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Towards a minimal example of quantum nonlocality without inputs
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The network scenario offers interesting new perspectives on the phenomenon of quantum nonlocality. Notably,
when considering networks with independent sources, it is possible to demonstrate quantum nonlocality without
the need for measurement inputs, i.e., with all parties performing a fixed quantum measurement. Here we aim to
find minimal examples of this effect. Focusing on the minimal case of the triangle network, we present examples
involving output cardinalities of 3-3-3 and 3-3-2. A key element is a rigidity result for the parity token counting
distribution, which represents a minimal example of rigidity for a classical distribution. Finally, we discuss the
prospects of finding an example of quantum nonlocality in the triangle network with binary outputs and point
out a connection to the Lovasz local lemma.
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I. INTRODUCTION

The exploration of quantum nonlocality in networks has
attracted growing attention in recent years (see, e.g., [1] for
a recent review). This avenue of research opens interest-
ing new perspectives and possibilities for quantum nonlocal
correlations.

While quantum nonlocality has been investigated in a
broad range of scenarios, including the multipartite case, the
network scenario brings a main conceptual novelty. Specifi-
cally, the central idea is to consider networks where several
sources distribute quantum resources to various subsets of
the parties (nodes). In this sense, this model differs from
the standard approach to multipartite nonlocality, where all
parties are connected via a common source (see, e.g., [2]). The
main assumption in the network scenario is then to consider
that each source in the network is independent of all others
[3–5]. From a more formal point of view, this implies that the
relevant sets of possible correlations are nonconvex, as mixing
two arbitrary strategies requires a source of randomness com-
mon to all parties. Hence, the standard methods aiming at the
detection of quantum nonlocality with linear Bell tests are typ-
ically useless when discussing networks, and radically novel
methods and concepts must be developed (see, e.g., [6–13]) .

Despite these challenges, recent works have brought signif-
icant insight into quantum nonlocality in networks. Notably,
the few known examples of quantum nonlocal distributions
show that the network scenario allows for novel forms of
quantum nonlocality, that are possible only due to the net-
work structure (in particular due to the independence of the
sources). Remarkably, quantum nonlocality can be demon-
strated in a network where none of the parties receive an
input [4,5], that is, all the observers perform a single (fixed)
measurement. This is in sharp contrast to the standard Bell
scenario, where the presence of measurement inputs is funda-
mental. More specifically, in a scenario without inputs, the set
of correlations obtainable with a classical source common to
all parties coincides with the whole set of valid probability
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distributions. Consequently, there is no nonlocality without
inputs in the standard Bell scenario.

A notable example of this phenomenon termed “quantum
nonlocality without inputs” has been provided by Fritz in the
triangle network [5], as shown in Fig. 1. While the example
of Fritz can be viewed as an embedding of the well-known
Clauser-Horne-Shimony-Holt (CHSH) Bell test in the triangle
network (see also [14]), more recent work by Renou et al.
[15], followed by other examples [16–19], suggested that a
different form of quantum nonlocality without inputs can be
also observed. Here, no obvious connection to standard Bell
nonlocality can be made, suggesting a form of quantum non-
locality genuine to this network structure, as further examined
in Ref. [20].

In this work, we investigate the question of finding a
minimal example of quantum nonlocality without inputs. In
the study of Bell nonlocality, the notion of minimal usually
relates to the number of measurement inputs and outputs of
the parties. In particular, the minimal scenario is that of the
CHSH Bell inequality [21] where two parties perform two
binary measurements each. It has been largely investigated
and enables most of the applications of quantum nonlocality,
such as device-independent quantum information processing,
and most of the experimental demonstrations of quantum non-
locality.

In the context of networks, the notion of minimality can be
defined in different ways. First, we aim to minimize the num-
ber of parties. Hence, we focus on networks with three parties.
Among these, the only network that allows for nonlocality
without inputs is the triangle network1 (see Fig. 1). Next, as
there are no measurement inputs, we want to minimize the
number of measurement outputs. Previous examples of quan-
tum nonlocality without inputs in the triangle network feature
four-valued outputs. We use the notation 4-4-4 to denote the
cardinality of such a scenario. To the best of our knowledge,

1Note that the other nontrivial network with three parties, the so-
called bilocality network, does not allow for nonlocality without
inputs; any distribution compatible with the bilocality network ad-
mits a local model [4].
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FIG. 1. The triangle network features three distant parties. Each
pair of parties is connected via a bipartite source. Importantly here,
all parties perform a fixed measurement, i.e., they receive no input.
In this work, we look for a minimal example (in terms of output
cardinality) of quantum nonlocality.

the only improvement reported so far is a variant of the Fritz
example given in Ref. [10], which features output cardinalities
of 4-4-2.

Here we report on several examples of quantum nonlocal-
ity in the triangle network with output cardinalities 3-3-3 and
3-3-2. These examples are constructed from coarse graining
of previous known examples. We provide analytic proofs of
the nonlocality of these behaviors, and study their robustness
to noise via numerical methods based on neural networks [22].
In particular, to prove the nonlocality of the 3-3-3 example we
derive a rigidity result for network local models that we call
parity token counting. We believe this is of independent in-
terest, as it represents the minimal example (with cardinalities
2-2-2) of rigidity of a classical distribution. Finally, we discuss
the prospects of finding an example of quantum nonlocality in
the simplest triangle network with binary outputs.

II. PROBLEM AND METHODS

The triangle network consists of three parties (Fig. 1),
namely, Alice, Bob, and Charlie. Each pair of parties is con-
nected by a bipartite source. Importantly, the three sources are
assumed to be independent of each other. Formally, indepen-
dent sources prepare mutually independent random variables
in the classical case and product quantum states in the quan-
tum case. Importantly, the three parties do not have access to
any common source. Upon receiving the physical resources
the observers produce outputs (a, b, and c). In contrast to
standard tests of Bell nonlocality, the observers receive no
input in this setting. The statistics of the outputs are therefore
given by the joint probability distribution P(a, b, c). Despite
the simplicity of the triangle network, finding quantum distri-
butions that are provably nonlocal is a nontrivial task.

One of the central challenges in the study of network non-
locality is to find efficient methods for characterizing the set
of distributions P(a, b, c) which are obtainable from different

physical resources. In particular, the local set L consists of all
distributions of the following form:

PL(a, b, c) =
∫

dα dβ dγ PA(a|β, γ ) PB(b|γ , α) PC (c|α, β ),

(1)

where α, β, γ are the local variables distributed by the
sources [here dα ≡ dμ(α) means that the local variables
are sampled from some underlying distributions μ(α)], and
PA(a|β, γ ), PB(b|γ , α), and PC (c|α, β ) are the response func-
tions of Alice, Bob, and Charlie, respectively. To prove that a
distribution PQ(a, b, c) is not ”triangle local,” we thus need
to demonstrate that it cannot be generated in the triangle
network with classical sources. Formally, we need to show
that PQ(a, b, c) /∈ L.

The fundamental difficulty in verifying the existence of a
local model according to Eq. (1) arises from the independence
of the sources. Due to this independence, the local set L
is nonconvex,2 and the standard approach of characterizing
the local set (a convex polytope) with linear Bell inequalities
(facets of the polytope) cannot be applied. As a result, efficient
bounds on the set of classical correlations (for example, in
the form of nonlinear Bell inequalities) are still missing. Due
to the lack of general tools, the known results on quantum
network nonlocality without inputs are based on different
arguments.

The example of Fritz is constructed by embedding a bipar-
tite CHSH Bell test in the triangle network. It only involves a
single quantum source, while the other two sources distribute
the “inputs” for the measurement of the entangled quantum
state. The nonlocality of the resulting distribution essentially
follows from the violation of the CHSH inequality (or any
other bipartite Bell inequality) [5,14].

The example of Renou et al. [15] which we refer to as
the RGB4 distribution involves three quantum sources and
entangled measurements. The proof of nonlocality of the
RGB4 distribution relies on the concept of token counting
rigidity [17,23]. It imposes severe constraints on the under-
lying classical model for certain triangle-local distributions,
as discussed in the next section. It is also worth mentioning
the construction of Gisin in Ref. [16] which is conjectured to
be nonlocal based on numerical evidence [22], but for which
a proof is still missing.

In this work, we look for minimal examples of quantum
nonlocality in the triangle network. More specifically, we
present examples of quantum distributions with low output
cardinality and show that they do not admit a triangle-local
model of Eq. (1) using a variety of methods. For our first ex-
ample in Sec. III, with output cardinalities 3-3-3, we provide
an analytic proof based on a relaxed version of the rigidity
property, which we term “almost rigidity.” Our second exam-
ple in Sec. IV, with output cardinalities 3-3-2, is proven via
the technique of inflation [6]. Loosely speaking, this method

2For a concrete example, consider the distribution where all parties
always output “0,” P(000) = 1, which is clearly triangle local. Sim-
ilarly, the distribution where all parties output “1,” P(111) = 1, is
triangle local. However, the mixture of the two distributions violates
the no-signaling condition [6], and is therefore not achievable in the
triangle network.
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considers larger (inflated) networks, some marginals of which
coincide with the original triangle network. If one can show
that the distribution on the inflated network cannot be consis-
tently defined, given the marginals and some independence
constraints, one can conclude that the original distribution
is not triangle local. This technique also allows us to derive
nonlinear Bell inequalities for detecting the corresponding
distribution. More details can be found in Sec. IV and in
Appendix E.

Finally, in order to investigate further examples of quantum
nonlocality in the triangle scenario, we use numerical methods
based on machine learning. Concretely, we use a method de-
veloped in Ref. [22] based on neural networks (NN). The code
used in this work is adapted from the code available in this last
reference. Here, a generative neural network (which we refer
to as “LHV-Net”) is used to explore the space of triangle-
local models. This is ensured by encoding the structure of
the triangle network into the neural network. Given a target
distribution Ptarget(a, b, c), the LHV-Net aims at constructing
a local distribution PNN(a, b, c) which is as close as possible
to the target one. This is done by minimizing the loss function,
which in most cases is the Euclidean distance

d (Ptarget,PNN) =
√∑

a,b,c

[Ptarget(a, b, c) − PNN(a, b, c)]2. (2)

For a given target distribution, it is often useful to investi-
gate a family of distributions obtained by adding noise to the
initial one. This can be done by mixing the target distribution
with another distribution that is triangle local (for example, by
adding noise to the quantum model). The visibility parameter
V controls the amount of noise, with V = 1 corresponding to
the initial distribution. If the initial distribution Ptarget is indeed
nonlocal, at some value V ∗ we expect to see a sharp transition
when monitoring the distance d (·, ·) as a function of V . The
critical visibility V ∗ then corresponds to the point where the
noisy distribution becomes triangle local and gives an estimate
of the noise robustness of the initial distribution.

III. QUANTUM NONLOCALITY WITH OUTPUT
CARDINALITY 3-3-3

We start by presenting an example of quantum nonlocality
in the triangle network with output cardinalities 3-3-3. This
example is based on a coarse graining of the RGB4 distri-
bution of Ref. [15], which has cardinalities 4-4-4. In order to
demonstrate the nonlocality of the coarse-grained distribution,
we first present a result on “almost rigidity” for the task
of parity token counting. Then we give the target quantum
distribution and use the almost-rigidity property to prove that
it is not triangle local.

A. Almost rigidity of parity token counting distributions

In the present context, rigidity [17,23] is a property of some
classes of classical distributions in a network. The property
ensures that any model [i.e., local variables and response func-
tions displayed on the right-hand side of Eq. (1)] underlying
a rigid probability distribution PL(a, b, c) can be brought to
a unique canonical form by means of local relabeling of the
variables α, β, γ (to a discrete set of values) which do not
conflict with the response function. To be more precise, we

now elaborate on the general form of triangle-local models in
Eq. (1) and Fig. 1.

To fix the notation we say that each source samples local
variables α, β, or γ according to distributions μ(α), η(β ),
and ν(γ ). Note that without loss of generality, we assumed
that each source distributes two copies of the same variable.3

Moreover, without loss of generality, the response functions
can be considered deterministic, i.e., PA(a|β, γ ) = 0 or 1,
because any randomness required for the choice of the outputs
(local to the party) can be delegated to one of the neighboring
sources. Hence, without loss of generality, we use the three
distributions of local variables μ(α), η(β ), ν(γ ) and the three
deterministic response functions a(β, γ ), b(α, γ ), c(α, β ) to
describe a generic model underlying triangle-local distribu-
tions PL(a, b, c).

Let us now construct a family of triangle-local models that
we call parity token counting (PTC) strategies. Each source
has a single token that can be sent to either one or the other
party it connects to. For example, the source connecting Bob
and Charlie prepares (αB, αC ) = (1, 0) with probability pα

and (αB, αC ) = (0, 1) with probability 1 − pα . Each party
then outputs the parity of the total number of tokens it re-
ceives, i.e., for Charlie c(αC, βC ) = αC ⊕ βC , where “⊕” is
understood as sum modulo two, so that all the outputs are
binary. All possible PTC strategies we just described give rise
to distributions PPTC(a, b, c) that live in a three-dimensional
subset LPTC of the local set for the 2-2-2 triangle. The set LPTC
can be parametrized by (pα, pβ, pγ ), however, the strategies
(pα, pβ, pγ ) and (1 − pα, 1 − pβ, 1 − pγ ) are related by flip-
ping the values of all local variables and thus lead to the same
distribution. Except for a subset of LPTC of measure zero these
two strategies are the only ones that simulate the distribution.
The full characterization of the set LPTC, including the mul-
tiplicities of the PTC strategies underlying each distribution
PPTC(a, b, c), can be found in Appendix A.

We now ask what possible models lead to a distribution
PPTC(a, b, c), except for the strategies we just defined. In fact,
we will now show that PTC strategies are essentially the only
classical strategies that lead to a distribution PPTC(a, b, c).
This is formalized by the following theorem.

Theorem 1. Let PPTC(a, b, c) be the distribution arising
from parity token parity counting strategy (pα, pβ, pγ )
on the triangle network, where each source distributes
its only token to the connected parties with probabili-
ties pi and 1 − pi, and the parties output the parity of
the number of received tokens. For any other strategy
(μ(α), η(β ), ν(γ ), a(β, γ ), b(α, γ ), c(α, β )) that achieves
the distribution PPTC(a, b, c) there exist functions T j

i : Si →
{0, 1} (Si is the set of all possible values of the local variable
produced by the source Si) for any Si → Aj such that

(i) T b
α (α) + T c

α (α) = T c
β (β ) + T a

β (β ) = T a
γ (γ ) +

T b
γ (γ ) = 1.

3One can also consider sources sampling two variables that may
take different values and sending them to different parties, e.g.,
(αB, αC ) with αB sent to Bob and αC to Charlie. This case is, how-
ever, included in the previous one, as the source could alternatively
distribute two copies of pair α = (αB, αC ) to both parties while the
response functions ignore the respective half of the pair.
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(ii) a(β, γ ) = T a
β (β ) ⊕ T a

γ (γ ), b(γ , α) = T b
γ (γ ) ⊕

T b
α (α), c(α, β ) = T c

α (α) ⊕ T c
β (β ).

In addition, if the distribution is such that P(a = 1), P(b =
1), P(c = 1) �= 1

2 , the functions T j
i can be chosen to fulfill

(iii) (E[T b
α ],E[T c

β ],E[T a
γ ]) = (pα, pβ, pγ ),

where E[T b
α ] = ∫

dα T b
α (α).

The proof is given in Appendix B. We now discuss how to
interpret it. First, note that the six local compression functions
T j

i map the local variable at each output of each source into a
bit, e.g., (

T b
α , T c

α

)
: Sα → {0, 1}×2,

α �→ (
T b

α (α), T c
α (α)

)
,

(3)

for the two outputs of the source Sα . Furthermore, the condi-
tion (i) guarantees that for any α the only possible values are
(αB, αC ) = (T b

α (α), T c
α (α)) = (1, 0) or (0,1), so that after the

application of the compression functions to the outputs of a
source it becomes a PTC source. On top of this, condition (ii)
guarantees that the response functions of the original strategy
are consistent with such compression, e.g., c(α, β ) = αC ⊕
βC = T c

α (α) ⊕ T c
β (β ). That is, the response functions can only

depend on the local variables via the values of the bits after
compression. In other words, any information encoded in α

other than the single bit given by (T b
α (α), T c

α (α)) is ignored
by the response functions.

Finally (iii) guarantees that in most cases there is a unique
PTC strategy (up to the choice of the functions T j

i ) under-
lying each PTC distribution. Nevertheless, for the following
discussion, we will be interested in distributions with unbiased
outputs for which (iii) does not apply. The cases where at least
one output is unbiased (a subset of LPTC of measure zero) are
degenerate, i.e., there are infinitely many PTC strategies that
lead to say same distribution (see Appendix A). Since (iii)
does not hold for all distributions we refer to Theorem 1 as
almost rigidity.

Two things are worth mentioning before moving on. First,
the almost-rigidity property of PTC distributions holds for all
networks satisfying the no double common source (NDCS)
condition [24]. Second, PTC rigidity works for binary outputs,
which is in contrast to token counting and color matching dis-
tributions requiring at least ternary outputs [23]. So, in some
sense, it provides the minimal example of network rigidity.
This is also why it can be used to detect nonlocality in the
3-3-3 triangle as we now show.

B. Quantum strategy

Consider each source distributing a maximally entangled
two-qubit state

|ψ+〉 = 1√
2

(|10〉 + |01〉). (4)

Each party performs the following two-qubit joint measure-
ment with ternary outputs a, b, c ∈ {0̄, 1̄0, 1̄1}:

0̄ : |00〉〈00| + |11〉〈11|,
1̄0 : |1̄0〉〈1̄0|,
1̄1 : |1̄1〉〈1̄1|,

(5)

where we define |1̄0〉 = u |01〉 + v |10〉 , |1̄1〉 = v |01〉 −
u |10〉, with 0 < v < u < 1 real parameters that satisfy
u2 + v2 = 1. This strategy is similar to the RGB4 construction,
with the difference that the positive operator-valued measure-
ment (POVM) elements |00〉〈00| and |11〉〈11| are here coarse
grained into a unique output 0̄.

Combining the above states and measurements, we obtain
a quantum distribution denoted P333

Q (a, b, c) and given in Ap-
pendix C, for which we can prove the following.

Theorem 2. The quantum distribution P333
Q (a, b, c) is not

triangle local [incompatible with any model of the form (1)]

for u2
max < u2 < 1, where u2

max = −3+(9+6
√

2)2/3

2(9+6
√

3)1/3 ≈ 0.785.
Below we sketch the proof of this theorem, while all de-

tails are given in Appendix C. The structure of the proof is
similar to Ref. [15], but it is based on the novel PTC rigidity
result which is essential to make the proof work for ternary
outputs. First, we observe that if the outputs 1̄0 and 1̄1 are
coarse grained for all parties the distribution resulting from
P333

Q (a, b, c) is triangle local and PTC. The rigidity of PTC
distributions (Theorem 1) imposes severe constraints on the
underlying classical models. Now, it can be shown that if the
distribution P333

Q (a, b, c) was simulated by a classical model
(before coarse graining) these constraints would be impossible
to satisfy. Therefore, P333

Q (a, b, c) is necessarily not triangle
local.

C. Noise robustness

The above result applies to the (noiseless) distribution
P333

Q (a, b, c), but does not extend to the case where noise is
added, as the coarse-grained version of the noisy distribution
is no longer PTC in general. Thus, to investigate noise robust-
ness we must resort to other methods.

A first possibility would be to use the inflation method.
Unfortunately, using it we could not prove the nonlocality of
the above 3-3-3 quantum distribution. Note that the inflation
method is able to detect nonlocality of the original RGB4 dis-
tribution, albeit with an extremely small noise tolerance [25].

Instead, we move to numerical methods and use LHV-Net.
For the noise model, we add white noise to the entangled
states of Eq. (4) produced by each source, which now prepares
Werner states

ρV = V |ψ+〉 〈ψ+| + (1 − V )1/4. (6)

Leaving the measurement in Eq. (5) unchanged, we obtain a
family of distributions P333

Q|V .
In Fig. 2, we plot the minimal distance [see Eq. (2)] found

by LHV-Net, when taking P333
Q|V for the target distribution.

We observe that, as V decreases, the minimal distance un-
dergoes a transition around the critical visibility V ∗ ≈ 0.99,
demonstrating a small robustness to noise. Note that, for the
original RGB4 distribution (with four-valued outputs), the
estimated noise tolerance (also via LHV-Net) is much larger
[22]. Hence, it seems that the coarse graining severely de-
creases the robustness to noise in this case.

Moreover, LHV-Net also allows us to investigate differ-
ent coarse grainings of the RGB4 distribution. In particular,
we find that when combining the outputs in the following
way, 0 : |00〉〈00| + |1̄0〉〈1̄0|, 1 : |11〉〈11| and 2 : |1̄1〉〈1̄1|, the
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FIG. 2. Noise robustness of the 3-3-3 quantum distribution. The
plot shows the minimal distance d (Ptarget, PNN) found by the neural
network (LHV-Net) between the target distribution and the closest
local distribution, for different levels of noise, as quantified by the
visibility parameter V . Here, the measurements are given by setting
u2 = 0.84, and we consider two possible coarse grainings, the blue
curve is for the measurements given in Eq. (5), the orange curve
coarse grain as 0 : |00〉〈00| + |1̄0〉〈1̄0|, 1 : |11〉〈11|, and 2 : |1̄1〉〈1̄1|.
The vertical line represents the critical visibilities for the original
four-output RGB4 distribution as found in [22]. Note that the coarse-
grained 3-3-3 distributions appear to be much less robust to noise.
The inset shows the distance for different values of the measure-
ment parameter u2. The local distributions found by LHV-Net are
very close to the three-output RGB4 distributions except around
u2 = 0.84.

resulting 3-3-3 distribution also appears to be nonlocal. The
noise robustness is similar to the previous case. It is also
worth mentioning that the coarse graining 0 : |00〉〈00|, 1 :
|1̄0〉〈1̄0| + |1̄1〉〈1̄1|, and 2 : |11〉〈11| results in product mea-
surements and gives a classical distribution.

Finally, we also investigated binary coarse grainings of the
RGB4 distribution, but according to LHV-Net, all resulting
distributions appear to be triangle local. Of course, this is only
a numerical result and it should be considered carefully. It
could be in principle that the resulting distribution is nonlocal
but extremely close to the set of triangle-local distributions.

D. Elegant distribution

Using LHV-Net, we also investigated coarse graining
of the so-called “elegant distribution” proposed by Gisin
[16]. The distribution is based on all sources producing
a Bell state, here chosen to be the singlet state |ψ−〉 =
1/

√
2(|01〉 − |10〉). Each party performs an entangling mea-

surement with the four outcomes corresponding to projectors
{|	1〉〈	1|, . . . , |	4〉〈	4|} on two-qubit states

|	 j〉 =
√

3

2
|mj,−mj〉 + i

√
3 − 1

2
|ψ−〉 , (7)

with the four vectors {|mj〉} j=1,2,3,4 forming a tetrahedron on
the Bloch sphere. A notable difference with the RGB4 mea-
surement in Eq. (5) is that here the states |	 j〉 corresponding
to all measurement outcomes are entangled, with the same
level of entanglement (they are all related by local unitary

FIG. 3. Noise robustness for the coarse-grained elegant distribu-
tion. The plot shows the distance d (Ptarget, PNN) between the target
distribution and the closest local distribution found by LHV-Net, for
different values of the visibility V . The vertical line represents the
critical visibility for the original four-output distributions as found
in [22]. Again, it seems that coarse graining reduces robustness to
noise.

transformations). The resulting distribution is symmetric un-
der permutation of outputs and parties and is given by

P(a = b = c) = 25
256 ,

P(a = b �= c) = 1
256 ,

P(a �= b �= c �= a) = 5
256 . (8)

There is currently no known proof that the elegant distribution
is not triangle local.

Given the level of symmetry of this distribution, it is
enough to consider a single coarse graining to a 3-3-3 distri-
bution, with the constraint that each party performs the same
coarse graining. Here LHV-Net also suggests that the resulting
distribution remains nonlocal, as shown in Fig. 3. Again, it
seems that the noise tolerance is reduced compared to the
original 4-4-4 distribution.

Finally, note that when using LHV-Net to analyze differ-
ent ternary coarse grainings for the parties or binary coarse
grainings, it appears that all resulting distributions are triangle
local.

IV. QUANTUM NONLOCALITY WITH OUTPUT
CARDINALITY 3-3-2

We now present an example of quantum nonlocality in the
triangle that uses even smaller cardinalities for the outputs,
namely, 3-3-2. This example is constructed from coarse grain-
ing the Fritz distribution [5].

Let us first recall the model of Fritz. The idea is to have
Alice and Bob perform a standard CHSH Bell test [21].
Hence, they share a singlet Bell state |ψ−〉. Now, the binary
measurement inputs that are required for both Alice and Bob
for testing the CHSH inequality are provided by the two
extra sources. Specifically, the β source provides a uniformly
random bit x = 0, 1 while the α source produces a uniformly
random bit y = 0, 1. Upon receiving their effective inputs x

062413-5



SADRA BOREIRI et al. PHYSICAL REVIEW A 107, 062413 (2023)

FIG. 4. Noise robustness of the coarse-grained Fritz distribu-
tions. The plot shows the distance d (Ptarget, PNN) between the target
distribution and the closest local distribution found by LHV-Net,
for different values of the visibility V . Both 3-3-2 and 3-3-3 cases
are shown. The vertical line represents the critical visibility (V ∗ =
1/

√
2) for the original four-output distributions (see [22]). The col-

ored regions indicate the visibilities detected via the web inflation
(see Appendix E for details).

and y, Alice and Bob perform the corresponding local Pauli
measurements [σz or σx for Alice and (−σz − σx )/

√
2 or

(−σz + σx )/
√

2 for Bob] and obtain binary outputs a′ and b′.
Finally, Alice outputs a = (a′, x), Bob b = (b′, y), and Charlie
c = (x, y). Note that it is crucial that Charlie also broadcasts
both effective inputs x and y in order to ensure the condition
of measurement independence.

Fritz showed that since the values of the outputs x (y)
are perfectly correlated between Charlie and Alice (Char-
lie and Bob), these outputs have to be independent of the
source connecting Alice and Bob [5]. Therefore, the resulting
distribution PF (a, b, c) is nonlocal whenever the conditional
distribution P(a′, b′|x, y) violates the CHSH Bell inequality.
When adding noise to the singlet state shared by Alice and
Bob [similarly to Eq. (6)], one finds a critical visibility of
V ∗ = 1/

√
2.

We first consider the following coarse graining. On Alice’s
side, the output is ternary and given by a = 0 if a′ = 0, a = 1
if x = 0 and a′ = 1, and a = 2 if x = 1 and a′ = 1. Similarly,
on Bob’s side, we define a ternary output according to b = 0
if x = 0 and b′ = 0, b = 1 if y = 1 and b′ = 0, and b = 2 if
b′ = 1. Finally, on Charlie, we get a binary output: c = xy, i.e.,
c = 1 only if x = y = 1. Note that we consider here uniform
distributions for both effective inputs to be biased, specifically
p(x = 1) = p(y = 1) = 1

2 , which renders the binary output c
biased. We have checked that changing these input distribu-
tions only marginally influences the result.

The resulting distribution, with cardinality 3-3-2 is non-
local, which we can prove using the inflation technique.
Specifically, we consider the so-called web inflation, which
allows us to construct a nonlinear inequality for detecting the
above coarse-grained distribution for visibility greater than
≈0.87. This value is higher compared to the critical visibility
of the original Fritz distribution. This appears to be a limi-

tation of our inflation since using LHV-Net, we find that the
coarse-grained 3-3-2 distribution still has a critical visibility
close to the original value 1/

√
2 � 0.71. These results are

shown in Fig. 4.
More generally, there exist many different possible coarse

grainings of the Fritz distribution that lead to interesting 3-3-2
or 3-3-3 distributions. In Appendix E, we provide a detailed
analysis of all combinations resulting in triangle-nonlocal dis-
tributions and discuss their noise tolerance.

Finally, we also tried here to obtain quantum nonlocality
from coarse graining to a binary distribution, but in all cases,
LHV-Net can reproduce the resulting distribution with excel-
lent accuracy.

V. TRIANGLE WITH BINARY OUTPUTS

Finding an example of quantum nonlocality in the trian-
gle with binary outputs would of course provide a minimal
example of network nonlocality. At this point, it is still an
open question whether this is possible or not. We obtained
relatively convincing numerical evidence that all examples
discussed above become triangle local when coarse grained
to binary outputs. It also seems that the rigidity-based
proofs of nonlocality, along the lines of Theorem 2, can-
not work for binary quantum distributions since they require
to elaborate on a coarse-groaned version of the original
distribution.

We also investigated another approach based on a connec-
tion to the Lovasz local lemma. The latter states that when
considering events that are almost independent and individu-
ally not very likely, there is always a nonvanishing probability
that none of them occurs. A refined version called variational
Lovasz local lemma (VLLL) [26] applies to events described
by a fixed event-variable graph, or to network-local models
with binary outputs in the language of this paper. When ap-
plied to the case of the triangle network, Theorem 4 in [26]
implies that for any triangle-local strategy

P( j = 0) < p∗ ∀ j = a, b, c ⇒ P(a = b = c = 1) > 0,

(9)

where p∗ = (
√

5 − 1)/2 ≈ 0.38. Interestingly, the above re-
lation is tight and can be saturated with a classical strategy
using only two sources5 (i.e., corresponding to the bilocal-
ity network). The implication (9) is not necessarily true for
quantum strategies. Moreover, finding a quantum example
PQ(a, b, c) that violates the VLLL [the condition (9)] would
reveal nonlocality in the 2-2-2 triangle. We have investigated
this question numerically, but could not find an instance of a
quantum violation.

5Consider a source distributing the shared variable β = 0, 1 to
A and C with probability P(β = 1) = p∗. Similarly, B and C are
connected via a source sending α = 0, 1 with probability P(α =
1) = p∗. Then consider that A outputs β, B outputs α, while C
outputs c = αβ ⊕ 1. It is straightforward to check that the resulting
distribution saturates the condition given in Eq. (9). That is, it leads to
P(a = 0) = P(b = 0) = P(c = 0) = p∗ and P(a = b = c = 1) = 0.
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VI. DISCUSSION

We investigated the question of finding a minimal example
of quantum nonlocality without inputs in a network. We fo-
cused on the triangle network, as this involves the minimal
number of parties, i.e., three. We found two classes of ex-
amples involving, respectively, output cardinalities 3-3-3 and
3-3-2. The examples were constructed from coarse graining of
previously known examples. To prove some of our results, we
considered the scenario of parity token counting, for which we
proved an almost-rigidity property, which can be of indepen-
dent interest as it represents a minimal example of rigidity of a
classical distribution. We also discussed the noise robustness
of these examples.

The main question left open here is whether there exists
an example of quantum nonlocality in the minimal triangle
network with binary outputs. For all examples we found, it
appears that further coarse graining to obtain binary outputs
leads to triangle-local distributions. We also established a
connection to the Lovasz local lemma, but could not find a
quantum nonlocal distribution with this approach. We note,
however, that a slightly more complicated network, namely,
a ring network with four parties (i.e., a square) allows for
quantum nonlocality without inputs and binary outputs [27].

In addition to the binary outputs question, it would be inter-
esting to find an example of nonlocality without inputs in the
3-2-2 triangle network. Here the set of correlation P(a, b, c)
is described by 11 = 3 × 2 × 2 − 1 real parameters. This is
lower than the 12 = 2 × 2 × 2 × 2 − 4 parameters needed
to describe the set of correlations P(a, b|x, y) in the CHSH
scenario. Hence, from the perspective of the dimension
of the correlation set, an example of quantum nonlocal-
ity in the triangle with output cardinality 3-2-2 would be
“more minimal” than the minimal example of standard Bell
nonlocality.

Finally, another interesting question is whether the 3-3-3
examples we constructed here feature some stronger form
of network correlations, for example, genuine network non-
locality [20] or full network nonlocality [28]. Since our
3-3-2 example is constructed from the Fritz distribution, these
can be neither genuine network nonlocal nor full network
nonlocal.
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APPENDIX A: THE SET LPTC OF PARITY TOKEN
COUNTING DISTRIBUTIONS IN THE 2-2-2 TRIANGLE

PTC local models defined in the main text are constructed
with bipartite sources sampling:

(αB, αC ) =
{

(1, 0) with probability pα,

(0, 1) with probability 1 − pα,

(βC, βA) =
{

(1, 0) with probability pβ,

(0, 1) with probability 1 − pβ,

(γA, γB) =
{

(1, 0) with probability pγ .

(0, 1) with probability 1 − pγ

(A1)

and fixed binary response functions

a(βA, γA) = βA ⊕ γA, b(γB, αB) = γB ⊕ αB,

c(αC, βC ) = αC ⊕ βC . (A2)

Obviously, the set LPTC of PTC distributions is
parametrized by the three values (pα, pβ, pγ ) and is at most of
dimension 3. LPTC is a subset of the seven-dimensional local
set L2-2-2 for the 2-2-2 triangle. The exact dependence of the
probability distribution PPTC(a, b, c) on the parameters
of the sources are given in Table I. From there one
can easily verify that LPTC is indeed three dimensional,
e.g., by noting that PPTC(1, 0, 0), PPTC(0, 1, 0), and
PPTC(0, 0, 1) are linearly independent polynomials of
(pα, pβ, pγ ). One can also check that the transformation
(pα, pβ, pγ ) → (1 − pα, 1 − pβ, 1 − pγ ) does not affect the
distribution.

To describe the set LPTC it is convenient to introduce the
one-party correlators

EA = 2P(a = 1) − 1, EB = 2P(b = 1) − 1,

EC = 2P(c = 1) − 1, (A3)

which satisfy the equations

P(a = 1) = 1 + EA

2
= pβ pγ + (1 − pβ )(1 − pγ ) (A4)

upon party permutations. Given these equations it is straight-
forward to rewrite the full distribution PPTC(a, b, c) in terms
of the correlators (EA, EB, EC ). It is as given in Table II. Since
any PTC distribution can be reconstructed completely given
the values of the correlators, it is natural to ask which values
(EA, EB, EC ) are actually achievable by some PTC strategy.
To answer this question we will now distinguish three disjoint
subsets of LPTC depending on the values of correlators.

1. The generic case EA, EB, EC �= 0. Without loss of gen-
erality we permute the parties such that EA � EB � EC .
Formally solving the equations (A4) for all parties gives two

TABLE I. The table of probabilities PPTC(a, b, c) as a function of (pα, pβ, pγ ).

(b, c)\a 0 1

(0,0) 0 pα (1 − pβ )(1 − pγ ) + (1 − pα )pβ pγ

(0,1) pα pβ (1 − pγ ) + (1 − pα )(1 − pβ )pγ 0
(1,0) pα (1 − pβ )pγ + (1 − pα )pβ (1 − pγ ) 0
(1,1) 0 pα pβ pγ + (1 − pα )(1 − pβ )(1 − pγ )
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TABLE II. The table of probabilities PPTC(a, b, c) as a function
of (EA, EB, EC ).

(b, c)\a 0 1

(0,0) 0 1
4 (1 + EA − EB − EC )

(0,1) 1
4 (1 − EA − EB + EC ) 0

(1,0) 1
4 (1 − EA + EB − EC ) 0

(1,1) 0 1
4 (1 + EA + EB + EC )

solutions

⎛
⎝pα

pβ

pγ

⎞
⎠ = 1

2

⎛
⎜⎜⎜⎝

1 ±
√

EBEC
EA

1 ±
√

EAEC
EB

1 ±
√

EAEB
EC

⎞
⎟⎟⎟⎠. (A5)

Note that the two solutions are related by the transformation
(pα, pβ, pγ ) → (1 − pα, 1 − pβ, 1 − pγ ) mentioned above.
This degeneracy is thus easy to understand, and we can focus
on the solution with the “+” sign. The solution in Eq. (A5)
makes physical sense if and only if the numbers on the

right-hand side are probabilities, that is, (∗)
√

EBEC
EA

∈R and

(∗∗)
√

EBEC
EA

�1 for all party permutations. The reality conditions
imply that only an even number of correlators EA, EB, EC can
be negative, leading to two different cases (EA � EB � EC �
0) or (EA � 0 > EB � EC ) that fulfill (∗).

1a. For (EA � EB � EC > 0), the fractions are ordered as√
EAEB

EC
�

√
EAEC

EB
�

√
EBEC

EA
, hence, the condition (∗∗) is verified iff√

EAEB
EC

�1 or simply EAEB � EC .
1b. For (EA > 0 > EB � EC ), EC � EB and thus |EC | �

|EB|. The fractions are partially ordered
√

EAEB
EC

�
√

EAEC
EB

and the

condition (∗∗) is fulfilled iff both
√

EAEC
EB

,

√
EBEC

EA
�1. The two

inequalities can be rewritten as EA|EC | � |EB| � EA
|EC | .

2. The measure zero case EAEBEC = 0. Without loss of
generality let us assume that EA = 0. By Eq. (A4) we have

1
2 = pβ pγ + (1 − pβ )(1 − pγ ) ⇒ pβ = 1

2 or pγ = 1
2 .

(A6)

Let us consider the case where pβ = 1
2 . This automatically

implies that EC = 0 as well. Furthermore, with the help of
Table I one computes the full probability distribution

PPTC(1, 0, 0) = PPTC(0, 0, 1)

= 1

2
[pα (1 − pγ ) + (1 − pα )pγ ] = 1 − EB

4
,

PPTC(0, 1, 0) = PPTC(1, 1, 1)

= 1

2
[pα pγ + (1 − pα )(1 − pγ )] = 1 + EB

4
.

(A7)

There is thus a single degree of freedom left, and it can be
parametrized by the value of the remaining correlator EB. Its
value

EB = 2[pα pγ + (1 − pα )(1 − pγ )] − 1 (A8)

can be chosen freely in the interval [−1, 1], and any choice
of pα and pγ fulfilling Eq. (A8) realizes it. Hence, we con-
clude that there exists a PTC distribution with (EA, EB, EC ) =
(0, EB, 0) (and any permutation of parties), and there are
infinitely many PTC strategies that achieve it. Again we can
distinguish two cases.

2a. For a non-negative value EB � 0 one can exchange the
parties A and B and realize that (EA � 0, 0) is a continuation
of the case (1a) where (EA � EB � EC > 0).

2b. Similarly, for a negative value EB < 0 one exchanges
B with C and notice that (0, 0, EC < 0) is the continuation of
the case (1b) where (EA > 0 > EB � EC ).

We now combine all the cases 1 and 2 in the following
observation.

Theorem 3. There exists a PTC distribution PPTC(a, b, c)
with the correlator values EA � EB � EC (where EA =
2P(a = 1) − 1) if and only if one of the following is true:

1a. EA, EB, EC > 0 and EC � EAEB,
1b. EA > 0; EB, EC < 0 and EA|EC | � |EB| � EA

|EC | ,
2a. EA � 0 and EB = EC = 0,
2b. EA = EB = 0 and EC < 0.
The PTC distribution is unique and given in Table II.

In addition, in the cases 1a and 1b the distribution can be
simulated with exactly two strategies (pα, pβ, pγ ) = ( 1

2 (1 +√
EBEC

EA
), 1

2 (1+
√

EAEC
EB

), 1
2 (1+

√
EAEB

EC
)) and (1 − pα, 1 − pβ, 1 − pγ ).

In the cases 2a and 2b there are infinitely many PTC strategies
(one-parameter family) that simulate the distribution.

Obviously, the observation remains true for any permuta-
tion of the parties. This gives a full characterization of the set
LPTC and the multiplicity of the underlying PTC strategies.

APPENDIX B: PROOF OF ALMOST RIGIDITY OF PARITY
TOKEN COUNTING DISTRIBUTIONS

Proof. Take any value of the outputs a0b0c0 that has
nonzero probability and consider the values α0, β0, γ0 of the
local variables that lead to a0b0c0. Now, we define the deriva-
tive of an output with respect to a local variable as follows:

∇α0 b(γ , α) = b(γ , α) � b(γ , α0). (B1)

Here by � we denote the difference modulo 2, x � y =
(x − y) mod 2.

Since a ⊕ b ⊕ c = 1 for any PTC distribution, we have

∇α0 a(β, γ ) ⊕ ∇α0 b(γ , α) ⊕ ∇α0 c(α, β ) = 0.

The output a(β, γ ) does not depend on α, therefore, we
have ∇α0 a(β, γ ) = a(β, γ ) − a(β, γ ) = 0 and ∇α0 b(γ , α) =
∇α0 c(α, β ). Here ∇α0 b(γ , α) is independent of β and
∇α0 c(α, β ) is independent of γ , being always equal they can
only depend on α. We can thus define

fα0 (α) = ∇α0 b(γ , α) = ∇α0 c(α, β ). (B2)

In a similar manner, one defines fβ0 (β ) = ∇β0 a(β, γ ) =
∇β0 c(α, β ) and fγ0 (γ ) = ∇γ0 a(β, γ ) = ∇γ0 b(α, γ ).
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Now, following Eq. (B2) and the definition of the derivative
(B1), we have

b(γ , α) = b(γ , α0) ⊕ fα0 (α),

b(γ , α) = b(γ0, α) ⊕ fγ0 (γ ).

Combining the two gives

b(γ , α) = b(γ0, α0) ⊕ fα0 (α) ⊕ fγ0 (γ )

= b0 ⊕ fα0 (α)︸ ︷︷ ︸
≡T b

α (α)

⊕ fγ0 (γ )︸ ︷︷ ︸
≡T b

γ (γ )

,

where we defined the functions T b
α (α) and T b

γ (γ ). Similarly,
we can define

a(β, γ ) = a0 ⊕ fγ0 (γ ) ⊕ fβ0 (β )

= 1 ⊕ fγ0 (γ )︸ ︷︷ ︸
≡T a

γ (γ )

⊕ 1 ⊕ a0 ⊕ fβ0 (β )︸ ︷︷ ︸
≡T a

β (β )

,

c(α, β ) = c0 ⊕ fβ0 (β ) ⊕ fα0 (α)

= 1 ⊕ b0 ⊕ c0 ⊕ fβ0 (β )︸ ︷︷ ︸
≡T c

β (β )

⊕ 1 ⊕ b0 ⊕ fα0 (α)︸ ︷︷ ︸
≡T c

α (α)

.

Manifestly, defined in the above way the function T i
j fulfills

(ii). To prove (i) simply note that

T b
γ (γ ) ⊕ T a

γ (γ ) = fγ0 (γ ) ⊕ 1 ⊕ fγ0 (γ ) = 1,

T b
α (α) ⊕ T c

α (α) = b0 ⊕ fα0 (α) ⊕ 1 ⊕ b0 ⊕ fα0 (α) = 1,

T a
β (β )⊕T c

β (β ) = 1⊕a0⊕ fβ0 (β )⊕1⊕b0⊕c0⊕ fβ0 (β ) = 1,

where we used a0 ⊕ b0 ⊕ c0 = 1 for the last equality.
Finally, let us prove (iii) for the distributions with P(a =

1), P(b = 1), P(c = 1) �= 1
2 . In Appendix A (Theorem 3) we

proved that in this case (EA, EB, EC �= 0) there are only two
PTC strategies that achieve PPTC(a, b, c), namely, (pα, pβ, pγ )
and (1 − pα, 1 − pβ, 1 − pγ ). We thus know that there are
functions T j

i that satisfy (i) and (ii) and can only lead to two
possibilities

(E[T b
α ],E[T c

β ],E[T a
γ ]) = (pα, pβ, pγ ) or

(E[T b
α ],E[T c

β ],E[T a
γ ]) = (1 − pα, 1 − pβ, 1 − pγ ). (B3)

In the first case (iii) holds automatically. In the second one
can define new compression functions T̄ j

i = T j
i ⊕ 1 with

“flipped” token directions. These functions also satisfy (i)
and (ii) and give E[T̄ j

i ] = 1 − E[T j
i ]. Hence, using them

as compression functions gives back the original strategy
(pα, pβ, pγ ), and proves (iii). �

APPENDIX C: PROOF OF MAIN RESULT: THEOREM 2

The resulting probability distribution PQ is given by

PQ(a, b, c) = Tr[(a ⊗ b ⊗ c)|�〉〈�|], a, b, c ∈ {0̄, 1̄0, 1̄1},
where in |�〉, the respective Hilbert spaces are suitably or-
dered according to the triangle configuration:

|�〉A1A2B1B2C1C2
≡ |ψ+〉A2B1

⊗ |ψ+〉B2C1
⊗ |ψ+〉C2A1

.

FIG. 5. In uniform token counting strategy over the triangle,
when all parties obtain 1̄, the token paths are undetermined between
t = � and �. In a quantum scenario the system could be in a super-
position state of t = � and �. However, in a classical scenario the
underlying trajectory of tokens is either t = � or t = �.

Introducing the notation u0 = −v1 = u and v0 = u1 = v

(such that |1̄t 〉 = ut |01〉 + vt |10〉) we have that

PQ(1̄i, 0̄, 0̄) = 1
8 , (C1)

PQ(1̄i, 1̄ j, 1̄k ) = 1
8 (uiu juk + viv jvk )2 (C2)

and similar relations by permuting the parties. We prove by
contradiction, assuming the existence of a trilocal model re-
producing PQ(a, b, c), we identify conditions that this model
should satisfy, leading to a contradiction for certain choices of
the measurement parameter u.

Notice that the measurement can be performed in two
steps. In the first step, the parties measure the operators in the
basis 0̄ = |00〉〈00| + |11〉〈11|, 1̄ = |01〉〈01| + |10〉〈10|, where
n̄ is the parity of received tokens, obtaining the distribution
Pparity. Second, whenever 1̄ is obtained, the party performs an
additional measurement given by 1̄0, 1̄1, which are the only
entangled measurement operators in this setting.

As the operators {0̄, 1̄}, are diagonal in the basis of token
numbers, substituting the quantum sources with the sources
1
2 (|10〉〈10| + |01〉〈01|) has no effect on Pparity. This is equiva-
lent to the sources delivering its token to each of the connected
parties with probability 1

2 which is a classical token count-
ing strategy. As a result, any potential classical strategy that
simulates PQ imposes a classical strategy for Pparity, which
must be the classical parity token counting strategy, due to
the almost-rigidity property.

Therefore, any potential classical simulating strategy for
PQ involves a new classical hidden variable which shows the
movement of each individual token. For example, considering
the case when all parties output 1̄, the source’s tokens must
be transmitted in either the clockwise (t = �) or in the anti-
clockwise (t = �) direction, as illustrated in Fig. 5. Therefore,
if a trilocal model existed, one should be able to define the
following joint probability distribution for t ∈ {�,�}:

q(i, j, k, t ) = Pr(a = 1̄i, b = 1̄ j, c = 1̄k, t |
all parties output one token)

= 4 Pr(a = 1̄i, b = 1̄ j, c = 1̄k, t ),

where the second equality is due to the fact that
Pr(all parties output one token) = 1

4 and it includes the event
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FIG. 6. The inflated triangle scenario where α, β, and γ are
the sources and the rest are observable variables. The inflation order
is set to be 2. The copies are created such that Aα=x,β=y,γ=z = Axyz

where x, y, z ∈ {1, 2} and the symbol • means that the variable in
question does not have a dependency on that particular source.

of {a = 1̄i, b = 1̄ j, c = 1̄k, t}. Therefore, we can explicitly
compute some of the marginals of q(i, j, k, t ), for example,
it should satisfy

q(i, j, k) =
∑

t

q(i, j, k, t ) = 1

2
(uiu juk + viv jvk )2, (C3)

q(i, t =�) =
∑

j,k

q(i, j, k, t =�) = 1

2
u2

i , (C4)

and similar constraints on q(i, t =�), q( j, t ), and q(k, t ).
Equation (C3) is straightforward from Eq. (C2), and

Eq. (C4) can be derived from the fact that Alice’s output must
be independent of α:

q(i, t =�) = 4 Pr(a = 1̄i, α �→ B, γ �→ A, β �→ C)

= 4 Pr(a = 1̄i, α �→ C, γ �→ A, β �→ C)

= 4 PrRGB4(a = 1̄i, b = 0̄, c = 2̄) = 1
2 u2

i ,

where, for example, α �→ B means that the source α, which is
shared between B and C, sends its only token to the party B.

Assuming the existence of a trilocal model, one should
be able to define a distribution q(i, j, k, t ) that is consistent
with all of the marginals (C3), (C4). Note that this satisfying
marginal constraints problem is indeed a linear program (LP).
The authors of Ref. [15] demonstrated that this LP has no
solution for some specific choices of the operators {1̄0, 1̄1},
notably when 0.785 ≈ u2

max < u2 < 1 which concludes the
proof. For completeness, we mention this proof in detail in
Appendix D.

A key distinction between classical and quantum token
counting strategies is that in the quantum approach, when

all parties have received one token, the global state is in a
coherent superposition of tokens cycling clockwise and anti-
clockwise. However, in the classical method the whole system
is either in state of tokens cycling clockwise or anticlockwise
with some probability. For example,

Classical :
1

2
(| �〉〈� | + | �〉〈� |),

Quantum :
1√
2

(|�〉 + |�〉).

The creation of a global coherent superposition in the net-
work through local measurements in quantum token counting
strategies is ultimately what allows these approaches to create
network nonlocality.

APPENDIX D: THERE IS NO q(i, j, k, t ) COMPATIBLE
WITH THE MARGINALS

Lemma 1. There exists no valid distribution q(i, j, k, t )
satisfying the mentioned marginals (C3), (C4) and similar
ones on q(i, t =�), q( j, t ), and q(k, t ), when 0.785 ≈ u2

max <

u2 < 1. Meaning that, this linear program has no feasible
solution.

Proof. Let us introduce the probability distribution q̃ which
is the symmetrization of q over i, j, k:

q̃(i, j, k, t ) = 1
6 [q(i, j, k, t ) + q( j, k, i, t ) + q(k, i, j, t )

+ q(i, k, j, t ) + q(k, j, i, t ) + q( j, i, k, t )].

Clearly, q̃ still satisfies the same given constraints as q. Let
ξi jk := q̃(i, j, k, t =�) − q̃(i, j, k, t =�). We have

q̃(i, j, k, t =�) = 1
2 [q̃(i, j, k) + ξi jk],

q̃(i, j, k, t =�) = 1
2 [q̃(i, j, k) − ξi jk].

For simplicity, we write ξ0 := ξ000, ξ1 := ξ100 = ξ010 = ξ001,
ξ2 := ξ110 = ξ101 = ξ011, and ξ3 := ξ111.

Hence, with (C3), we can write the marginals

q̃(k, t =�) = 1

2

∑
i, j

(
(uiu juk + viv jvk )2

2
+ ξi jk

)

= 1

2

⎛
⎝u2

k + v2
k

2
+

∑
i j

ξi jk

⎞
⎠,

q̃(k, t =�) = 1

2

∑
i, j

(
(uiu juk + viv jvk )2

2
− ξi jk

)

= 1

2

⎛
⎝u2

k + v2
k

2
−

∑
i j

ξi jk

⎞
⎠.

As
∑

i j ξi j0 = ξ0 + 2ξ1 + ξ2,
∑

i j ξi j1 = ξ1 + 2ξ2 + ξ3, we
deduce

ξ0 = u2 − v2

2
− 2ξ1 − ξ2 = u2 − 1

2
− 2ξ1 − ξ2,

ξ3 = v2 − u2

2
− ξ1 − 2ξ2 = 1

2
− u2 − ξ1 − 2ξ2.
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We have the positivity conditions

0 � q̃(0, 0, 0,�) = (u3 + v3)2

4
− ξ0

2
,

0 � q̃(1, 1, 1,�) = (v3 − u3)2

4
+ ξ3

2
,

hence,

ξ2 � u2 − 1 + (u3 + v3)2

2
− 2ξ1,

ξ2 � 1 + (v3 − u3)2

4
− u2

2
− ξ1

2
,

leading to

ξ1 � u2 − 2[1 + (u3 + v3)2] + 1 + (v3 − u3)2

6
.

Finally, we use the positivity condition

0 � q̃(0, 0, 1,�) = (u2v − uv2)2

4
− ξ1

2
to get

3(u2v−uv2)2−6u2+2[1 + (u3 + v3)2] + 1 + (v3 − u3)2 � 0.

For v =
√

(1 − u2) and v < u, this inequality leads us to

u2
max � u2 with u2

max = −3+(9+6
√

2)2/3

2(9+6
√

3)1/3 ≈ 0.785, which leads us

to contradiction for u2
max < u2 < 1. �

APPENDIX E: PROOF OF NONLOCALITY BY INFLATION

To prove the nonlocality of several variations of the coarse-grained Fritz distribution and to corroborate the results of the
neural network a Web inflation of the triangle scenario was used [6]. Each source was inflated up to two copies (see Fig. 6).

The following two maximal expressible sets were used to run the inflation linear program. Due to the factorization of these
probabilities, the inequalities obtained from the dual solution would contain the corresponding quadratic and cubic elements:

P(A11•A22•B1•1B2•2C•11C•22) = P(A11•B1•1C•11)P(A22•B2•2C•22), (E1)

P(A12•B2•1C•12) = P(A12•)P(B2•1)P(C•12). (E2)

The inflation linear program showed a varying sensitivity for different combinations of Alice’s and Bob’s outputs in detecting
nonlocality. Therefore, in some cases using only (E1) was sufficient. Following is a table that presents the results of the inflation
linear program for some coarse-grained Fritz distributions:

A

0 [
00
01

1 [
2 [

10
11

B

0 [
1 [

00
01

2 [
10
11

C

0 [
00
01

1 [
2 [

10
11

Noise tolerance

≈0.87

A

0 [
00
01

1 [
2 [

10
11

B

0 [
1 [

00
01

2 [
10
11

C

0
[
-
00
01
10

1[11

Noise tolerance

≈0.87 (E3)

A

0 [
00
01

1 [
2 [

10
11

B

0 [
00
01

1 [
2 [

10
11

C

0 [
00
01

1 [
2 [

10
11

Noise tolerance

≈0.81

A

0 [
00
01

1 [
2 [

10
11

B

0 [
00
01

1 [
2 [

10
11

C

0
[
-
00
01
10

1[11

Noise tolerance

≈0.97 (E4)

A

0 [
00
01

1 [
2 [

10
11

B

0 [00

1 [
01
10

2 [11

C

0 [
00
01

1 [
2 [

10
11

Noise tolerance

≈0.85

A

0 [
00
01

1 [
2 [

10
11

B

0 [00

1 [
01
10

2 [11

C

0
[
-
00
01
10

1[11

Noise tolerance

≈0.96 (E5)

The boldface numbers designate the new, merged outputs and A, B,C are Alice, Bob, and Charlie, respectively, and we use
the notation a′x for the outputs of A, b′y for B, and xy for C. In order to obtain the noise tolerances in (E3) and (E4) both
expressible sets (E1) and (E2) were implemented in the linear program, however, in (E5) only the expressible set in (E1) was used.
Additionally, to obtain the noise tolerance for both of the distributions in (E4) noncertificate-type constraints were implemented
in the linear program. These equality constraints are of the form

P(A11•A22•B2•1B2•2C•21C•22) = P(A11•)︸ ︷︷ ︸ P(A22•B2•1B2•2C•21C•22)︸ ︷︷ ︸ .

injectable not injectable
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In total there are three such semiknowable (semi-injectable) sets with the factorized injectable parts [6] being P(B1•1) and
P(C•11) for the other two semiknowable sets, respectively. Merging Alice’s first two outputs, doing the same for Bob’s middle
two outputs and Charlie’s first three outputs as depicted in the right side of (E5) the following inequality was obtained from the
linear program:

P(000)[P(020) + P(101) + P(111) + P(120) + P(201) + P(211) + P(220)]P(001)[P(020) + P(021) + P(120) + P(121)

+ P(220) + P(221)] + P(101)[P(110) + P(120) + P(121) + P(200) + P(210) + P(220)] + P(010)[P(101) + P(201)]

+ P(020)[P(101) + P(201)] + P(021)[P(101) + P(201)] + P(100)[P(101) + P(111)] + P(110)[P(210) + P(220)]

+ P(201)[P(220) + P(221)] + P(120)[P(200) + P(201) + P(210) + P(220)] + P(121)[P(200) + P(201)

+ P(210) + P(220)] + P(111)[P(200) + P(210) + P(220)] + P(200)P(220) − P(100)P(221) � 0,

where P(ABC) = P(i jk) with i, j ∈ {0, 1, 2} and k ∈ {0, 1}. However, since the distribution at the right side of (E5) was obtained
by merging outcomes in the original 4-output Fritz distribution, many of the probabilities in this inequality are zero. Therefore,
the inequality violated by this distribution was in fact

P(000)[P(020) + P(120) + P(211)] + P(120)[P(200) + P(210)] + P(110)P(210) − P(100)P(221) � 0.

The violation of this inequality by the noiseless distribution (E5) is ≈ −1.6 × 10−3.
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