restrict our-
selves to instances for which {Uin(g)} and {Uout (g)} are equal.

We here remark the physical meaning of a covariant opera-
tion. A unitary operation V is said to be a covariant unitary
if for any g ∈ G, [V,U (g)] = 0. Defining EV (ρ) := V ρV −1

for a covariant unitary operation V , E is a covariant opera-
tion. In this case, EV is a quantum operation implemented by
dynamics satisfying the conservation law. The same is true
for general covariant operations; specifically, the following
theorem holds [5,36]:

Theorem 3. Let {U (g)}g∈G be a projective unitary repre-
sentation of a linear Lie group that describes a symmetry of
system S and a quantum operation E be a covariant operation
on S. Then, there exists a Hilbert space H with a (nonpro-
jective) unitary representation {UR(g)} of G and a symmetric
pure state |η〉 in this space and a covariant unitary V acting on
Hilbert space HS ⊗ HR such that

E (ρ) = trR[V ρ ⊗ |η〉〈η|V −1]. (12)

This theorem implies that a covariant operation is imple-
mented by the dynamics that satisfies the conservation law
and a state commuting with the conserved quantity.

E. Fisher information

When the group G describing the symmetry is U(1), several
known resource measures exist, in particular, the quantum
Fisher information. Although the quantum Fisher information
for a quantum system depends on the inner product chosen,

062418-3



DAIGO KUDO AND HIROYASU TAJIMA PHYSICAL REVIEW A 107, 062418 (2023)

there is a well-known definition of the quantum Fisher infor-
mation applicable to a wide range of inner products [37,38].
We introduce this definition in the following: A standard op-
erator function f is a monotonic function satisfying

(1) f (1) = 1;
(2) f (x) = x f (x−1);
(3) 0 � A � B ⇒ f (A) � f (B).
Using this, we define the quantum Fisher information for a

smooth quantum state family {ρt }t∈R as

J f
ρt

= tr

[(
∂ρt

∂t

)(
J f

ρt

)−1
(

∂ρt

∂t

)]
, (13)

where J f
ρ = f (LρRρ

−1)Rρ , Lρ (X ) = ρX and Rρ (X ) = Xρ,
and (J f

ρ )−1 is the inverse function of J f
ρ .

A projective unitary representation of U(1) for system S
is written as Ut = e−itH where H is a periodic Hermitian
operator, i.e., eiHτ = 1 holds for some nonzero real number
τ . The quantum Fisher information for a family of quantum
states {ρt }t∈R is

F f
ρ (H ) = J f

Ut ρU −1
t

∣∣∣
t=0

, (14)

which is a resource measure satisfying conditions 1–3
[6,7]. We derive this fact from the monotonicity of the
quantum Fisher information under a CPTP map and the
definition of the covariant operation. It is noteworthy that
F f

ρ (H ) = J f
Ut ρU −1

t
|t=t ′ holds for arbitrary t ′ ∈ R. Also, given

the spectral decomposition of the quantum state ρ with ρ =∑d
i=1 pi|ψi〉〈ψi|, we represent

F f
ρ (H ) =

d∑
i, j=1

(pi − p j )2

p j f
(

pi

p j

) |〈ψi|H |ψ j〉|2. (15)

F. Relationship between Fisher information
and quantum fluctuation

The quantum Fisher information defined in the previous
section has the property of a measure of quantum fluctua-
tion. Here we use “quantum fluctuation” as the part of the
fluctuation caused by quantum superposition. To define what
quantity can measure a quantum fluctuation, we employ in
this paper the criteria adopted by Luo [31]. Given a function
Qρ (H ) of a quantum state ρ and a Hermitian operator H ,
Qρ (H ) measures the quantum fluctuation of H in ρ if it
satisfies Luo’s criteria:

0 � Qρ (H ) � Vρ (H ), (16)

ρ is pure ⇒ Qρ (H ) = Vρ (H ), (17)

[ρ, H] = 0 ⇒ Qρ (H ) = 0, (18)

Q∑
i piρi

(H ) �
∑

i

piQρi (H ), (19)

where Vρ (H ) is the variance of H in the state ρ.
A metric-adjusted skew information is defined as

I f
ρ (H ) = [ f (0)/2]F f

ρ (H ), (20)

which satisfies Luo’s criteria for any f [32]. Therefore, for any
f , the quantum Fisher information is the quantum fluctuation
of the conserved quantity. Specifically, the quantum Fisher
information for f (x) = (1 + x)/2 is called the symmetric log-
arithmic derivative (SLD) Fisher information, which we write
simply as Fρ (H ). The SLD quantum Fisher information has
excellent properties in describing quantum fluctuations, and
concerning the variance the following theorem holds [8,39]:

Theorem 4. Consider a system S with a Hermitian operator
HS and a quantum state ρ. The quantum Fisher information
Fρ (HS ) can then be written as

Fρ (HS ) = 4 min
|ψρ 〉,HR

V|ψρ 〉(HS + HR), (21)

where V|φ〉(H ) denotes the variance, which is defined as
V|φ〉(H ) := 〈φ|H2|φ〉 − 〈φ|H |φ〉2, and |ψρ〉 is purification of
the state ρ, and HR is a Hermitian operator of the auxiliary
system R.

From this theorem, another critical theorem concerning
the relationship between the quantum Fisher information and
variance is derived [29,30].

Theorem 5. Consider a system S with a Hermitian op-
erator HS and a quantum state ρ with decomposition ρ =∑

i pi|φi〉〈φi|. Note that this decomposition is not necessarily a
spectral decomposition and is not unique. Then, the quantum
Fisher information Fρ (HS ) can be written as

Fρ (H ) = 4 min
pi,|φi〉

∑
i

piV|φi〉(H ). (22)

III. MAIN RESULTS

In the previous section, we saw that Fisher information
is a resource measure when U(1) represents the symmetry.
This section shows what quantity is a resource measure when
the system has a more general symmetry than U(1). As we
shall see, the quantum Fisher information matrix is a resource
measure for an arbitrary connected Lie group symmetry. First,
we consider the case where the N-dimensional real numbers
RN describe the symmetry. It corresponds to the situation
where linearly independent multiple conserved quantities ex-
ist. Next, we show that the quantum Fisher information matrix
is a resource measure whenever a connected linear Lie group
describes the symmetry. We then see which properties of the
quantum Fisher information when G = U (1) carry over to the
quantum Fisher information matrix.

A. Fisher information matrix as a resource measure

Let {ρt }t∈RN be a smooth quantum state family. The (i, j)
component of the quantum Fisher matrix is defined as [40]

(
J f
ρt

)
i j

= tr

[(
∂ρt

∂ti

)(
J f

ρt

)−1
(

∂ρt

∂t j

)]
. (23)

Define the unitary operator Ut = e−i
∑

k tkXk with X =
(X1, X2, . . . , XN ) as a set of N linearly independent Hermitian
operators. The quantum Fisher information matrix for a family
of quantum states {ρt }t = {UtρU −1

t }t is denoted

(
F̂ f

ρ (X1, . . . , XN )
)

kl
=

(
Ĵ f

Ut ρU −1
t

)
kl

∣∣∣
t=0

, (24)
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which is a function of the state ρ and the set of operators
X1, . . . , XN . In particular, given a quantum state ρ with spec-
tral decomposition ρ = ∑d

i=1 pi|ψi〉〈ψi|, the quantum Fisher
information matrix can be expressed as

(
F̂ f

ρ ({Xk})
)

kl
=

d∑
i, j=1

(pi − p j )2

p j f
( pi

p j

) 〈ψi|Xk|ψ j〉〈ψ j |Xl |ψi〉. (25)

The following theorem implies that the quantum Fisher infor-
mation matrix F̂ f

ρ ({Xn}N
n=1) is a resource measure when there

are multiple conserved quantities.
Theorem 6. Let (X1, X2, . . . , XN ) be a set of linearly

independent Hermitian operators and Ut = e−i
∑

k tkXk be a
projective unitary representation of the N-dimensional real
numbers RN . Then, the quantum Fisher information matrix
is a resource measure, i.e., it satisfies

F̂ f
ρ (X1, . . . , XN ) � 0, (26)

F̂ f
ρ (X1, . . . , XN ) = 0 ⇔ [ρ,Ut ] = 0 ∀ t ∈ RN , (27)

F̂ f
ρ (X1, . . . , XN ) � F̂ f

E (ρ)(X1, . . . , XN ), (28)

where E is a covariant operation. Here, all of the above in-
equalities are matrix inequalities.

We can extend the above theorem to the more general case,
in which a more general Lie group G describes the symmetry.

Theorem 7. Let G be a linear Lie group and {U (g)}g∈G be
a projective unitary representation of G on a Hilbert space H.
Then, there exists a map ϕ from the Lie ring g of G to the Lie
ring u(H) such that

F̂ f
ρ ({Xn}) = 0 ⇒ [ρ,U (g)] = 0 ∀ g ∈ G, (29)

where Xl := −iϕ(xl ) with basis {xl} in g. If G is connected,
the converse is also true. Furthermore, the quantum Fisher
information matrix F̂ f

ρ ({Xn}) is monotonic under a covariant
operation, i.e.,

F̂ f
ρ ({Xl}) � F f

E (ρ)({Xl}), (30)

where E is covariant operation.
This theorem shows that, when G is a connected Lie group,

the quantum Fisher information for any f is a resource mea-
sure satisfying conditions 1–3.

In addition to its property as a resource measure, the quan-
tum Fisher information matrix has the following property
called selective monotonicity:

Theorem 8. Let G be a linear Lie group, {U (g)}g∈G be a
projective unitary representation of G on Hilbert space H, and
E = ∑

j E j be a quantum operation with a covariant CP trace
nonincreasing map E j . The quantum Fisher information does
not increase on average, i.e.,

F̂ f
ρ ({Xn}) �

∑
j

p j F̂
f

σ j
({Xn}) (31)

where p j = tr[E j (ρ)] and σ j = E j (ρ)/p j .

B. Relationship between quantum Fisher information matrix
and quantum fluctuation

When there is only one conserved quantity, the quantum
Fisher information satisfies Luo’s criteria and the physical

meaning of quantifying the quantum fluctuation. In consid-
ering the physical meaning of the quantum Fisher information
matrix, we first show that Luo’s criteria can be extended to the
form applicable to matrices and that the quantum Fisher infor-
mation matrix satisfies the criteria. Specifically, the following
theorem holds:

Theorem 9. Defining Î f
ρ ({Xn}) := f (0)

2 F̂ f
ρ ({Xn}), it satisfies

0 � Î f
ρ ({Xn}) � V̂ρ ({Xn}), (32)

ρ is pure ⇒ Î f
ρ ({Xn}) = V̂ f

ρ ({Xn}), (33)

[ρ, Xk] = 0 ∀ k ⇒ Î f
ρ ({Xn}) = 0, (34)

Î f∑
i piρi

({Xn}) �
∑

i

piÎ
f
ρi

({Xn}). (35)

Here, we refer to Î f
ρ ({Xn}) as the metric-adjusted skew infor-

mation matrix, since it corresponds to the covariance matrix
of the metric-adjusted skew information.

This theorem shows that the quantum Fisher information
matrix for any f is a measure of quantum fluctuation.

Furthermore, let us consider multivariable extensions of
Theorems 4 and 5. First, the following theorem holds as a
multivariable extension of Theorem 4.

Theorem 10. Consider a system S with a set of linearly
independent Hermitian operators {X S

n } and a quantum state ρ.
The quantum Fisher information matrix F̂ρ ({X F

n }) can be writ-
ten as

F̂ρ ({Xn}) = 4 min
|ψρ 〉,{X R

n }
V̂|ψρ 〉

({
X S

n + X R
n

})
, (36)

where V̂|φ〉(H ) is a covariance matrix, defined as (V̂ρ ({Xn})kl =
1
2 〈(Xk − 〈Xk〉ρ )(Xl − 〈Xl〉ρ ) + (Xl − 〈Xl〉ρ )(Xk − 〈Xk〉ρ )〉ρ
and 〈Y 〉σ is expected value of a Hermitian operator Y in a
state σ , defined as 〈Y 〉σ := Tr[σY ] and |ψρ〉 is purification
of the state ρ and {X R

n } is a set of Hermitian operators of
auxiliary system R.

This theorem is proved by giving another proof of
Theorem 4 and considering its multivariable extension. In the
proof, we combine Uhlmann’s theorem that that the fidelity
of the mixed state is equal to the maximum of the fidelity of
the purification and the fact that the second-order derivative of
fidelity is equal to the SLD Fisher information.

Finally, we show that, by constructing a counterexample,
the multivariable extension of Theorem 5 does not hold. The
counterexample is as follows: Consider a qubit system S with
state ρ = I/2 with I the identity. For noncommutative Hermi-
tian operators X1 and X2, we have

F̂ρ (X1, X2) = 0. (37)

Because X1 and X2 are noncommutative, for any decompo-
sition ρ = ∑

i pi|φi〉〈φi|, either V|φi〉(X1) > 0 or V|φi〉(X2) > 0
holds. This implies∑

i

piV̂|φi〉(X1, X2) > 0. (38)

Hence, the multivariable extension of Theorem 5 does not
hold.
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IV. CONCLUSION

We have shown that the quantum Fisher matrix is a re-
source measure when a connected linear Lie group describes
the symmetry, i.e., the following conditions are satisfied:

(i) F̂ρ ({Xk}) � 0;
(ii) F̂ρ ({Xk}) = 0 ⇔ ρ is a symmetric state;
(iii) If E is a covariant operation, F̂ρ ({Xk}) � F̂E (ρ)({Xk})

holds.
In proving that the quantum Fisher information matrix sat-

isfies these conditions, we used the fact that a connected linear
Lie group is generated by its Lie ring and the properties of the
representation of the Lie ring obtained from its unitary or pro-
jective unitary representations. Our result is a generalization
of the quantum Fisher information as a resource measure with
U(1) symmetry and is the first example of a resource measure
being a matrix in resource theory.

We also extended three known results, given as theorems,
concerning the physical meaning of the quantum Fisher in-
formation for multiple conserved quantities. The first is Luo’s
criteria, which we extended to be applicable to matrices and
showed that the quantum Fisher information matrix satisfies
these extended criteria. The second is that the quantum Fisher
information matrix is equal to the minimum of the covariance
matrix of its purification, and we gave another proof using
Uhlmann’s theorem. As an extension of this theorem for mul-
tiple conserved quantities, we showed that for the quantum
Fisher information matrix the equality

F̂ρ ({Xn}) = 4 × min
|ψρ 〉,{X R

n }
V̂|ψρ 〉

({
X S

n + X R
n

})
(39)

holds. The third theorem states that the quantum Fisher infor-
mation is equal to the minimum average of the variance of
the pure state. And we showed, by giving a counterexample,
that this theorem cannot be extended to general symmetry
scenario.

Note added. Recently, we noticed two papers related to the
purification methods in Theorem 10 [41,42]. The first paper
[41] contains another proof of Theorem 4 for U(1) symmetry.
The proof uses a similar method of the proof for Theorem 10,
although Theorem 10 treats general symmetries. The second
paper [42] does not treat the resource theory of asymmetry
but shows that a general relation between the quantum Fisher
information matrix of the mixed-state family {ρθ } and the
minimization of the quantum Fisher information matrix of
the purification of {ρθ }. These results are not exactly same
as Theorem 10 but have similarities in the methods and re-
sults. Therefore, we remark them. We also remark that the
main results of our article are resource-theoretic features of
the quantum Fisher information matrices for the case of the
general symmetry, and the main results have no overlap with
these two papers.

ACKNOWLEDGMENTS

The present work was supported by JSPS Grants-in-Aid
for Scientific Research No. JP19K14610 (H.T.) and No.
JP22H05250 (H.T.), JST PRESTO No. JPMJPR2014 (H.T.),
and JST MOONSHOT (H.T. Grant No. JPMJMS2061).

APPENDIX A: PROOF OF THEOREM 6

For any λ ∈ RN , we have

λT F̂ f
ρ (X1, . . . , XN )λ

=
d∑

i, j=1

N∑
k,l=1

λkλl
(pi − p j )2

p j f
( pi

p j

) 〈ψi|Xk|ψ j〉〈ψ j |Xl |ψi〉

=
d∑

i, j=1

(pi − p j )2

p j f
( pi

p j

)
∣∣∣∣∣〈ψi|

N∑
k=1

λkXk|ψ j〉
∣∣∣∣∣
2

= F f
ρ

(
N∑

k=1

λkXk

)
. (A1)

Therefore, we have (26) from positivity of the Fisher informa-
tion. Then, note that

F̂ f
ρ (X1, . . . , XN ) = 0

⇐⇒ λT F̂ f
ρ (X1, . . . , XN )λ = 0 ∀ λ ∈ RN

⇐⇒ F f
ρ

(
N∑

k=1

λkXk

)
= 0 ∀ λ ∈ RN

⇐⇒
[
e−it

∑N
k=1 λkXk , ρ

]
= 0 ∀ λ ∈ RN , t ∈ R, (A2)

which implies (27). Given the monotonicity of the quantum
Fisher information under a covariant operation, we have

λT F̂ f
ρ (X1, . . . , XN )λ = F f

ρ

(∑
k

λkXk

)

� F f
E (ρ)

(∑
k

λkXk

)

= λT F̂ f
E (ρ)(X1, . . . , XN )λ, (A3)

which implies (28).

APPENDIX B: PROOF OF THEOREM 7

Let H be a Hilbert space of the same dimension as H. We
consider

X =
∑
i, j

xi, j |i〉〈 j|H ↔ |X 〉〉H⊗H =
∑
i, j

xi, j |i〉H ⊗ | j〉H.

(B1)

Thus, we find

Y ⊗ Z|X 〉〉 = |Y XZT 〉〉, (B2)

where X T is transposed of X for basis {| j〉H}. For any g ∈ G
and ρ ∈ H we find

Ug ⊗ (Ug)∗|ρ〉〉 = |UgρU †
g 〉〉, (B3)

where X ∗ denotes the complex conjugate of X for basis
{| j〉H}.
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Here, we define � : G → U (H ⊗ H) as

�(g) := Ug ⊗ (Ug)∗. (B4)

Then, we have

�(g)�(g′) = (Ug ⊗ U ∗
g )(Ug′ ⊗ U ∗

g′ )

= UgUg′ ⊗ U ∗
g U ∗

g′

= UgUg′ ⊗ (UgUg′ )∗

= eiω(g,g′ )Ugg′ ⊗ (eiω(g,g′ )Ugg′ )∗

= Ugg′ ⊗ U ∗
gg′ . (B5)

This implies � is a homomorphism. Therefore, using The-
orem 1, there exists a unique linear map ϕ̃ : g → L(U (H ⊗
H)) such that

∀ x ∈ g, eϕ̃(x) = �(ex ). (B6)

To identify the form of ϕ̃(x), we define

˜̃ϕ(x) := (ln Uex ) ⊗ IH + IH ⊗ (ln Uex )∗, (B7)

where IH and IH denote the identity operators of H and H,
respectively. Then, the map ˜̃ϕ satisfies

∀ x ∈ g, e ˜̃ϕ(x) = �(ex ). (B8)

From the uniqueness of ϕ̃, we have ϕ̃ = ˜̃ϕ. Using this map ϕ̃,
we can define ϕ noting that ϕ̃ can be written as

ϕ̃ = Y (x) ⊗ IH + IH ⊗ Y (x)∗, (B9)

where Y (x) denotes a skew-Hermitian operator. It follows
from this form of ˜ϕ(x) that Y (x) is defined up to a constant
multiplication of IH. Let Y and Y ′ be skew-Hermitian opera-
tors. If Y ⊗ IH + IH ⊗ Y ∗ = Y ′ ⊗ IH + IH ⊗ Y ′∗, we have

(Y − Y ′) ⊗ IH = IH ⊗ (Y ′ − Y )∗ (B10)

and for any operator A on H,

[(Y − Y ′) ⊗ IH, IH ⊗ A] = 0. (B11)

From these two equations, we have

[(Y − Y ′)∗, A] = 0. (B12)

Because Y is a skew-Hermitian operator and the above com-
mutation relation holds for any A, there exists a real number c
such that

Y ′ − Y = icI. (B13)

We define the map ϕ : g → u(H) to be

ϕ(x) := Y (x). (B14)

This ϕ is not necessarily linear. However, from the linearity of
ϕ̃, ϕ satisfies

∀a ∈ R ∀ x ∈ g, ∃ b ∈ R s.t. ϕ(ax) = aϕ(x) + ibIH,

(B15)

∀ x, y ∈ g, ∃ c ∈ R, s.t. ϕ(x + y) = ϕ(x) + ϕ(y) + icIH.

(B16)

Defining ϕ as above, and then defining Xl := −iϕ(xl ) for the
basis of g, we have

F̂ f
ρ ({Xl}) = 0 ⇔ [ρ, ei

∑
k λkXk ] = 0 ∀ λ ∈ RN

⇔ [ρ, eϕ(x)] = 0 ∀ x ∈ g

⇔ eϕ̃(x)|ρ〉〉 = |ρ〉〉 ∀ x ∈ g, (B17)

where, to establish the second line, we have used (B15),
(B16), and x = ∑

l λl xl for any x ∈ g. To obtain the last line,
we used eϕ̃ = eϕ(x) ⊗ eϕ(x)∗ .

We show (29) from (B17). Assuming that [ρ,Ug] = 0 for
any g ∈ g, we have

�(ex )|ρ〉 = |ρ〉〉. (B18)

From �(ex ) = eϕ̃(x), we have

eϕ̃(x)|ρ〉〉 = |ρ〉〉. (B19)

Using (B17), this implies F̂ f
ρ ({Xl}) = 0.

Next, we show that the converse holds if G is connected.
Given Theorem 2, if G is connected, for any g ∈ G there exists
y1, . . . , ym ∈ g such that

g = ey1 · · · eym . (B20)

Therefore,

�(g) = �(ey1 · · · eym )

= �(ey1 ) · · ·�(eym )

= eϕ̃(y1 ) · · · eϕ̃(ym ). (B21)

Using (B17), this implies �(g)|ρ〉〉 = |ρ〉〉 if F̂ f
ρ ({Xl}) = 0.

Therefore, [ρ,Ug] = 0 holds.
Next, we prove Eq. (30). For any vector λ ∈ RN , there

exists a real number c such that

ϕ

(∑
k

λkxk

)
= −i

∑
k

λkXk + icI. (B22)

Thus, we have

eϕ(
∑

k λkxk ) = eice−i
∑

k λkXk . (B23)

From Uex ρU −1
ex = eϕ(x)ρe−ϕ(x), we obtain

e−i
∑

k λkXkE (ρ)ei
∑

k λkXk

= eϕ(
∑

k λkxk )E (ρ)eϕ(
∑

k λkxk )

= E
(
eϕ(

∑
k λkxk )ρe−ϕ(

∑
k λkxk )

)
= E

(
e−i

∑
k λkXk ρei

∑
k λkXk

)
. (B24)

Using Theorem 6, we have

F̂ f
ρ ({Xl}) � F̂ f

E (ρ)({Xl}). (B25)

APPENDIX C: PROOF OF THEOREM 8

Considering ϕ and {Xn} to be the same as those defined in
Theorem 7, we have in a similar manner to (B24),

E j
(
e−i

∑
k λkXk ρe− ∑

k λkXk
) = e−i

∑
k λkXkE j (ρ)ei

∑
k λkXk . (C1)
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With the selective monotonicity of Fisher information, this
implies

F f
ρ

(∑
k

λkXk

)
�

∑
j

p jF
f

ρ

(∑
k

λkXk

)
. (C2)

Using (A1), we have

F̂ f
ρ ({Xn}) �

∑
j

p jF
f

ρ ({Xn}). (C3)

APPENDIX D: PROOF OF THEOREM 9

With the quantum Fisher information satisfying Luo’s cri-
teria, for any λ ∈ RN , we have

0 � I f
ρ

(∑
k

λkXk

)
� Vρ

(∑
k

λkXk

)
, (D1)

ρ is pure ⇒ I f
ρ

(∑
k

λkXk

)
= Vρ

(∑
k

λkXk

)
, (D2)

[ρ, Xl ] = 0 ∀ l ∈ {1, . . . , N} ⇒ I f
ρ

(∑
k

λkXk

)
= 0, (D3)

I f∑
i piρi

(∑
k

λkXk

)
�

∑
i

piI
f
ρi

(∑
k

λkXk

)
. (D4)

Note that

λT V̂ρ ({Xn})λ

=
〈∑

k,l

λkλl + λlλk

2

(
Xk − 〈Xk〉ρ

)(
Xl − 〈Xl〉ρ

)〉
ρ

=
〈(∑

k

λk
(
Xk − 〈Xk〉ρ

))(∑
l

λl
(
Xl − 〈Xl〉ρ

))〉
ρ

=
〈⎛
⎝∑

k

λkXk −
〈∑

k

λkXk

〉
ρ

⎞
⎠

2〉
ρ

= Vρ

(∑
k

λkXk

)
. (D5)

Using the above equation and (A1), we rewrite (D1) as

0 � λT Î f
ρ ({Xn})λ � λT V̂ρ ({Xn})λ, (D6)

which implies (32). Similarly, we have Eqs. (33)–(35).

APPENDIX E: PROOF OF THEOREM 10

First, we provide a proof for the one-variable case different
from Ref. [8]. Let |ψρ〉 be any purification of ρ, and let X S and
X R be any Hermitian operator of systems S and R. We define
ρt := e−itX S

ρeitX S
and its purification |ψρt 〉 such that

|ψρt 〉 := e−itX R ⊗ e−itX S |ψρ〉. (E1)

From Uhlmann’s theorem, we have

F (ρ, ρt ) � F (|ψρ〉, |ψρt 〉). (E2)

Because the second-order derivative of fidelity is equal to the
quantum Fisher information, this implies

Fρ (X S ) = 8 lim
t→0

1 − F (ρ, ρt )

t2

� 8 lim
t→0

1 − F (|ψρ〉, |ψρt 〉)

t2

= F|ψρ 〉(X S + X R)

= 4V|ψρ 〉(X S + X R). (E3)

We show that there exists purification |ψρ〉 and X R that
achieves the equality of the above inequality. From Uhlmann’s
theorem, there exists purification |ψρ〉 and |ψρt 〉 such that

F (ρ, ρt ) = |〈ψρ |ψρt 〉|. (E4)

These states are given by

|ψρ〉 = IR ⊗ √
ρ|�+〉, (E5)

|ψρt 〉 = IR ⊗ √
ρtV

−1
t |�+〉, (E6)

where |�+〉 := ∑
i |i〉|i〉 with any basis {|i〉} and the Hilbert

spaces of S and R are considered to be the same. The operator
Vt is a unitary operator given by a polar decomposition of√

ρ
√

ρt such that

√
ρ
√

ρt = Vt

√√
ρtρ

√
ρt . (E7)

Given the spectral decomposition of the quantum state ρ with
ρ = ∑d

i=1 pi|ϕi〉〈ϕi|, we have
√

ρt = Ut
√

ρU −1
t . (E8)

Note that, for any operator X ,

IR ⊗ X |�+〉 = X T ⊗ IS|�+〉. (E9)

Using the above equation, we describe

|ψρt 〉 = (
U −1

t V −1
t

)T ⊗ Ut
√

ρ|�+〉 = Wt ⊗ Ut |ψρ〉, (E10)

where Wt := (U −1
t V −1

t )T . Because Ut and Vt are unitary oper-
ators, Wt is also a unitary operator, which we express Wt as

Wt = I + tA + t2B + O(t3), (E11)

which leads to

W †
t Wt = I + t (A + A†) + t2(B + B† + A†A) + O(t3).

(E12)

Because Wt is a unitary operator, we have

A + A† = 0, (E13)

B + B† + A†A = 0. (E14)

From the first equation, A is skew-Hermitian, i.e., there exists
a Hermitian operator X R such that A = −iX R. From the
second equation, we describe

B = − (X R)2

2
+ iC, (E15)
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where C is a Hermitian operator. Therefore, we express Wt as

Wt = I − itX R − t2

(
(X R)2

2
− iC

)
+ O(t3). (E16)

Expanding the fidelity to second order in t , we obtain

F (ρ, ρt ) = |〈ψρ |Wt ⊗ Ut |ψρ〉|
=

√
1 − t2V|ψρ 〉(X S + X R) + O(t3)

= 1 − t2

2
V|ψρ 〉(X S + X R) + O(t3). (E17)

Therefore, because the second-order derivative of fidelity is
equal to the Fisher information, we have

Fρ (X S ) = 8 lim
t→0

1 − F (ρ, ρt )

t2
= 4V|ψρ 〉(X S + X R). (E18)

Next, we show instances with multiple variables. Let λ ∈ RN

be any real vector and {Xn} be a set of Hermitian operators.
Using (A1) and (D5) and the equality of the quantum Fisher
information for a pure state and the variance, then for any
pure state |ψ〉, we have

λT F̂|ψ〉({Xn})λ = F|ψ〉

(∑
k

λkXk

)

= 4V|ψ〉

(∑
k

λkXk

)

= 4λT V̂|ψ〉({Xn})λ, (E19)

which implies

F̂|ψ〉({Xn}) = 4V̂|ψ〉({Xn}). (E20)

That is, the quantum Fisher information matrix for a pure
state is equivalent to a covariance matrix. Let {X R

n } be a set of
Hermitian operators of the auxiliary system R. We define the
state ρtλ as

ρtλ = e−it
∑

k λkX S
k ρeit

∑
k λkX S

k = UtλρU −1
tλ . (E21)

Then, we define the purification of ρtλ as

|ψρtλ〉 = e−it
∑

k λkX R
k ⊗ e−it

∑
k λkX S

k |ψρ〉, (E22)

where |ψρ〉 is the purification of ρ. Using Uhlmann’s theorem
and the fact that the second-order derivative of fidelity is
equal to the quantum Fisher information, we have

λT F̂
({

X S
n

})
λ = Fρ

(∑
k

λkX S
k

)

= 8 lim
t→0

1 − F (ρ, ρtλ)

t2

� 8 lim
t→0

1 − F (|ψρ〉, |ψρtλ〉)

t2

= F|ψρ 〉

(∑
k

λk
(
X S

k + X R
k

))

= λT F̂|ψρ 〉
({

X S
n + X R

n

})
λ, (E23)

which implies

F̂ρ

({
X S

n + X R
n

})
� F̂|ψρ 〉

({
X S

n + X R
n

})
= 4V̂|ψρ 〉

({
X S

n + X R
n

})
.

(E24)

We show that there exists purification |ψρ〉 and X R that
provides the equality of the above inequality. Applying
Uhlmann’s theorem, there exist states |ψρ〉 and |ψρtλ〉 such
that

F (ρ, ρtλ) = |〈ψρ |ψρtλ〉|. (E25)

Similar to single conserved quantity cases, these states are
given by

|ψρ〉 = IR ⊗ √
ρ|�+〉, (E26)∣∣ψρtλ

〉 = IR ⊗ √
ρtλV †

tλ|�+〉 = Wtλ ⊗ Utλ|ψρ〉, (E27)

where Vtλ denotes a unitary operator given by the polar
decomposition of the state

√
ρ
√

ρtλ such that

√
ρ
√

ρtλ = Vtλ

√√
ρtλρ

√
ρtλ, (E28)

and Wtλ denotes a unitary operator defined as Wtλ =
(U −1

tλ V −1
tλ )T . Expanding Wtλ for tλ, we express

Wtλ = I +
N∑

k=1

tλkAk +
N∑

k,l=1

t2λkλlBkl + O(t3), (E29)

which implies

W †
tλWtλ = I + t

N∑
k=1

λk (Ak + A†
k )

+ t2

⎡
⎣ N∑

k,l=1

λkλl (A
†
kAl + Bkl + B†

kl )

⎤
⎦ + O(t3).

(E30)

With Wtλ unitary, we have
N∑

k=1

λk (Ak + A†
k ) = 0, (E31)

N∑
k,l=1

λkλl (A
†
kAl + Bkl + B†

kl ) = 0. (E32)

From the first equation, with Ak a skew-Hermitian operator,
we can write Ak = −iX R

k using the Hermitian operator X R
k .

From the second equation, by considering λk = λl = 1 and 0
otherwise, we obtain X R

k X R
l + X R

l X R
k + (Bkl + Blk ) + (Bkl +

Blk )† = 0. This implies

Bkl + Blk = −X R
k X R

l + X R
l X R

k

2
+ 2iCk,l , (E33)

where Ck,l is the Hermitian operator. Therefore, we describe

Wtλ = I − it
N∑

k=1

λkX R
k − t2

2

(
N∑

k=1

λkX R
k

)2

+ it2
N∑

k,l=1

Ck,l + O(t3). (E34)
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Expanding Utλ for tλ, we describe

Utλ = I − it
N∑

k=1

λkX S
k − t2

2

(
N∑

k=1

λkX S
k

)2

+ O(t3). (E35)

Therefore, replacing XS := ∑N
k=1 λkX S

k , XR := ∑N
k=1 λkX R

k ,
and C = ∑

k,l λkλlCkl for instances of a single conserved
quantity, we have

F
(
ρ, ρρtλ

) = 1 − t2

2
λT V̂|ψρ 〉

({
X S

n + X R
n

})
λ + O(t3).

(E36)

Because the second-order derivative of fidelity is equal to the
quantum Fisher information, we have

λT F̂ρ

({
X S

n

})
λ = Fρ

(
N∑

k=1

λkX S
k

)
= 8 lim

t→0

1 − F (ρ, ρtλ)

t2

= 4V|ψρ 〉

(
N∑

k=1

λk
(
X S

k + X R
k

))

= 4λT V̂|ψρ 〉
({

X S
n + X R

n

})
λ, (E37)

which implies

F̂ρ

({
X S

n

}) = 4V̂|ψρ 〉
({

X S
n + X R

n

})
. (E38)
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