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Vacuum provides quantum advantage to otherwise simulatable architectures
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We consider a computational model composed of ideal Gottesman-Kitaev-Preskill stabilizer states, Gaussian
operations including all rational symplectic operations and all real displacements, and homodyne measurement.
We prove that such architecture is classically efficiently simulatable by explicitly providing an algorithm to
calculate the probability density function of the measurement outcomes of the computation. We also provide
a method to sample when the circuits contain conditional operations. This result is based on an extension
of the celebrated Gottesman-Knill theorem, via introducing proper stabilizer operators for the code at hand.
We conclude that the resource enabling quantum advantage in the universal computational model considered
by Baragiola et al. [Phys. Rev. Lett. 123, 200502 (2019)], composed of a subset of the elements given above
augmented with a provision of vacuum states, is indeed the vacuum state.
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I. INTRODUCTION

Identifying the physical resources underlying quantum ad-
vantage, i.e., yielding the ability of quantum computers to
solve computational problems faster than classical computers,
is of crucial importance for the design of meaningful architec-
tures for quantum computation (QC) [1]. Often, the resource
depends on the model. For example, for architectures over
finite-dimensional systems, Clifford circuits are resourceless
from a computational standpoint, since they are efficiently
simulatable [2–4] until a so-called magic resource is provided,
such as the T-state, which allows universal quantum computa-
tion to be performed [5,6]. Similarly, for infinite-dimensional
continuous-variable (CV) systems, Gaussian circuits are effi-
ciently simulatable [7–9] and to promote them to universal
QC specific non-Gaussian resources [10,11] have to be
provided, such as the cubic-phase state [12,13], or Gottesman-
Kitaev-Preskill (GKP) states [14,15]. The cost of producing
these enabling resources with sufficient quality generally re-
quires a significant overhead and their distinct features are
typically complex and in stark contrast with respect to the
elements of the corresponding simulatable architectures. For
example, T-states and cubic-phase states are nonstabilizer and
non-Gaussian, respectively. It is a natural question to ask: Are
resources always complex and costly to produce?
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In this work, we provide a specific example of a CV
quantum computing architecture that is classically efficiently
simulatable, and that becomes universal by adding the vac-
uum state. The latter state is widely regarded as the simplest
quantum state of a bosonic field, and in particular it is a
Gaussian state. The architecture considered is based on sta-
bilizer GKP states, Gaussian operations including conditional
displacements and homodyne detection. By taking inspira-
tion from stabilizer methods developed for discrete-variable
(DV) systems [2–4,16,17], we prove that this class of circuits
is classically efficiently simulatable for rational symplectic
operations and arbitrary continuous displacement, thereby
significantly extending [18] the class of Gaussian operations
that was previously known to be simulatable in combination
with GKP states [19,20]. This result is obtained despite the
fact that GKP states are highly non-Gaussian and their Wigner
function is highly negative [12,15,21], and hence the standard
theorems based on Gaussianity [7] or on the positivity of
quasiprobability distributions [8,9,22] cannot be applied. We
then leverage on the results of Ref. [14], where the same ar-
chitecture combined with the vacuum (or a thermal) state was
shown to be universal for quantum computation, to conclude
that the vacuum provides quantum advantage.

The paper is structured as follows. In Sec. II we provide
an introduction to the circuit class that we demonstrate to
be efficiently simulatable. In Sec. III we provide an analytic
method to evaluate the probability density function (PDF) of
the introduced circuit class. Then in Sec. IV we provide an
algorithm to evaluate the PDF of the circuit and show that
it is classically efficient. We also extend our result to include
adaptive circuits and show that GKP-encoded Clifford circuits
are included in the simulatable class. We then demonstrate in
Sec. V that these results are sufficient to conclude that the
vacuum is a resource for quantum advantage in the context of
the simulatable model we consider. In Sec. VI we also extend
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FIG. 1. Schematics of the circuit class considered. In input, there
are ideal GKP stabilizer states, such as the 0-logical state. The opera-
tions considered are the semidirect product of the rational symplectic
operations and the Heisenberg-Weyl group. Multimode homodyne
detection follows.

this result to show that realistic GKP states can be considered
resourceful in the context of this model. Finally, we provide
conclusions and open questions in Sec. VII.

II. GAUSSIAN CIRCUITS WITH STABILIZER GKP STATES

In this section we introduce the circuit class considered in
this work, which we later show to be efficiently simulatable.

We consider the circuits shown in Fig. 1, where the input
states are n ideal GKP states encoding pure stabilizer states.
Without loss of generality, we can consider each mode to be in
the 0-logical encoded GKP state, which has a wave function
in position representation given by [12]

ψ0,L(x) = 〈q̂ = x|0GKP〉 =
∑

m

δ(2m
√

π − x); (1)

the total multimode input state can be compactly indicated by

|0GKP〉 = |0GKP〉⊗n. (2)

The input state is stabilized by any combination of the oper-
ators e2i

√
π p̂ j , ei

√
π q̂ j with any integer power. This means that

the action of these operators, or any combination of them, on
the state will have the effect of the identity, e.g.,

e2i
√

π p̂ j |0GKP〉 = |0GKP〉 ∀ j ∈ {1, . . . , n}, (3)

ei
√

π q̂ j |0GKP〉 = |0GKP〉 ∀ j ∈ {1, . . . , n}. (4)

The operations we consider in this work are those
which belong to the group HW(n)[Sp(2n,Q)] which is
the semidirect product [23] of the Heisenberg-Weyl group
HW(n) and the rational symplectic group Sp(2n,Q). The
Heisenberg-Weyl group HW(n) consists of all real phase-
space displacements of the form eic j q̂ j and e−id j p̂ j for c j, d j ∈
R and j ∈ {1, . . . , n}.

The rational symplectic group Sp(2n,Q) is the rational
subgroup of the symplectic group Sp(2n,R) over the reals.
It consists of all symplectic operations parameterized by a
2n × 2n symplectic matrix such that all its elements are ra-
tional numbers. The set of rational symplectic operations is
dense in the set of real symplectic operations. We provide
a proof of this fact in Appendix A. Note, however, that the
density of the rational symplectic matrices should be regarded
as a mathematical property characterizing the extent of the
class of simulatable operations. It does not imply that the
probability distributions obtained with operations parameter-
ized by operations that are outside the set (e.g., in its closure)
are necessarily simulatable. For later convenience, we will
denote a symplectic matrix M by square subblocks of equal

dimension:

M =
(

A B
C D

)
. (5)

Gaussian operations can always be expressed as a unitary
operator Û in terms of symplectic operations and phase-space
displacements [24,25]. The following operations form a gen-
erating set of all Gaussian operations:{

eic j q̂ j , eiθ j (q̂2
j +p̂2

j )/2, e−i ln s j (q̂ j p̂ j+p̂ j q̂ j )/2, e−iq̂ j p̂k
}
, (6)

where c j ∈ R, θ j ∈ [0, 2π ), s j ∈ R, and j, k ∈ {1, . . . , n}.
These generators and also any combination of them will be
shown to be simulatable so long as θ j and s j are chosen such
that cos θ j, sin θ j, s j ∈ Q for all j. We will also show that
adaptivity can be included as a feature of the class of circuits
that can be efficiently simulated.

The circuits we consider are measured using homodyne
detection, which, without loss of generality, we can restrict
to position measurements. The measurement outcomes of the
circuit in Fig. 1 will therefore have a probability density func-
tion (PDF), denoted fPD(q̂ = x), expressed as

fPD(q̂ = x) = |〈q̂ = x|Û |0GKP〉|2. (7)

When measuring the output modes, a quantum computer will
provide outputs x selected with probabilities specified by the
fPD in Eq. (7).

As we will clarify in Sec. V, the circuit elements (including
adaptive operations) composing the universal model stem-
ming from Ref. [14] all belong to our class of circuits except
for the vacuum.

III. SIMULATION METHOD FOR GKP CIRCUITS

In order to assess the simulatability of the circuits outlined
in the previous section, we introduce a method to evaluate
the PDF of the circuit presented in Fig. 1. This method in-
volves tracking the Heisenberg evolution of the measurement
operators and then using the stabilizers of the input states to
evaluate the PDF. We first provide an overview of the problem
statement and a summary of the contents of the following
subsections, which contain details of the proof.

A general Gaussian operation Û belonging to
HW(n)[Sp(2n,Q)] transforms, in the Heisenberg picture, the
measurement operators q̂ j according to [7,26]

Q̂ j = Û †q̂ jÛ =
∑

i

a( j)
i q̂i + b( j)

i p̂i + c j, (8)

where the coefficients a( j)
i = Ai, j and b( j)

i = Bi, j are elements
of the blocks of the symplectic matrix M as defined in Eq. (5).
The vector �c ∈ Rn, with elements c j , describes the displace-
ment in position. As we now prove, these circuits can be
simulated in the strong sense by calculating the PDF. The PDF
given in Eq. (7) can be written in the Heisenberg picture using
Eq. (8) as

fPD(Q̂ = x) = 〈0GKP|
⎛
⎝∏

j

|Q̂ j = x j〉〈Q̂ j = x j |
⎞
⎠|0GKP〉.

(9)
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Our method is based on two main observations. First, by
inserting the GKP stabilizers e2i

√
π p̂ j and ei

√
π q̂ j into the ex-

pression (9), we can identify a periodicity relation of the PDF.
Second, we can manufacture bespoke additional stabilizers, in
terms of the Heisenberg measurement operators, of the form

g(�l ) = eiφ(�l )
∏

j

ei
√

π l j Q̂ j , (10)

where �l is an n-vector of real coefficients l j and φ(�l ) is a phase
factor chosen such that g(�l ) is a stabilizer. By inserting this
bespoke stabilizer into the PDF, it is possible to identify a
second constraint that provides the nonzero values of the PDF.
Together, these two constraints uniquely identify the PDF.

In Sec. III A we demonstrate how to derive the period-
icity condition on the PDF, from the symplectic matrix M.
In Sec. III B we demonstrate how to identify the nonzero
points of the PDF. Finally, in Sec. III C we demonstrate that
these two conditions are sufficient to construct the PDF of the
circuit. A reader uninterested in the technical derivations may
proceed directly to Eq. (52), whereby we provide the explicit
PDF of the circuit shown in Fig. 1. This PDF will provide
sufficient information to understand the next Sec. IV, whereby
we provide the algorithm to simulate these circuits.

A. Periodicity of the PDF

In this subsection we will evaluate a periodicity condition
that will provide a restriction on the PDF of the circuits con-
sidered. This periodicity condition informs us of the points of
the PDF for which the values of the PDF are equal. The PDF,
as given in Eq. (9), can equivalently be written as

fPD(Q̂ = x) =〈0GKP|
⎛
⎝∏

j

δ(Q̂ j − x j )

⎞
⎠|0GKP〉, (11)

whereby we have rewritten the measurement operator as a
delta function,

δ(Q̂ j − x j ) =
∫

dseis(Q̂ j−x j ). (12)

Similarly to the original Gottesman-Knill theorem for qubits
[2,4], by inserting stabilizers into this PDF on the right-
hand-side of the delta function, and then using commutation
relations to move the stabilizers to the left-hand side, we find
two expressions for the PDF which are equivalent. These two
expressions correspond to two separate points on the PDF,
implying that the PDF is equal at these points. We start by
considering the commutation of a general stabilizer with the
measurement projection operators. We would like to calculate
how the stabilizers e2i

√
π p̂k and ei

√
π q̂k commute with the gen-

eral measurement projector, given in Eq. (12).
This can be calculated by using the Baker-Campbell-

Hausdorff (BCH) formula [27,28] for linear combinations of
quadrature operators

eX̂+Ŷ + 1
2 [X̂ ,Ŷ ] = eX̂ eŶ (13)

⇒eX̂ eŶ = eŶ eX̂ e[X̂ ,Ŷ ], (14)

valid for the case in which the operators X̂ and Ŷ com-
mute with their commutator. The commutation between the

measurement projector in Eq. (12) and each stabilizer can be
evaluated using Eq. (14) by first evaluating how the terms
commute, without integration. For the stabilizer containing p̂k

we find

eis(Q̂ j−x)e2i
√

π p̂k = e2i
√

π p̂k eis(Q̂ j−x)e[is(Q̂ j−x),2i
√

π p̂k ]

= e−2s
√

πa( j)
k ie2i

√
π p̂k eis(Q̂ j−x), (15)

whereas, for the stabilizer containing q̂k , we find

eis(Q̂ j−x)ei
√

π q̂k = ei
√

π q̂k eis(Q̂ j−x)e[is(Q̂ j−x),i
√

π q̂k ]

= es
√

πb( j)
k iei

√
π q̂k eis(Q̂ j−x). (16)

The first of these relations, Eq. (15), allows us to calculate the
commutation between the measurement projection operator
and any integer mk ∈ Z power of the momentum stabilizer
e2imk

√
π p̂k ,

δ(Q̂ j − x j )e
2imk

√
π p̂k =

∫
dse−2mk s

√
πa( j)

k ie2imk
√

π p̂k eis(Q̂ j−x j )

= e2imk
√

π p̂k δ
(
Q̂ j − x j − 2mk

√
πa( j)

k

)
.

(17)

The second relation (16) provides us with a similar relation for
any integer m′

k ∈ Z power of the position stabilizer eim′
k

√
π q̂k ,

δ(Q̂ j − x j )e
−im′

k

√
π q̂k =e−im′

k

√
π q̂k δ

(
Q̂ j − x j − m′

k

√
πb( j)

k

)
.

(18)

Now, inserting all the stabilizers

e2
√

π im1 p̂1 e−√
π im′

1q̂1 · · · e2
√

π imn p̂n e−√
π im′

nq̂n (19)

into the right-hand side of the full PDF given by Eq. (11), and
using the commutation relations to move the stabilizers to the
left-hand side, we find that the PDF at �x is equal to the PDF at
the displaced point x̂′, which can be expressed as

x j → x′
j = x j + √

π
∑

k

2a( j)
k mk + b( j)

k m′
k . (20)

We also note that this periodicity condition can equiva-
lently be written in terms of

�x′ = �x + 2
√

π

(
A

1

2
B

)(
�m
�m′

)
, (21)

where �m and �m′ are each n-dimensional vectors of integers.
This form of the periodicity relation will be useful when com-
bining the two conditions in Sec. III C. This provides us with
the first condition for the form of the PDF. In the following
subsection, we derive the second condition, which informs us
of the set of points at which the PDF is nonzero.

B. Set of nonzero points

To evaluate the nonzero points of the PDF, we construct
bespoke stabilizers from the Heisenberg measurement opera-
tors. Although this step varies notably from the conventional
Gottesman-Knill theorem for DV systems, we can adopt a
comparable approach to the DV theorem once such stabilizers
have been identified. Specifically, we insert the stabilizers into
the PDF and derive a set of equalities with respect to a set of
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points �x. These equalities lead to a contradiction unless the
value of the PDF is only nonzero at this set of points.

We begin by identifying stabilizers of the set of input 0-
logical states, |0GKP〉, expressed in terms of the Heisenberg
measurement operators Q̂ j . To do so, we first define an opera-
tor g(�l ), which will become a stabilizer for the input 0-logical
states under certain conditions. Considering a generic vector
�l ∈ Qn and a generic real function φ(�l ) : Qn → R, the opera-
tor is defined as

g(�l ) = eiφ(�l )
∏

j

ei
√

π l j Q̂ j

= eiφ(�l )ei
√

π
∑

j l j[
∑

k (Aj,k q̂k+Bj,k p̂k )+c j]

= eiφ(�l )ei
√

π�l·�c ∏
k

ei
√

π(
∑

j l j A j,k )q̂k+i
√

π(
∑

j l j B j,k ) p̂k

= eiφ(�l )ei
√

π�l·�c
n∏

k=1

ei
√

π(�lT A)k q̂k+i
√

π(�lT B)k p̂k . (22)

Using the BCH formula given in Eq. (13) we find that each
term in the product can be expressed as

ei
√

π(�lT A)k q̂k ei
√

π(�lT B)k p̂k e
i
2 π(�lT A)k (�lT B)k , (23)

and we can therefore express the operator as

g(�l ) = eiφ(�l )ei
√

π�l·�ce
i
2 π�lT ABT �l

n∏
k=1

ei
√

π(�lT A)k q̂k ei
√

π(�lT B)k p̂k .

(24)

We find that by choosing φ(�l ) to be

φ(�l ) = − 1
2π�lT ABT �l − √

π�l · �c (25)

this operator will have the form

g(�l ) =
∏

k

ei
√

π(�lT A)k q̂k ei
√

π(�lT B)k p̂k . (26)

Hence, g(�l ) will be a stabilizer of |0GKP〉 whenever

(AT �l )k = 0 mod 1,

(BT �l )k = 0 mod 2. (27)

Inserting the stabilizer g(�l ) into the equation of the PDF,
given in Eq. (11), we have an equality between the PDF
in its original form, and the PDF with the inserted stabi-
lizer. Specifically, by inserting the stabilizer between the
Heisenberg-evolved position quadrature basis states and the
0-logical GKP states, we find that the stabilizer will act
on the basis states as

g(�l )
∏

j

|Q̂ j = x j〉〈Q̂ j = x j |

= eiφ(�l )
∏

j

ei
√

π l j x j |Q̂ j = x j〉〈Q̂ j = x j |, (28)

where the choice of �l is constrained by Eq. (27) and φ(�l )
is of the form given in Eq. (25). Furthermore, given that we
know that the PDF will be equal, with or without the inserted

stabilizer, we find that

〈0GKP|
⎛
⎝∏

j

|Q̂ j = x j〉〈Q̂ j = x j |
⎞
⎠|0GKP〉

= eiφ(�l )
∏

j

ei
√

π l j x j 〈0GKP|Q̂ j = x j〉〈Q̂ j = x j |0GKP〉. (29)

This equality can be true only if the term involving the
phase equals one, or the PDF itself is zero. Hence, the nonzero
points �x of the PDF satisfy the equation

√
π�lT �x − 1

2π�lT ABT �l − √
π�l · �c = 0 mod 2π (30)

for all possible choices of �l which satisfies Eq. (27). If, on the
other hand, we choose a different point �x, that does not satisfy
this constrained equation, the equality will result in a contra-
diction unless the PDF is zero at these values of �x. We can
therefore reduce the problem of identifying the nonzero points
to finding solutions �x of Eq. (30) constrained by Eq. (27). We
now provide a short summary of the steps required to solve
Eq. (30) given Eq. (27), provided that A and B both contain all
rational elements. The full details are provided in Appendix B.

To solve this constrained equation we first find the allowed
vectors �l . This can be achieved by introducing the matrix S,
which is defined as

S =
(

AT

1
2 BT

)
. (31)

Then, the constraint on the allowed values of �l is given by
S�l = �b where �b is a vector of 2n integers. The Moore-Penrose
pseudoinverse S+ provides a method to find solutions of the
form �l = S+�b [29–31]. The solutions of �l can be found by
first finding the Smith decomposition [31–33] of the matrix
σS, where σ is the smallest integer for which the elements
of the matrix σS are all integers. Note that this step assumes
that the symplectic matrix, and therefore also S, is rational.
We provide broader requirements for the symplectic matrix
in Appendix C and discuss the relationships between these
classes of simulatable operations in Appendix D. Next, using
the Smith decomposition of σS = V DU we identify which
integer choices of �b will provide valid solutions of �l . We find
that the vectors �l can be expressed as [34]

�l = R �m, (32)

where �m is any choice of an n-vector of integers and R is an
n × n invertible rational matrix, defined as

R = S+V

(
1
0

)
. (33)

We can then rewrite Eq. (30) as a system of linear equations of
the form

1√
π

RT (�x − �c) = �t mod 2, (34)

where �t is the main diagonal of the matrix T = 1
2 RT ABT R.

This form, Eq. (34), allows us to evaluate the solution to the
constrained equation as

�x = √
πR−T (�t + 2 �m) + �c. (35)
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Therefore, provided that the symplectic matrix is rational, we
have identified that the PDF is nonzero exclusively at these
points.

Combined with the insight from the previous subsection,
we have now identified both a periodicity relation and the set
of nonzero points of the PDF. In the following subsection, we
use both these results to demonstrate that the PDF assumes
the same value at all the nonzero points, i.e., those identified
in Eq. (35).

C. Constructing the PDF of the circuit

We now show that the PDF is specified completely by
the periodicity relation and the points at which the PDF is
nonzero. For this to hold, two conditions are required. First,
we need to ensure that any nonzero point displaced by the
periodicity relations always results in another nonzero point.
Second, we need to ensure that any nonzero point can be
reached by another nonzero point using the periodicity rela-
tions.

We begin with the first condition and show that for any
valid solution �x we also get a valid solution if it is displaced
according to the periodicity constraint. Namely, we can check
that any point specified by the periodicity constraint is in-
cluded in the allowed points.

If we take a point specified by

1√
π

�x(1) = (RT )−1(�t + 2 �m)+�c (36)

and displace it according to the periodicity relation provided
in Eq. (21), the new point should also satisfy this constraint.
Here, to distinguish the vectors of integers in Eq. (21) and
Eq. (36), we relabel the arbitrary choice of integers in Eq. (21),
given as vectors �m and �m′, as �k and �k′, respectively. Given a
displacement, specified by �k and �k′, we find a new point

1√
π

�x(2) = (RT )−1(�t + 2 �m) + 2

(
A

1

2
B

)( �k
�k′

)
+�c. (37)

For the first condition to hold, this new point must also be
a nonzero point of the PDF and should satisfy the system of
linear equations defining the nonzero points, given in Eq. (34).
This can be checked by inserting �x(2) into the left-hand side of
that equation,

1√
π

RT (�x(2) − �c)

= RT

[
(RT )−1(�t + 2 �m) + 2

(
A

1

2
B

)( �k
�k′

)]

= �t + 2 �m + 2RT

(
A�k + 1

2
B�k′

)
, (38)

which we expect to evaluate to �t + 2 �m′, where �m′ is a different
n-vector of integers. This can be shown by inspecting each
element of the vector that is given as the third term of Eq. (38).
We label this vector as �w,

�w =2RT
(
A�k + 1

2 B�k′). (39)

The elements of this vector can be found by multiplying its
transpose with the unit vector

wi = �wT �ei = 2
(�kT AT R + 1

2
�k′T BT R

)
�ei. (40)

We know from Eq. (32) that for any n-dimensional vector of
integers �k there exists an allowed value of �l as

�l = R�k. (41)

Choosing �k to be the basis vector �k = �e(i), which is zero
in all entries except at i, we can identify one choice of �l ,
parameterized by i, that corresponds to the element of the
vector �k, chosen to be nonzero, as

�l (i) = R�ei. (42)

We can then write the ith element of the vector �w in Eq. (39)
as

wi =2
(�kT AT �l (i) + 1

2
�k′T BT �l (i)). (43)

Furthermore for any allowed �l , including the choice �l (i) we
have

(AT �l )i = 0 mod 1,

(BT �l )i = 0 mod 2. (44)

The term in brackets in Eq. (43) must be an integer, and so wi

must be an even integer. This means that

�w = 2 �̃m (45)

for some n-dimensional vector of integers �̃m and hence

1√
π

RT �x(2) = �t + 2 �m + �w = �t + 2 �m′, (46)

which is of the same form as Eq. (34). This implies that
any nonzero point displaced using the periodicity condition
also satisfies the constrained equation specifying the nonzero
points. We have therefore demonstrated that the first condition
introduced in this subsection does indeed hold.

For the second condition, we need to demonstrate that any
nonzero point can be reached using the periodicity relations.

This can be proven by specifying a center point as

�x(0) = √
π (RT )−1�t (47)

and demonstrating that it can be displaced to any other
nonzero point of the form

�x(1) = √
π (RT )−1(�t + 2 �m) (48)

using only displacements of the form given by Eq. (21). This
is equivalent to saying that for any choice of �m, there exists
some �k, �k′ such that

√
π (RT )−1(�t + 2 �m) = √

π (RT )−1�t + 2
√

πST

( �k
�k′

)

⇒ (RT )−1 �m = ST

( �k
�k′

)
. (49)
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We can solve this equation using the pseudoinverse to find
potential solutions of the form( �k

�k′

)
= (ST )+(RT )−1 �m. (50)

As with any pseudoinverse, we can check whether this so-
lution is a valid solution by evaluating whether the original
linear equation holds under the solution. That is, we check

ST (ST )+(RT )−1 �m = (S+S)T (RT )−1 �m = (RT )−1 �m, (51)

which means that this solution is one possible valid solution.
Note there exist infinite more solutions, but we do not need
to find an expression for all of these. We have shown that no
matter which nonzero point we are interested in, i.e., �x(1), there
will be at least one way—and, in fact, infinite ways—to get to
that point from the center point �x(0). This completes the proof
of the second condition, introduced in this subsection.

We have therefore shown that both conditions hold, mean-
ing that any nonzero point displaced by the periodicity
relations results in another nonzero point and that any nonzero
point can be reached from any other nonzero point. This
implies that the value of the PDF is equal for all the nonzero
points specified in Eq. (35).

This allows us to write the full and exact PDF of the
multimode measurement, in terms of these allowed points, as

fPD(�x) =
∑
�m∈Zn

δ(�x − √
πR−T (�t + 2 �m) − �c). (52)

As we will show, this method to evaluate the PDF can be
implemented with an efficient algorithm, namely, an algo-
rithm whose complexity increases at most polynomially with
respect to the number of modes. The algorithm for computing
this PDF, along with its complexity analysis, is provided in
Sec. IV.

IV. EFFICIENT ALGORITHM FOR THE SIMULATION
OF GKP CIRCUITS

In this section we provide an explicit algorithm to evaluate
the PDF of the circuit shown in Fig. 1 and derive some notable
consequences of this result.

Efficient classical computation of the PDF of a quantum
circuit is referred to as strong simulation. We begin with a pre-
sentation of the algorithm to efficiently simulate the circuits
shown in Fig. 1 in Sec. IV A in the strong sense. We, therefore,
extend the simulatable class to all real displacements and all
rational symplectic operations as opposed to a restricted set
[35]. Furthermore, the size of the set of simulatable operations
does not depend on the number of modes measured, as was the
case in Ref. [20].

The complementary notion of weak simulatability means
instead that a classical computer can efficiently sample the
outcomes of the circuit [36]. Weak simulation is sufficient
to conclude that a quantum circuit will not provide quantum
advantage, as a quantum computer will, in any case, produce
outcomes selected from the PDF. Following the argument
of Ref. [36], and assuming the capability of sampling from
the set of integers, we will demonstrate in Sec. IV B that by
restricting to weak simulation, we can further extend the class
of simulatable circuits shown in Fig. 1. This extended class

includes adaptive circuits, whereby intermediate measurement
outcomes can affect future operations.

We will later use these results to demonstrate that the rou-
tine introduced in Ref. [14]—whereby the vacuum and GKP
states are used to perform universal quantum computation—is
efficiently simulatable when the vacuum is removed. This
circuit is adaptive and contains GKP-encoded Clifford oper-
ations.

With this motivation, we demonstrate in Sec. IV C that
GKP-encoded Clifford operations are included in the set of
simulatable operations that we present in this work. As a
consequence, we can also now simulate all encoded qubit
stabilizer GKP states as input states, in the same sense as the
Gottesman-Knill theorem [2–4]. This was not possible using
our previous method [20]. Together, these results provide us
with all the tools required to demonstrate in the later Sec. V
that the vacuum is indeed the resource for quantum advantage
in circuits composed of input GKP stabilizer states followed
by Gaussian operations and homodyne measurement.

Finally, to demonstrate the practical implementation of the
algorithm, we provide an example of evaluating the PDF of a
simple circuit in Sec. IV D.

A. Algorithm to evaluate the PDF

We now provide the algorithm to calculate the PDF of a
general circuit shown in Fig. 1 by using the result of the
previous section. We will also provide an analysis of the
computational time required to evaluate the PDF.

To express the PDF in Eq. (52) given the symplectic matrix
M, given in block form as defined in Eq. (5), and the vector
of displacement �c, we need to evaluate R−T and �t . The matrix
R−T is given in terms of ST and V , where V is the unimodu-
lar matrix arising from the Smith decomposition of σS. The
vector �t can be evaluated from V .

First, we identify the matrix S, by simply writing it in terms
of the block components A, B as it is given in Eq. (31). To find
the matrix V we first need to calculate the lowest common
multiple of all the denominators of the elements S. Formally
we could write

σ = lcm(den(S)), (53)

where den(·) evaluates the denominator of all matrix elements
and lcm(·) evaluates the lowest common multiple of all matrix
elements.

Then we multiply the matrix S by σ to produce an integer
matrix σS. We can perform a Smith normal form decomposi-
tion on this matrix to identify the 2n × 2n unimodular matrix
V , the 2n × n diagonal matrix D and the n × n unimodular
matrix U ,

σS = V DU . (54)

We can discard the matrices D,U .
The transpose inverse of R can be directly evaluated as

R−T = ST V −T

(
1
0

)
= (

A 1
2 B

)
V −T

(
1
0

)
. (55)

Furthermore, the matrix T can be calculated from V as

T =V (11)T V (21), (56)
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and the vector �t is simply the diagonal entries of T . The PDF
is then given by Eq. (52).

To summarize, this algorithm consists of the following
steps:

(1) Evaluate the matrix S from M
(2) Identify the integer σ from Eq. (53)
(3) Multiply every element of S by σ

(4) Find the matrix V from the Smith decomposition of σS
(5) Find the inverse-transpose of V
(6) Evaluate R−T from ST ,V −T

(7) Evaluate �t from V
We can assume that the 2n × 2n symplectic matrix M is

stored as a matrix of numerators Mnum and a matrix of denom-
inators Mden such that M = Mnum � Mden, where � denotes
element-wise division.

Step 1 consists of a truncation of the 2n × 2n matrix M
followed by matrix multiplication of the denominator matrix
Mden, which in the worst case requires O(n3) operations [37].

Step 2 consists of finding the lowest common multiple of
every element in Mden. There are (2n)2 integer entries of this
matrix Mden

i, j . We can find the lowest common multiple of two
integers α, β by using the greatest common divisor

lcm(α, β ) = αβ

gcd(α, β )
(57)

and then calculate the lowest common divisor of more than
two integers iteratively,

lcm(α, β, γ ) = lcm(lcm(α, β ), γ ). (58)

If we limit the number of digits of precision in each el-
ement of Mden

i, j to k, we can identify that the calculation of
the lowest common multiple of two integers of bit length k
will require at most O(k2) operations [37,38]. The size of the
bit string representing the lowest common multiple will be
at most 2k. Calculating the lowest common multiple of two
numbers of size k, 2k has complexity in terms of the bit length
of the smallest of the two numbers, k and so the complexity
of calculating the next iteration will also be O(k2) and the
resulting lowest common multiple of the three numbers will
be 3k. We need to repeat this iterative process n2 times, and
so the total time complexity will be in the worst case O(n2k2)
and the size of the integer σ will have at most n2k bits.

Step 3 consists of multiplying every element of S by σ

which will require O(n2) operations and the matrix σS will
contain 2n2 elements each of maximum size n2k + k. There-
fore, the bit length of each element of σS is polynomial in the
number of modes n considered.

Step 4 consists of finding a Smith normal form decompo-
sition, which is polynomial in the size of the matrix S and
the number of bits of each element [39], which we know from
Step 3 is also polynomial in the number of modes n. Therefore
Step 4 can be computed in polynomial time.

The remaining steps consist of linear algebra operations
(i.e., matrix inversion, matrix multiplication, and matrix trans-
position) which are all known to be polynomial in the size
of the matrices considered and the bit length of each element
[37].

We can therefore conclude that the entire algorithm for
evaluating the exact PDF of the circuit is polynomial in the
number of modes n. This means that all rational symplectic

operations and all continuous displacements in the circuits of
the form in Fig. 1 are strongly simulatable.

In the following subsection, we will demonstrate that our
result can be extended to include adaptive circuits, when re-
stricting to weak simulation.

B. Adaptive circuits are weakly simulatable

While in the previous subsection we demonstrated that the
class of circuits shown in Fig. 1 are strongly simulatable, we
will now demonstrate that this class can be extended to adap-
tive circuits when restricting to weak simulation. Adaptive
quantum circuits contain intermediate measurements that can
then either be used as parameters in future operations or can be
used in a classical subroutine to decide if or where Gaussian
operations are applied.

Formally, we can express adaptive circuits as beginning
with a unitary operation Û0, acted on the input state, followed
by a series of K operations and measurements of the form [36]

Ûj (x1, . . . , x j )Mij (x1,...,x j−1 )(x j ), (59)

where j ∈ {1, . . . , K}. After applying the initial unitary op-
eration Û0, we measure the mode i1, which gives the result
x1. Next, we act with the operator Û1(x1) which is parameter-
ized by the previous measurement result x1. Following this,
we measure mode i2(x1). The mode which is measured, i.e.,
i2, may also depend on the previous measurement result x1.
This continues up to an arbitrary number K of sequences of
operations and measurements.

We now demonstrate that it is possible to sample from the
circuits we have shown to be simulatable, even when incor-
porating adaptivity, in polynomial time. By the same logic of
Theorem 5 of Ref. [36] we can consider each measurement
as a single run of a reduced circuit. That is, starting with the
first measurement Mi1 (x1), where we measure the i1th mode,
we simulate the Gaussian circuit Û1 acting on the input states,
followed by a measurement on the i1th mode. We know, from
the previous subsection, that we can calculate the PDF of this
circuit. Hence, we can also sample a random measurement
outcome of this circuit.

Next, we simulate a new circuit consisting of the operation

Û1(x1)Û0 (60)

using the measurement outcome of the previous simulation, to
decide the Gaussian operation Û (x1). Measurement of i1 and
i2(x1) will give a PDF of the form

fPD(x1, x2) (61)

for which we can input the simulated measurement outcome
x1 of the previous simulation, in order to get a PDF in terms
of only x2. Again, simulating a single measurement outcome
of x2 allows us to continue this procedure for the rest of the
measurements of the circuit. Therefore the outcome of any
adaptive Gaussian circuit, for which the nonadaptive circuits
are strongly simulatable, is weakly simulatable.

As a complementary result—albeit, not necessary to reach
the conclusions of this paper—we also show, in Appendix E,
that it is also possible to efficiently simulate the outcomes of
adaptive circuits with modulo homodyne measurement.
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In order to prove the result in Sec. V, that the vacuum is
a resource for quantum advantage, we must also show that
adaptive circuits containing GKP-encoded Clifford operations
are efficiently simulatable. In the following subsection, we
demonstrate that this is indeed the case.

C. Clifford circuits are contained in the rational
symplectic operations

We now demonstrate that GKP-encoded Clifford circuits
are contained within the set of operations that we have shown
to be efficiently simulatable. Qubit Clifford circuits consist
of stabilizer qubit states, acted on by Clifford operations,
followed by measurement in a stabilizer basis. Without loss
of generality, we can consider these circuits to be initialized
in 0 eigenstates of the Pauli Ẑ operator, followed by Clifford
operations and measured in the Ẑ basis. Encoding these cir-
cuits into the GKP formalism gives circuits which consist of
states initialized as 0-logical GKP states, acted on by encoded
Clifford operations, followed by homodyne measurement in
the position basis.

The Clifford operations acting over n modes can be de-
scribed in terms of the following set of generators{

eiq̂2
j /2, F̂j, e−iq̂ j p̂k : j, k ∈ {1, . . . , n}}, (62)

where the Fourier transform is defined as

F̂j = eiπ (q̂2
j +p̂2

j )/4. (63)

Note that in the case of the qubit encoding, it is not neces-
sary to introduce phase-space displacements, as the required
displacements can be produced by combinations of the sym-
plectic operations.

Inspecting the symplectic form of each of these opera-
tors provides a description of the symplectic matrices of all
Clifford group operations. Analyzing the generators of single-
mode Clifford group operations we have

F̂ :

(
0 −1

1 0

)
, (64)

eiq̂2
j /2 :

(
1 0

1 1

)
, (65)

e−iq̂ j p̂ j :

⎛
⎜⎜⎜⎜⎝

1 0 0 0

1 1 0 0

0 0 1 −1

0 0 0 1

⎞
⎟⎟⎟⎟⎠. (66)

By considering any combination of these operations we will
clearly obtain only integer matrices.

The set of qubit Clifford operations can therefore be de-
scribed as at least a subset of integer symplectic operations.
Integer symplectic operations are contained within the class
of rational symplectic operations. Therefore, all encoded qubit
Clifford circuits are simulatable by our method.

This concludes our analysis of the types of circuits which
are simulatable with our method. That is, adaptive circuits
consisting of input stabilizer GKP states, rational symplectic
operations including GKP-encoded Clifford operations and

real displacements, and homodyne measurement are all simu-
latable.

In the case of nonadaptive circuits, efficient strong sim-
ulation can be performed, whereby the PDF is evaluated
efficiently. In the following subsection, we will apply this
result to demonstrate the strong simulation of a simple circuit.

D. Simple example

We present an example of calculating the PDF of a simple
circuit. We have specifically chosen a circuit that contains a
vector �t not equal to zero. We consider the circuit

Û = CX F1P2
1 F1, (67)

where P is the phase gate. Note that F1P2
1 F1 = X1 which

means we would expect the action of this operator on two en-
coded qubits states to be CX X1|0GKP〉|0GKP〉 = |1GKP〉|1GKP〉.

We can calculate its effect on the position measurement
modes q̂1 and q̂2 as

Q̂1 = Û †q̂1Û = −q̂1 + 2 p̂1 (68)

and

Q̂2 = Û †q̂2Û = −q̂1 + 2 p̂1 + q̂2, (69)

from which we can inspect

A =
(−1 0

−1 1

)
B =

(
2 0
2 0

)
. (70)

We can explicitly write the matrix S as

S =
(

AT

1
2 BT

)
=

⎛
⎜⎜⎝

−1 −1
0 1
1 1
0 0

⎞
⎟⎟⎠. (71)

We then find the lowest common denominator of all the frac-
tions of S. However, in this case, σ = 1 since we already have
all integers. We can then calculate the Smith decomposition
of σS = S, which is given by

S = V DU (72)

with

V =

⎛
⎜⎜⎝

−1 −1 0 0
0 1 0 0
1 1 1 0
0 0 0 1

⎞
⎟⎟⎠, D =

⎛
⎜⎜⎝

1 0
0 1
0 0
0 0

⎞
⎟⎟⎠,

U =
(

1 0
0 1

)
. (73)

We can also calculate the pseudoinverse of S as

S+ =
(− 1

2 −1 1
2 0

0 1 0 0

)
, (74)

from which we can calculate R as

R = S+V

(
1
0

)
=

(
1 0
0 1

)
(75)

and R−T as

R−T =
(

1 0
0 1

)
. (76)
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FIG. 2. Circuit gadget implementing K̂EC(t). Mode 1 is the top
mode, which takes an input state and outputs a modified state. Modes
2 and 3 below are auxiliary modes which have a fixed input and once
measured can be discarded. We use the notation of Ref. [40] whereby
the controlled gate with the symbol  denotes the inverse of the SUM
gate, namely, eiq̂3 p̂1 . The measurement outcomes are denoted as tp

and tq.

Furthermore we can find T as

T = 1

2
RT ABT R

= 1

2

(
1 0
0 1

)(−1 0
−1 1

)(
2 2
0 0

)(
1 0
0 1

)

=
(−1 −1

−1 −1

)
, (77)

which gives the vector �t of the diagonal elements of T as

�t = (−1 − 1)T . (78)

This allows us to express the PDF, which is given by

fPD(�x) =
∑
�m∈Zn

δ(�x − √
π (RT )−1(�t + 2 �m)). (79)

The PDF can be expressed in terms of each vector element of
�x as

fPD(�x) =
∑

m1,m2∈Z
δ(x1 + √

π − 2
√

πm1)

× δ(x2 + √
π − 2

√
πm2). (80)

This is equivalent to measuring |1GKP〉 in both modes, as we
would expect, given the encoded circuit.

The results from this section provide us with the tools
required to conclude the main result given in the following
section, i.e., that the vacuum is the resource for quantum
advantage in the context of this otherwise simulatable model.

V. VACUUM YIELDS QUANTUM ADVANTAGE

We now derive a notable consequence of the findings in
the previous section, when combined with the results reported
in Ref. [14]. There the circuit depicted in Fig. 2 is used as
the central resource to achieve magic-state distillation, and
in turn fault-tolerant universality of an otherwise simulatable
(GKP-encoded) stabilizer computation. This circuit is com-
posed of input GKP states |0GKP〉, an additional CV input
state (possibly the vacuum), GKP-encoded Clifford opera-
tions, homodyne measurements, displacements, and classical
feed-forward of measurement results (Fig. 2). Such a cir-
cuit gadget has the effect to implement the Kraus operator
K̂EC(t) = �̂GKPV̂ (−t), where V̂ (−t) = eitq p̂e−itpq̂ and �̂GKP is
the projection operator onto the GKP subspace. This has the

effect of “error correcting” the additional input state by pro-
jecting it onto the computational subspace of the GKP code.
When the additional input state is the vacuum, this results in
GKP-encoded magic states, except for a zero-measure set of
the measurement outcomes tq, tp.

Performing this gadget across multiple modes with mul-
tiple additional vacuum states will provide a number of
different states which each have a high fidelity to a magic
H-type state.

This gadget is adaptive, and, once the auxiliary modes are
measured, they can be discarded. Within the gadget, the mea-
surement values are used to shift the input state in position and
momentum. Furthermore, the measurement outcomes give an
indication of which H-type state the output state is closest to.
We can use these measurement results to decide a Gaussian
operation which shifts the state close to the target |HGKP〉 state.

If we have k copies of this gadget we will have produced
k different states which each has a high fidelity to the |HGKP〉
state. We can then apply the twirling operation to each state,
which for qubits is a probabilistic Clifford operation (hence
implementable by a probabilistic Gaussian operation), which
projects each state onto the H axis of the Bloch sphere. These
k states are nonidentical and so require adaptive depolarizing
operations, which are again probabilistic Clifford operations,
to make all these k states identical [41]. These adaptive prob-
abilistic Clifford operations will adjust each state to match the
state with the lowest fidelity to the target H state. These opera-
tions are adaptive since they require knowledge of each state,
which can be constructed from the values of tq, tp measured
for each gadget.

Now we have k identical copies of states which have fi-
delity above the threshold for magic state distillation. The
magic state distillation algorithm [5,6] involves Clifford oper-
ations, adaptive Clifford operations, and probabilistic Clifford
operations. Therefore, the total algorithm to produce a H-type
state from the vacuum and GKP states requires the following
resources: input GKP states, input vacuum states, adaptive
Clifford operations, probabilistic Clifford operations, and ho-
modyne measurements.

Now, consider the same procedure where instead of the
vacuum state as the additional input, we have only 0-logical
(or another stabilizer) GKP states.

We know from this work that circuits involving GKP states,
adaptive Clifford operations, probabilistic Clifford operations,
and homodyne measurements are weakly simulatable. Hence,
the concatenation of all these operations, including the gadget
in Fig. 2, belongs to the class of circuits that we have shown
to be classically efficiently simulatable, if the supply of initial
vacua is not included at the input of the circuit. Therefore, in
the context of the model of Ref. [14], ideal stabilizer GKP
states, homodyne measurement, displacements, and classical
feed-forward of measurement outcomes are to be regarded as
free operations, in the sense that they provide a simulatable
model.

However, if we add the vacuum to this otherwise sim-
ulatable model, we find that it is promoted to universal
quantum computation. We can thus conclude that the vacuum
can be considered a resource for quantum advantage in this
model. Note that this conclusion was not possible to draw
from Ref. [14] solely, because the model considered, even
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FIG. 3. The error-correcting circuit from Fig. 2 implementing
K̂EC(t), acting on an additional input nonideal GKP state parame-
terized by �, κ . Note that the control gate with the symbol  at the
target is the inverse of the SUM gate, namely, eiq̂3 p̂1 [40].

excluding the additional vacuum state, was not proven to be
classically efficiently simulatable therein.

The intuition behind this result is that, as already noticed
in Ref. [14], the interaction with the vacuum through an
entangling operation takes the GKP states outside of the com-
putational subspace spanned by the GKP logical codewords.
Measurements followed by feed-forward and displacement
project the unmeasured system back onto the GKP-encoded
computational subspace, now in a magic state (apart from
measurement outcomes which represent a zero-measure set in
the set of all possible real measurement outcomes).

In the following section, we will extend this argument to
demonstrate that realistic GKP states can also be considered a
resource for quantum advantage in the context of this model.

VI. REALISTIC GKP STATES ARE A RESOURCE
FOR QUANTUM ADVANTAGE

Following the result of the previous section, we now
demonstrate that realistic GKP states can also be considered a
resource for quantum advantage. Using a realistic (i.e., finitely
squeezed) GKP state as the additional input state of the gadget
in Fig. 1, instead of the vacuum, also produces a magic state
with fixed probability, dependent on the squeezing of the
realistic GKP state.

We now explicitly compute the outcome of the circuit in
Fig. 3. Here the additional input state, to be combined with
ideal GKP states, is not the vacuum state, but instead a GKP
state with variable squeezing. Note that the case of vacuum
is reobtained with a very good approximation by taking the
limit of no squeezing in the GKP state. We will then compute
the fidelity of the output state with the closest magic |H〉-type
state.

The nonideal GKP state can be defined as [12]

ψ0,L(�,κ )(x) = 〈
x
∣∣0�,κ

GKP

〉
× ∝

∑
s∈Z

e−2κ2s2πe−(x−2s
√

π )2/2�2
. (81)

The output of the circuit of Fig. 3 will be a state of the form

|ψ〉 ∝ �̂GKPeitq p̂e−itpq̂
∣∣0�,κ

GKP

〉
, (82)

which can be expressed in terms of the coefficients

c0 = 〈0GKP|eitq p̂e−itpq̂
∣∣0�,κ

GKP

〉
,

c1 = 〈1GKP|eitq p̂e−itpq̂
∣∣0�,κ

GKP

〉
, (83)

which can be normalized as

c̄0 = c0√
c2

0 + c2
1

,

c̄1 = c1√
c2

0 + c2
1

. (84)

The fidelity of this state with each of the |H〉-type states can
be calculated in terms of these normalized coefficients. That
is, for each |H〉-type state |H〉 = a0|0〉 + a1|1〉 we calculate
the fidelity

F (|H〉, |ψ〉) =
∣∣∣∣∣〈H | 1√

c2
0 + c2

1

(c0|0〉 + c1|1〉)

∣∣∣∣∣
2

= |a0c0 + a1c1|2
|c2

0 + c2
1|

. (85)

The resulting fidelity of the output state, given the input GKP
state with various levels of squeezing �, is shown in Fig. 4.
The figure ordering should then be maintained as it is now.

The PDF of the measurement outcomes can be calculated,
as in [14], as fPD(t) ∝ c2

0 + c2
1, which is then normalized over

a region periodic in 2
√

π in both tq and tp. The probability of
obtaining a state with fidelity higher than a certain threshold
F ∗ can then be calculated numerically by calculating the fi-
delities for each value of tq, tp and integrating over the fPD(t)
for those values at which F > F∗.

In Fig. 5 we plot the probability of obtaining a magic
|H〉-type state in the output of the circuit in Fig. 3 above a
given threshold fidelity, for different values of the squeezing
parameter �.

We see that the squeezing parameter in the auxiliary state
of the circuit in Fig. 3 inversely quantifies the resourcefulness
of the auxiliary state.

This result can be understood by interpreting the vacuum as
the zero-squeezing limit of a GKP state. The zero-squeezing
limit corresponds to setting � = κ = 1. In this case, we obtain
from the expression of the finitely squeezed GKP state in the
position representation∣∣0�,κ

GKP

〉 ∝
∑
s∈Z

∫
dqe−2s2πe−(q−2s

√
π )2/2|q〉. (86)

Then, calculating the fidelity with the vacuum state, |∅〉 =
π−1/4

∫
dqe−q2/2|q〉 gives∣∣〈∅∣∣0�,κ

GKP

〉∣∣2 = 0.999993. (87)

This high fidelity value explains in particular why, using the
zero-squeezing limit of a GKP state, we obtain the plot in
Fig. 4, third panel, that is indistinguishable for the naked eye
from that of Ref. [14] obtained using input vacuum.

This allows us to interpret the value � as interpolating from
a free state, the ideal 0-logical GKP state, corresponding to
infinite squeezing, and with which no magic state can be gen-
erated, to a maximally resourceful state, namely, the vacuum,
corresponding to zero squeezing.

We can therefore conclude that in the context of this
model, realistic GKP states are also resourceful for quantum
advantage. The realistic GKP states required for magic state
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FIG. 4. Fidelity of the output state of the error correcting circuit in Fig. 3 with the closest H -type magic state, for the various possible
measurement outcomes tq and tp. Note that in the limit � → 1 the finitely squeezed GKP state at the input in Fig. 3 is approximately equivalent
to the vacuum state, yielding agreement of panel 3 with Ref. [14].

distillation can have any noninfinite squeezing; in other words,
there is no threshold required to distill a magic state.

VII. CONCLUSIONS

First, we have demonstrated that circuits with input GKP
states acted on with arbitrary displacements and rational [42]
symplectic operations, and measured with homodyne detec-
tion are classically efficiently simulatable. This result extends
the classes of circuits previously known to be simulatable and
can be understood as a CV analog to the Gottesman-Knill the-
orem [2–4]. The Gottesman-Knill theorem provides a method
to simulate circuits involving qubits initialized in ideal input
qubit stabilizer states acted on by Clifford operations and
measured in the computational basis. Meanwhile, our result
provides a method to simulate ideal GKP states acted on by
Gaussian operations and measured with homodyne detection.

FIG. 5. Probability of producing, as output of the circuit in Fig. 3,
a magic state |ψ〉 with a given fidelity F = |〈H |ψ〉|2 to the nearest
target magic state |H〉 when the additional input state is a GKP state
with squeezing level � = κ . Note that in the other modes we still
assume ideal GKP states in logical state 0. Also note that � → 1
is approximately equivalent to the vacuum state. F ∗ = 1

2 (1 + 1√
2

) ≈
0.8536 is the threshold for magic state distillation [6,14].

Second, this result in combination to those of Ref. [14]
leads to the counterintuitive interpretation of the vacuum, or
realistic GKP states with any finite squeezing, as a resource
for universality. Here we can draw an analogy to DV magic
state distillation [5], where it is known that “noisy” pure states
that are close to (but not exactly) the points corresponding to
the stabilizer states on the Bloch sphere act as a resource for
universal QC [6]. Similarly, in the circuits we have considered,
introducing noise in the form of vacuum or realistic GKP
states promotes the circuit class we consider to universality
by allowing one to produce and distill magic states.

The question of whether realistic GKP states in all modes
(possibly with different squeezing levels), combined with
Gaussian operations, yield a simulatable or universal model is
still open. Our analysis in Sec. VI, showing that a combination
of ideal and realistic GKP states yields a universal model, can
be seen as a first attempt to provide an answer to this question.
Therein, squeezing quantifies inversely the resourcefulness of
finitely squeezed GKP states, when these are combined with
infinitely squeezed GKP states, in terms of their ability of
producing output GKP magic states. This leads us to spec-
ulate that, even in a more realistic model with input highly
squeezed GKP states, the vacuum will retain its character as
a resource, boosting the magic content at the output of the
circuit.

Our work also opens the question as to whether the
methodology introduced to compute the PDF, based on im-
posing stabilizer conditions, can be also used for other
types of circuits, for which input states admit a stabilizer
representation.
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APPENDIX A: THE SET OF RATIONAL MATRICES
IS DENSE IN THE REALS

In this Appendix, we will prove that Sp(2n,Q) is dense on
Sp(2n,R). This is equivalent [43] to showing that the closure
of the rational symplectic group cl(Sp(2n,Q)) is the real
symplectic group Sp(2n,R), i.e., cl(Sp(2n,Q)) = Sp(2n,R).

We provide an overview of the steps of this proof taken
from Ref. [44]. First note that the symplectic group defined
over any field Sp(2n,F ) is generated by the set of symplectic
transvections, HF [45]. This set consists of maps ξα,�u with α ∈
F and �u ∈ F2, which transforms any arbitrary vector �v ∈ F2n

as

ξα,�u(�v) = �v + αB(�v, �u)�u, (A1)

where B is the alternating bilinear form [44,46].
The set of generators of the rational symplectic group can

therefore be written as

HQ = {ξα,�u : α ∈ Q, �u ∈ Q2n}, (A2)

while the set of generators of the real symplectic group can be
written as

HR = {ξα,�u : α ∈ R, �u ∈ R2n}. (A3)

For any chosen generator in the set of generators for the real
symplectic group, ξα,�u ∈ HR, it is possible to find an arbitrar-
ily close generator from the set of generators of the rational
symplectic group ξα′,�u′ ∈ HQ. We can demonstrate this by
evaluating the norm of the difference of these generators [44]
and showing that it is possible to find for any ξα,�u and ξα′,�u′ a
norm such that

||ξα′,�u′ (�v) − ξα,�u(�v)|| =||α′B(�v, �u′)�u′ − αB(�v, �u)�u|| � ε.

(A4)

Choosing �u′ = �u + �uε and α′ = α + αε we can make use of
the triangle inequality [47] to find

||ξα′,�u′ (�v) − ξα,�u(�v)||
= ||α′B(�v, �u + �uε )(�u + �uε ) − αB(�v, �u)�u||
= ||(α + αε )(B(�v, �uε ) + B(�v, �u))(�u + �uε ) − αB(�v, �u)�u||
� |αB(�v, �uε )| · ||�u|| + |αB(�v, �uε )| · ||�uε ||

+ |αB(�v, �u)| · ||�uε || + |αεB(�v, �uε )| · ||�u||
+ |αεB(�v, �u)| · ||�u|| + |αεB(�v, �uε )| · ||�uε ||
+ |αεB(�v, �u)| · ||�uε ||. (A5)

Note that we can write �uε = εu�u1ε where �u1ε is the unit vector
containing the direction of �uε , |�u1ε | = 1, and the magnitude
ε�u ∈ R is small, ε�u � 1.

This allows us to write

B(�v, �uε ) = εuB
(
�v, �u1ε

)
. (A6)

Therefore, for any chosen 7ε ∈ R, we can ensure that the
distance is less than 7ε by ensuring each term is smaller
than ε, ∣∣αB

(
�v, εu�u1ε

)∣∣ · ||�u|| � ε, (A7)∣∣αB
(
�v, εu�u1ε

)∣∣ · ||εu�u1ε || � ε, (A8)

|αB(�v, �u)| · ∣∣∣∣εu�u1ε
∣∣∣∣ � ε, (A9)∣∣αεB

(
�v, εu�u1ε

)∣∣ · ||�u|| � ε, (A10)

|αεB(�v, �u)| · ||�u|| � ε, (A11)∣∣αεB
(
�v, εu�u1ε

)∣∣ · ∣∣∣∣εu�u1ε
∣∣∣∣ � ε, (A12)

|αεB(�v, �u)| · ∣∣∣∣εu�u1ε
∣∣∣∣ � ε, (A13)

which is equivalent to∣∣εuαB
(
�v, �u1ε

)∣∣ · ||�u|| � ε, (A14)∣∣αεuB
(
�v, �u1ε

)∣∣ · εu � ε, (A15)

|αB(�v, �u)|εu � ε, (A16)∣∣αεεuB
(
�v, �u1ε

)∣∣ · ||�u|| � ε, (A17)

|αεB(�v, �u)| · ||�u|| � ε, (A18)∣∣αεεuB
(
�v, �u1ε

)∣∣ · εu � ε, (A19)

|αεB(�v, �u)| · εu � ε. (A20)

These can be rearranged into conditions

εu � ε/
[∣∣αB

(
�v, �u1ε

)∣∣ · ||�u||], (A21)

ε2
u � ε/

∣∣αB
(
�v, �u1ε

)∣∣, (A22)

εu � ε/|αB(�v, �u)|, (A23)

αεεu � ε/
[∣∣B(

�v, �u1ε
)∣∣ · ||�u||], (A24)

αε � ε/[|B(�v, �u)| · ||�u||], (A25)

αεε
2
u � ε/

∣∣B(
�v, �u1ε

)∣∣, (A26)

αεεu � ε/|B(�v, �u)| (A27)

and can be further simplified to the conditions

εu � ε/
[∣∣αB

(
�v, �u1ε

)∣∣ · ||�u||], (A28)

εu �
√

ε/
∣∣αB

(
�v, �u1ε

)∣∣, (A29)

εu � ε/|αB(�v, �u)|, (A30)

αε � 1/α, (A31)

αε � ε/[|B(�v, �u)| · ||�u||]. (A32)

For any α, �u, �v it is always possible to find α′, �u′ for which
αε, εu ∈ R are arbitrarily close to 0 such that all these inequal-
ities hold. This follows from the fact that the rational numbers
are dense on the reals [48].

We can therefore say that HQ is dense on the set HR, which
can be expressed in terms of the closure of the set of rational
generators cl(HQ) = HR.

Furthermore, we know that HQ ⊆ Sp(2n,Q), which
implies that [43] cl(HQ) ⊆ cl(Sp(2n,Q)) and hence the
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generators of HR are all members of the closure of the ratio-
nal symplectic group; i.e., HR ⊆ cl(Sp(2n,Q)). Since all the
generators of Sp(2n,R) are members of cl(Sp(2n,Q)), then
Sp(2n,R) ⊆ cl(Sp(2n,Q)).

Finally, using the fact that Sp(2n,Q) ⊆ Sp(2n,R),
we have cl(Sp(2n,Q)) ⊆ Sp(2n,R). This means that
cl(Sp(2n,Q)) = Sp(2n,R) and the symplectic group over the
rationals is dense on the symplectic group over the reals.

APPENDIX B: SOLUTION TO THE CONSTRAINED
LINEAR EQUATION

In this Appendix, we solve the constrained equation intro-
duced in Sec. IV, which provides the solution for the set of
allowed points of the PDF. Specifically, we find the solution
of Eq. (30) given the constraint of Eq. (27):

√
π�lT �x − 1

2π�lT ABT �l − √
π�l · �c = 0 mod 2π,

s.t.
(AT �l )k = 0 mod 1,

(BT �l )k = 0 mod 2.
(B1)

To solve this equation, we begin by identifying a method to
evaluate the possible values of the vector �l .

First, in Sec. B 1, we express the constraint as an overdeter-
mined system of linear equations, that has solutions dependent
on a projection matrix 1 − SS+. In Sec. B 2 we demonstrate
that this projection matrix is rational, given that the sym-
plectic matrix is rational. Together, these results allow us to
provide the solutions to �l in Sec. B 3. Then in Sec. B 4 we
demonstrate that given the solutions of �l , we can express the
constrained equation in Eq. (B1) as set of unconstrained linear
equations. Finally, in Sec. B 5 we provide the solution of these
unconstrained equations, which are also the solutions to the
constrained equation given in Eq. (B1).

1. Expressing the constraint as a linear system of equations

We first identify a method to express the constraining terms
defined in Eq. (B1) as a system of overdetermined linear
equations. We demonstrate that the solutions of �l can be
expressed in terms of the pseudoinverse of a matrix S, which
is dependent on A and B, and a new vector �b, which will be
solved in the following subsections. To begin, we combine the
constraining terms into one equation of the form

(
AT

BT

)
�l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 mod 1
...

0 mod 1
0 mod 2

...

0 mod 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B2)

We now introduce a matrix S which is defined in terms of the
two matrices A and B as

S =
(

AT

1
2 BT

)
=

(
1 0
0 1

2

)
S̄, (B3)

where we also introduce the matrix S̄, which is the transpose
of the first n rows of the symplectic matrix M,

S̄ =
(

AT

BT

)
. (B4)

We introduce the vector �b which is a 2n-vector of integers.
This allows us to express the constraint on �l as

S�l = �b. (B5)

This gives an overdetermined system of linear equations and
does not necessarily always have a solution. Whether the
system has solutions or not depends on which integers are
chosen in �b.

The columns of S are linearly independent. This can be
seen by considering the fact that the determinant of the sym-
plectic matrix is det M = 1 which means that it has linearly
independent rows [49]. Hence, the matrix S̄ will have linearly
independent columns. Furthermore, the matrix which converts
S̄ to S is a full rank 2n × 2n matrix. Hence, the rank of S will
be the same as the rank of S̄; i.e., it will have rank n which
means the columns must be linearly independent [34,50].

We can express the solutions of �l in terms of the Moore-
Penrose pseudoinverse [29–31], which is a generalization of
the matrix inverse. For any matrix S there exists a pseudoin-
verse S+ even if the matrix does not have a true inverse.
A 2n × n rectangular matrix S with linearly independent
columns has rank n [50]. The pseudoinverse S+ is defined
such that S+S = 1. The pseudoinverse of S can be found in
terms of the pseudoinverse of the rank n matrix S̄ as [51]

S+ = S̄+
(

1 0
0 1/2

)+
= S̄+

(
1 0
0 2

)
, (B6)

where we have used the fact that the pseudoinverse of a
nonsingular matrix is equal to its inverse [31].

This gives potential solutions of �l in the form

�l = S+�b, (B7)

but if this system is unsolvable for a given �b then the pseu-
doinverse will not provide a valid solution to �l . For it to be
valid it must satisfy the original equation [31]

S�l = SS+�b = �b, (B8)

which gives the constraint on the integers �b as

SS+�b = �b. (B9)

We can write this constraint as

(SS+ − 1)�b = 0 ⇒ (1 − SS+)�b = 0. (B10)

Finding the values of �b which satisfy this equation also
informs us of all the possible choices of �l which satisfy
the constraining equation. This is equivalent to finding the
eigenvectors of the projection matrix 1 − SS+ which have
eigenvalues equal to zero. To solve this equation, we will
demonstrate that the projection matrix 1 − SS+ has a conve-
nient eigenvalue decomposition, provided that it is a rational
matrix. We first prove that this matrix is rational in the follow-
ing section, given that the symplectic matrix is rational, and
then we will proceed to find its eigenvectors.
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2. The projector is rational

In this subsection, we will analyze the 2n × 2n projection
matrix 1 − SS+ and demonstrate that it contains all rational
elements. We then use the expression to find the pseudoinverse
of a matrix with linearly independent columns, to identify the
pseudoinverse of S̄ as [31]

S̄+ = (S̄T S̄)−1S̄T . (B11)

Note that 1 − SS+ will be rational if SS+ is rational. In-
specting

S̄+ = (AAT + BBT )−1(A B), (B12)

we can see that as long as A, B are rational, the matrix (AAT +
BBT ) will be rational. The inverse of a rational matrix will
also be rational, and so S̄+ will also be rational. Therefore we
know S+ is rational. This also implies that 1 − SS+ is a matrix
of rational elements.

3. Evaluation of the allowed parameters
provided by the constraint

As shown in the previous subsection, the matrix 1 − SS+
consists of all rational elements. In this subsection, we will
demonstrate that it has an eigenvector decomposition of the
form

1 − SS+ = V

(
0 0
0 1

)
V −1, (B13)

where V is a unimodular matrix, also known as a unit ma-
trix [31]. The definition of a unimodular matrix is one that
contains all integers and has determinant 1 [32]. This decom-
position then be used to find the solutions of �b in Eq. (B10)
and therefore also �l in Eq. (B7).

To find such V for a given matrix 1 − SS+ we can first
find the Smith decomposition of the matrix σS. We use the
integer σ to multiply every element of matrix S to an integer.
The integer σ can be found to be the lowest common multiple
of all of the denominators of S. The Smith decomposition is
given by

σS = V DU ⇒ S = σ−1V DU, (B14)

where V is a 2n × 2n unimodular matrix, U is a n × n uni-
modular matrix. D is a diagonal 2n × n matrix which has the
same rank as S, which has rank n. The Smith decomposition
algorithm will order the diagonal elements of D in descending
order. We can therefore assume that D has n nonzero entries
along the diagonal. The remaining entries in the matrix D will
be 0.

Furthermore, we can identify the pseudoinverse of S as

S+ = σU −1D+V −1, (B15)

where we have used that the pseudoinverse of the product of
two matrices AB is (AB)+ = B+A+ [52]. This gives a conve-
nient expression for SS+

SS+ = V DD+V −1 (B16)

and the projector

1 − SS+ = 1 − V DD+V −1 = V (1 − DD+)V −1. (B17)

As D is a matrix of integer entries along the diagonal, its
pseudoinverse, D+, can be found by taking the inverse of each
nonzero element along the diagonal and then transposing [31].
Therefore we can find DD+ by inspecting its form,⎛

⎜⎜⎜⎜⎜⎜⎜⎝

D1,1 . . . 0

0 . . . 0
0 . . . Dn,n

0 . . . 0

0
... 0

0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝D−1

1,1 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0
0 . . . D−1

n,n 0 . . . 0

⎞
⎟⎠,

(B18)

which means that

DD+ =
(
1 0
0 0

)
. (B19)

From this, we can immediately identify

1 − DD+ =
(

0 0
0 1

)
, (B20)

and we can express the projector as

1 − SS+ = 1 − V DD+V −1 = V

(
0 0
0 1

)
V −1 (B21)

as we had anticipated. This form is an eigenvalue decom-
position of the matrix 1 − SS+. The integer eigenvectors of
1 − SS+ are given as the columns of V . The first n columns
correspond to eigenvectors with eigenvalue 0 and the remain-
ing n columns correspond to eigenvectors with eigenvalue
1. We can therefore construct any integer eigenvector with
eigenvalue 0 as [34]

�b = V

(
1
0

)
�m. (B22)

Note that in general the decomposition matrices U,V of
the Smith decomposition are not necessarily unique. However,
the complete set of eigenvectors �b will be the same regardless
of which decomposition matrix V is found [34].

The allowed values of �l can therefore be calculated in terms
of the values of �b using Eq. (B7), which can be expressed in
terms of the n-vector �m as

�l = S+�b = S+V

(
1
0

)
�m = R �m, (B23)

where we have introduced the n × n matrix R as

R = S+V

(
1
0

)
. (B24)

Given these solutions for the vector �l , we can solve the con-
strained equation, given in Eq. (B1), to find the allowed values
of �x.

4. Expressing the constrained equation
as a set of linear equations

We then would like to solve the equation
√

π�lT �x − 1
2π�lT ABT �l − √

π�l · �c = 0 mod 2π, (B25)
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for which we can, without loss of generality, set �c = 0 (be-
cause we can consider a different �c to be a change of variables
in �x) and it becomes

�lT

(
1√
π

�x − 1

2
ABT �l

)
= 0 mod 2. (B26)

We consider the term

1
2
�lT ABT �l = �mT T �m, (B27)

where we have defined the n × n matrix

T = 1

2
RT ABT R

= 1

2
(1 0)V T (S+)T ABT S+V

(
1
0

)
. (B28)

The matrix T will always give integer values. For proof of this
consider the following. We know from Eq. (B9) and Eq. (B22)
that

SS+V

(
1
0

)
�m = V

(
1
0

)
�m, (B29)

which must be true for all integer vectors �m. As a consequence
we have

SS+V

(
1
0

)
= V

(
1
0

)
⇒

(
AT

1
2 BT

)
S+V

(
1
0

)
= V

(
1
0

)
.

(B30)

We know that

S+V

(
1
0

)
(B31)

is an n × n matrix, so we must have

AT S+V

(
1
0

)
= V (11),

1

2
BT S+V

(
1
0

)
= V (21). (B32)

This means that from Eq. (B28) the matrix T can be succinctly
written as

T =V (11)T V (21). (B33)

The matrix V is unimodular meaning that it consists of all
integer elements. The block matrices V (21),V (11) must also be
integer and the multiplication of two integer matrices is also
integer. Hence, T is an integer matrix.

We can now solve Eq. (B26) which constrains the values of
�x, which can be written in terms of Eq. (B23) and Eq. (B27)
as

1√
π

�mT RT �x − �mT T �m = 0 mod 2. (B34)

This must be true for any chosen �m. We introduce the length-
n basis vector �e( j) which has zero in all elements, except at
element j for which it is 1,

�e( j) = (01, . . . , 0 j−1, 1 j, 0 j+1, . . . , 0n)T . (B35)

Choosing �m = mj�e( j), for any integer mj ∈ Z, gives an equa-
tion of the form

1√
π

mj (R
T �x) j − m2

j Tj j = 0 mod 2. (B36)

The vector �m = mj�e( j) will produce constraints for different
choices of mj ∈ {1, 2, 3, . . . } as

1√
π

(RT �x) j − Tj j = 0 mod 2, (B37)

2
1√
π

(RT �x) j − 4Tj j = 0 mod 2, (B38)

3
1√
π

(RT �x) j − 9Tj j = 0 mod 2, (B39)

continuing for all integers mj . We know that Tj j is an integer
and so we inspect two cases. In the first case we consider when
Tj j is an even integer. These constraints can then always be
simplified to

mj
1√
π

(RT �x) j = 0 mod 2. (B40)

Then using the fact that this must hold for any choice of mj

we identify that any integer mj multiplied by 1√
π

(RT �x) j is an
even integer. This means that for even Tj j we have

1√
π

(RT �x) j = 0 mod 2. (B41)

In the second case, for which Tj j is odd and so
Tj, j mod 2 = 1, the constraints can be simplified to

1√
π

(RT �x) j − 1 = 0 mod 2, (B42)

2
1√
π

(RT �x) j = 0 mod 2, (B43)

3
1√
π

(RT �x) j − 1 = 0 mod 2, (B44)

which will be satisfied for all choices of mj if and only if
1√
π

(RT �x) j is an odd number. Hence, for odd Tj j we can write

1√
π

(RT �x) j = 1 mod 2. (B45)

Combining these two cases we can express the two relations,
which depend on whether Tj j is odd, i.e., Tj j mod 2 = 1 or
even, i.e., Tj j mod 2 = 0, as

1√
π

(RT �x) j = Tj, j mod 2. (B46)

We can also attempt to select for combinations of these ba-
sis vectors. For example, we can choose �m = mi�e(i) + mj �e( j)

for different integers mi, mj ∈ Z. These will give constraints
of the form

1√
π

mi(R
T �x)i + 1√

π
mj (R

T �x) j − m2
j Tj j

− m2
i Tii − 2mimjTi j = 0 mod 2, (B47)

but because we know that every element Ti, j is an integer, this
is equivalent to linear combinations of the constraints with
a single mj �= 0. We already know that the constraints with

062414-15



CALCLUTH, FERRARO, AND FERRINI PHYSICAL REVIEW A 107, 062414 (2023)

single mj �= 0 are satisfied, and so adding combinations of
such constraints does not constrain the allowed values of �x
any further.

A valid solution can be found by solving

1√
π

RT �x = �t mod 2, (B48)

where �t is an integer vector of the diagonal elements of T .
Note that RT is a n × n matrix given by

RT = (1 0)V T (S+)T . (B49)

This system of equations will have infinite solutions. How-
ever, if RT is invertible, then the system of equations can be
solved by applying the inverse of RT to the left of both sides
of the equation.

5. Solutions of the constrained equation

To solve the set of linear equations we need to find the
inverse of R. We first claim that the pseudoinverse is the
inverse of R. R is given in Eq. (B24) so its pseudoinverse is

R+ = (1 0)V −1S. (B50)

Now we can check that R+R = 1 and RR+ = 1. If this is
true then we will know that R is invertible and R+ = R−1.
First, we see that

R+R = (1 0)V −1SS+V

(
1
0

)
(B51)

and use Eq. (B16) and Eq. (B20) to write

R+R = (1 0)DD+
(

0
1

)

= (1 0)

(
1 0
0 0

)(
1
0

)

= (1 0)

(
1
0

)

= 1. (B52)

Furthermore we can check RR+ is equal to the identity

RR+ = S+V

(
1
0

)
(1 0)V −1S

= S+V

(
1 0
0 0

)
V −1S. (B53)

This time we replace the matrix with DD+, using Eq. (B16) to
find

RR+ = S+V DD+V −1S

= S+SS+S

= 1, (B54)

where we have used that S+S = 1.
This means that RR+ = R+R = 1 which implies that

R−1 = R+. Hence, we can write the inverse of R as

R−1 = (1 0)V −1S (B55)

and

R−T = ST V −T

(
1
0

)
. (B56)

Finally, we can invert Eq. (B48) to identify the solutions to
the constrained linear equation as

�x = √
πR−T (�t + 2 �m). (B57)

APPENDIX C: FURTHER EXTENDING THE CLASS
OF SIMULATABLE OPERATIONS

In this Appendix, we will demonstrate that the class
of symplectic operations simulatable using our method can
be extended further than the rational symplectic matrices.
Specifically, there are certain instances whereby the projec-
tor 1 − SS+, given in Eq. (B10), is rational even when the
symplectic matrix is irrational.

To understand why, consider that any symplectic matrix
can be expressed as [53](

A B
C D

)
=

(
A0 0

C0
(
AT

0

)−1

)(
X Y

−Y X

)
, (C1)

where the second factor is an orthogonal symplectic matrix.
Using A = A0X and B = A0Y we can write Eq. (B4) as

S̄ =
(

X T AT
0

Y T AT
0

)
. (C2)

We can also express its pseudoinverse, given in Eq. (B11), as

S̄+ = (
A0XX T AT

0 + A0YY T AT
0

)−1
(A0X A0Y )

= (
A0AT

0

)−1
(A0X A0Y ). (C3)

The rationality of the projection matrix 1 − SS+ depends on
the rationality of this matrix, which can be written as

S̄S̄+ =
(

X T AT
0

Y T AT
0

)(
A0AT

0

)−1
(A0X A0Y )

=
(

X T AT
0

Y T AT
0

)(
A−T

0 A−1
0

)
(A0X A0Y )

=
(

X T X X T Y

Y T X Y T Y

)
. (C4)

Therefore 1 − SS+ will be rational as long as each of the
blocks of this matrix are rational. That is, the projector will
be rational if all the elements of the matrices X T X,Y T X are
rational.

The projector can therefore in certain cases still be rational
when the symplectic matrix is irrational. Namely, the matrix
A0 can be irrational while the projection matrix remains ratio-
nal.

There are also certain cases where the individual matrices
X,Y can be irrational while the projection matrix is rational.
For example, consider the case that

X = diag(cos(�θ )), (C5)

Y = diag(sin(�θ )). (C6)
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We can rewrite these diagonal block matrices in terms of the
tangent of the angles

(X T X ) j j = cos2(θ j ) = 1

tan2(θ j ) + 1
, (C7)

(X T Y ) j j = cos(θ j )sin(θ j ) = tan(θ j )

1 + tan2(θ j )
, (C8)

from which we see that the projection matrix will be rational
whenever tan(θ j ) ∈ Q for all j.

Provided that the projection matrix in Eq. (B10) is rational,
it is possible to identify nonzero points of the PDF, by virtue of
Appendix B 3. The constraint of rational symplectic matrices
can therefore be relaxed. However, for simplicity, we choose
to restrict to rational symplectic matrices in this work.

APPENDIX D: RELATIONSHIPS BETWEEN THE CLASSES
OF SIMULATABLE OPERATIONS

The class of operations which are shown to be efficiently
simulatable in our work can be denoted by D, which con-

tains all operations deemed simulatable in Appendix C. For
simplicity, throughout this work, we chose to denote the class
of simulatable operations as those which belong to the class
HW(n)[Sp(2n,Q)], i.e., those for which the symplectic ma-
trix is rational.

This class of operations HW(n)[Sp(2n,Q)] contains, in
particular, all GKP Clifford operations for encoded qudits of
any dimension, as was proven in Sec. IV C.

We now recall and compare classes of operations that we
demonstrated to be simulatable using different techniques in
our previous work, Ref. [20], with those considered here. We
previously demonstrated that circuits with input GKP states
acted on by operations selected from a class B and measured
in all modes with homodyne measurement are simulatable.
This class was defined as

B = HW(n) × DSp(2n,R) (D1)

where

DSp(2n,R) =
{(

A0 0

C0
(
AT

0

)−1

)(
diag(cos �θ ) diag(sin �θ )

−diag(sin �θ ) diag(cos �θ )

)
: det A0 �= 0, AT

0 = A0,CT
0 A0 = AT

0 C0, θ j ∈ �

}
(D2)

and

� = {θ ∈ R : cot θ = u/v ∈ Q(2)} ∪ {0, π}. (D3)

The class B contains operations where the symplectic ma-
trix can contain irrational elements, e.g., when θ j = π/4,
despite satisfying the condition that cot θ j ∈ Q(2). This im-
plies that B �⊂ HW(n) × Sp(2n,Q).

In Appendix C we demonstrated that it is possible to ex-
tend the class of simulatable operations beyond the group
HW(n) × Sp(2n,Q), to a larger set which we denote D, and
we show that B ⊂ D. This set contains all displacements
HW(n) and all symplectic matrices such that X T X and X T Y
are rational.

In our previous work [20] we demonstrated that is possible
to simulate another class A which consists of symplectic
operations whereby the top row of the symplectic matrix has a
specific structure. That matrix does not necessarily satisfy any
constraints in the other elements, and so we cannot conclude
that neither D nor HW(n) × Sp(2n,Q) contains A.

We have included a figure, Fig. 6, to show the containment
of each of these classes of operations, with respect to the
previous classes identified in Ref. [20].

APPENDIX E: ADAPTIVE CIRCUITS WITH MODULAR
HOMODYNE MEASUREMENTS

Although not required for the results of this paper, we
provide an additional observation in this Appendix. We
demonstrate how to efficiently sample from a circuit that
makes use of modular measurements. This method involves
producing random integers selected from a finite set of
integers.

Quantum circuits involving GKP states often make use of
modular homodyne measurements. These are measurements
in position or momentum modulo some period. Formally we
define some period T/

√
π ∈ Q such that the recorded mea-

surement result in position or momentum, x1, is recorded
as x1 mod T . For example, Pauli Ẑ measurements in the
GKP framework [12] are measurements in position mod-
ulo T = 2

√
π . If the measurement result x1 is closest to x1

mod 2
√

π = 0, the measurement corresponds to a measure-
ment of the logical qubit state |0〉. If the measurement result
x1 is closest to x1 mod 2

√
π = √

π , the measurement corre-
sponds to a measurement of the logical qubit state |1〉.

An adaptive circuit with feed-forward operations that
makes use of modular measurements will use the value of x1

mod 2
√

π to determine future operations. In the case of Pauli
Ẑ measurements, we can define two possible operations which
could be performed on the remaining modes, depending on
which outcome is measured.

The PDF of a unitary nonadaptive operation U0 followed
by a measurement of mode 1 can be represented as

fPD(x1) =
∑
�m∈Zn

δ(x1 − √
π ((RT )−1(�t + 2 �m))1 − c1), (E1)

which is equivalent to identifying that the possible measure-
ment values of x1 can be given by

x1 = √
π (R−T (�t + 2 �m))1 + c1 ∀ �m ∈ Zn. (E2)

To identify the possible outcomes of x1 mod
√

πk, we
calculate

x1 mod k
√

π=√
π (R−T (�t + 2 �m))1 + c1 mod k

√
π. (E3)
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FIG. 6. The classes of circuits considered in this work and previous works. The class Cd refers to the Clifford group for dimension d .
Classes A and B are defined in Ref. [20] as the class of operations which are simulatable for single-mode and multimode measurement,
respectively. A,B, Cd are all contained within the set of Gaussian operations HW(n)[Sp(2n,R)]. The class HW(n)[Sp(2n,Q)] contains Cd but
does not completely contain A nor B. The class D, as defined in this Appendix, contains B, Cd but is not known to contain A. Note that the
size of each of these regions in the diagram is arbitrary.

The matrix R is rational, and so we can write [20]

((R−T )2 �m)1 = u

v
m∗, (E4)

which reduces the random vector of integers to a single integer
m∗ ∈ Z, and a period u

v
∈ Q, which depends on the first row

of the matrix R−T .
This allows us to simplify the possible measurement out-

comes to

x̄1 = x1 mod k
√

π

= √
π (R−T �t )1 + √

π
u

v
m∗ + c1 mod k

√
π, (E5)

where we can restrict to at most vk possible outcomes parame-
terized by m̄ ∈ {0, 1, 2, vk − 1}, which each occurs with equal
probability. Simulation of measurement consists of choosing
a random value of m̄ from the finite set of possible integers.

Following the adaptive routine, we then choose a new
operator U1(x1) dependent on the measured value of x1 and
simulate the circuit U1(x1)U0. This will provide us with points
of the form

fPD(�x) =
∑

�m
δ(x1 − (

√
πR′−T (�t ′ + 2 �m′) + �c′)1)

× · · · δ(xn − (
√

πR′−T (�t ′ + 2 �m′) + �c′)n). (E6)

Choosing x1 = x̄1 and assuming no operations have been ap-
plied to the measured mode we have

fPD(�x) =
∑

�m
δ

(
u

v
m̄ − 2(R′−T �m′)1

)

× . . . δ(xn − (
√

πR′−T (�t ′ + 2 �m′) + �c′)n). (E7)

This expression can be simplified to a summation over n − 1
integers.
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