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Robust phase metrology with hybrid quantum interferometers against particle losses
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Entanglement is an important quantum resource to achieve high-sensitivity quantum metrology. However, the
rapid decoherence of quantum entangled states, due to the unavoidable environmental noise, results in practically
the unwanted sharp drop of the measurement sensitivity. To overcome such a difficulty, here we propose
a spin-oscillator hybrid quantum interferometer to achieve the desirable precise estimation of the parameter
encoded in the vibrations of the oscillator. Differing from the conventional two-mode quantum interferometers
input by the two-mode NOON state or entangled coherent states, whose achievable sensitivities are strongly
limited by the decoherence of the entangled vibrational states, we demonstrate that the present interferometer,
input by a spin-dependent two-mode entangled state, possesses a manifest advantage; i.e., the measurement
sensitivity of the estimated parameter is not influenced by the decoherence from the spin-oscillator entanglement.
This is because, by applying a spin-oscillator disentangled operation, the information of the estimated parameter
encoded originally in the vibrational degrees can be effectively transferred into the spin degree and then can
be sensitively estimated by the precise spin-state population measurements. As consequence, the proposed
hybrid quantum interferometer possesses manifest robustness against the particle losses of the vibrational modes.
Interestingly, the achieved phase measurement sensitivity can still surpass the standard quantum limit obviously,
even if a relatively large number of particle loss occurs in one of the two modes. The potential application of the
proposed spin-oscillator hybrid quantum interferometer is also discussed.
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I. INTRODUCTION

In recent years, quantum metrology utilizing various quan-
tum resources to beat the standard quantum limit (SQL) has
become one of the hot topics in quantum information pro-
cessing. Typically, quantum entanglement, as an important
quantum resource, has been widely used to improve the mea-
surement sensitivity of quantum interferometers. For example,
if the Mach-Zender interferometer (MZI) is input by the
NOON state, the achieved phase measurement sensitivity can
reach the Heisenberg limit (HL) [1–3]. In fact, quantum in-
terferometers with NOON state inputs have been widely used
to implement the super-resolution quantum lithography [1],
quantum microscopy [3], and biosensing [4,5], etc. However,
a practical problem for these applications is that the NOON
state is inherently very fragile in various noise environments.
Typically, with the loss of the photons the coherence of the
interferometer decreases rapidly, leading to the achieved mea-
surement sensitivity decaying quickly [6–10].

To overcome such a practical problem, a series of proposals
have been proposed [7] to the MZIs typically including the
squeezed state inputs [11–16]), rather than the NOON state, to
improve the robustness against the photon loss. However, the
generation and manipulation of the strong squeezing states is
still a great challenge for the current experimental technology.
Therefore, the MZI input by either the entangled coherent
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states (ECSs) or the Schrödinger-cat-states has become a hot
research topic recently [7]. Although these states are indeed
more robust than the NOON state with respect to the noise
of particle loss [7,8], the off-diagonal elements of the density
matrix for these states, which provide the quantum enhance-
ment of sensitivity beyond the SQL, still decay exponentially
rapidly with the loss of particles [6]. Therefore, it is still
a challenge to achieve the high metrological sensitivity far
beyond the SQL with these states, especially for large particle
numbers. In addition, a detector with the particle number re-
solved is usually required to achieve high-sensitivity detection
beyond the SQL. This is also a big challenge especially when
the number of particles is large. Therefore, designing a novel
quantum interferometer that is robust to the typical noise of
particle loss as well as easy to readout is still an important
issue.

Recently, the spin-oscillator hybrid quantum interferome-
ters, a natural generalization of the MZI, have attracted much
attention for quantum metrology [17–21]. Compared with the
conventional two-mode interferometers, the spin-oscillator
hybrid interferometers can well combine the advantages of
the spin system and the oscillator one. Quantum harmonic
oscillators are very sensitive to the changes of external en-
vironmental parameters, and thus they can be used as the
ideal probes to achieve sensitive detection; the spin states
are relatively easier to manipulate, and thus the spin de-
grees of freedom can be used to achieve the high-fidelity
manipulation and readout of the oscillator states. In fact,
these spin-oscillator hybrid quantum systems have been
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experimentally realized with various platforms, typically, e.g.,
the trapped ions [22,23], superconducting circuits [20,21],
optomechanics [24], the diamond color centers [18–20], etc.
In particular, in a trapped ion system, the coupling between
the spin (i.e., the internal atomic levels) of the ion and its
external vibration can be achieved by applying the designable
laser pulses [25]. The parameter information encoded in the
external state of the ion (such as the displacement amplitude
caused by an external weak force) can be indirectly mea-
sured by probing the population of the ionic internal spin
states [23,26]. Physically, the detection sensitivity of the spin
state is limited by its decoherence, due to the interaction
with the harmonic oscillator [27]. It was shown that the spin
decoherence of spin-oscillator interferometers can be effec-
tively suppressed by squeezing the vacuum fluctuation of the
oscillator [22,28]. Furthermore, Ref. [23] showed that, by
applying a reverse action to the harmonic oscillator before
the spin-state detection, the internal and external states of
the trapped ions can be completely decoupled. As a conse-
quence, the fidelity of the spin-state detection can be enhanced
significantly.

A natural question is, are these suppression methods of
the spin decoherence also applicable to the spin-oscillator hy-
brid interferometer with a two-dimensional oscillator? More
interestingly, are the practical precision measurements robust
against the unavoidable environmental noise? In the follow-
ing, we give positive answers to these questions. Take a
spin-oscillator hybrid quantum interferometer with a two-
dimensional quantum harmonic oscillator as an example,
we investigate in this paper how to achieve the desired
precise measurement of the rotation parameter � with a
spin-dependent entangled state. Here, the two-dimensional
harmonic oscillator is equivalent to a conventional two-mode
interferometer, which is used to encode the information of
the rotation parameter (�); the spin is used as an auxiliary
degree of freedom to generate the desirable input state of the
interferometer and the readout of the parameter information
by performing the spin population detection. With certain
spin-dependent entangled states as input, the spin-oscillator
entanglement can be completely decoupled by applying the
proper spin-oscillator inverse operations, yielding that the in-
formation encoded in the two-dimensional oscillator states is
transformed as the relative phase of the spin states. Therefore,
by performing the high-fidelity spin-state detection, the highly
sensitive measurement of the parameter can be achieved.
More importantly, compared with the conventional two-mode
interferometer input with the NOON state and ECSs [23], we
demonstrate that the proposed hybrid quantum interferometer
is more robust to the noise induced by particle loss of the
oscillator.

The paper is organized as follows. In Sec. II, we introduce
a general model of the hybrid spin-oscillator interferometer
input with a general spin-dependent entangled state, to imple-
ment the parameter estimation. In Sec. III, we investigate how
to improve the measurement sensitivity of the interferometer
by inputting a special NOON-like spin-dependent entangled
state. The specific measurement of parameter � through the
spin projective measurement is also discussed. In Sec. IV,
the performance of the interferometer is investigated when the
particle loss occurs in the vibrating mode of the oscillator. In

FIG. 1. A hybrid spin-oscillator quantum system (a) is used to
implement the spin-oscillator quantum interferometer (b) with in-
put state |�i〉 = |N〉a|0〉b ⊗ |+〉. A pair of beam splitters (BS), a
controlled-phase gate (CPG) eiâ† âσz/2, and a reverse CPG e−iâ† âσz/2

are applied before and after the phase accumulation ei�T Jy in the two-
mode harmonic oscillator. Also, a pair of BSs, described by eiπJy/2

and e−iπJy/2 rotations operations, are applied to split and recombine
the two modes of oscillator. Here, Jy = (â†b̂ − âb̂†)/2i represents the
phase generator with â†(â) and b̂†(b̂) being the generation (annihila-
tion) operator for mode a and mode b, respectively. Ra and Rb are
the particle loss rates of mode a and mode b, respectively. Finally,
the information of the estimated parameter � is extracted by the
projective measurement on the spin.

Sec. V, we summarize our results and discuss their experi-
mental feasibility.

II. SPIN-TWO-MODE-OSCILLATOR HYBRID QUANTUM
INTERFEROMETER

We consider a hybrid quantum interferometer system
[17–21], as shown schematically in Fig. 1, wherein a 1/2-
spin is coupled to a two-dimensional harmonic oscillator.
The parameter � to be estimated is encoded in the two-
mode oscillator by the designed time-evolution with the
time-independent Hamiltonian Ĥ = �Ĥ0, with Ĥ0 being the
Hamiltonian of the oscillator. The spin is not only used to
generate the desired spin-dependent entanglement of the hy-
brid quantum system but also serves as a detector to read out
the information for the parameter estimations. Without loss of
generality, we assume that the hybrid quantum interferometer
is prepared in the initial state (i.e., the input state of the
interferometer):

|�i〉 = 1√
2

[|↑〉|ψ1〉 + |↓〉|ψ2〉], (1)

where |ψ1〉 and |ψ2〉 denote the quantum states of the two-
dimensional harmonic oscillator, and |↓〉 and |↑〉 are the spin
up and spin down states of the spin. Obviously, if |ψ1〉 =
|ψ2〉, then the harmonic oscillator state and the spin state are
separable and unentangled. However, when |ψ1〉 �= ψ2〉, |�i〉
becomes a spin-dependent entangled state.

Supposed that the parameter � is encoded by the Hamil-
tonian Ĥ = �Ĥ0 of the system, which would evolve from
the initial state |�i〉 to the output state: |�(�)〉 = ei�T Ĥ0 |�i〉,
with T being the free evolution time of the system. As a
consequence, the precise measurement of the parameter � can
be realized by detecting the output state of the interferometer.
According to the Cramer-Rao formula [29], the measurement
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sensitivity theoretically satisfies the inequality

�� �
1√

nF Q(|�i〉)
. (2)

Here, n represents the number of measurements and F Q(|�i〉)
is the quantum Fisher information (QFI) of the state |�i〉,
which can be calculated as

F Q(|�i〉) = 4
(〈�i|Ĥ2

0 |�i〉 − |〈�i|Ĥ0|�i〉|2
)

= F Q
O (|�i〉) + F Q

E (|�i〉), (3)

with F Q
O (|�i〉) = 2[(�Ĥ0|ψ1〉)

2 + (�Ĥ0|ψ2〉)
2] and F Q

E (|�i〉) =
|〈ψ1|Ĥ0|ψ1〉 − 〈ψ2|Ĥ0|ψ2〉|

2
, also (�Ĥ0|ψ j〉)

2 =
〈ψ j |Ĥ2

0 |ψ j〉 − 〈ψ j |Ĥ0|ψ j〉2, j = 1 and 2. Obviously, for
|ψ1〉 = |ψ2〉, we have F Q(|�i〉) = 4(�Ĥ0|ψ1〉)

2. This is the
result of the conventional two-mode quantum interferometer
without spin entanglement. Interestingly, for |ψ1〉 �= |ψ2〉
and the conditions |ψ2〉 = R|ψ1〉, R†Ĥ0R = −iĤ0 and
〈ψ1|Ĥ0|ψ1〉2 �= 0 are satisfied, the QFI of the state |�i〉
increases, and thus the sensitivity of the parameter estimation
can be improved. Specifically, for Ĥ0 = Jy, by choosing
R = eiπ â†â and |ψ1〉 = |iα〉a|β〉b, with |iα〉a and |β〉b being
respectively the coherent states of mode a and mode b
[27], we have (�Ĥ0|ψ j〉)

2 = |α|2 + |β|2 ( j = 1 and 2) and

[〈ψ1|Ĥ0|ψ1〉 − 〈ψ2|Ĥ0|ψ2〉]
2

= 4Re(αβ )2. In particular,
when α = |α| = β 	 1, the contribution of F Q

E (|�i〉) to the
QFI is much larger than that of F Q

O (|�i〉). In this case, the
sensitivity of the parameter estimation is mainly determined
by the spin-oscillator entanglement.

As we know, with the NOON state or the ECSs as input, the
conventional two-mode interferometer without spin depen-
dence can also achieve the precise measurements approaching
the HL [2,7]. However, the single photon-resolved detectors
are usually required to achieve the desired sensitivity. For
the present system, it is still a big challenge to realize the
resolvable detection of the vibrational phonon numbers. To
avoid such a difficulty, transferring the estimated parameters
encoded in the harmonic oscillator states to the spin states and
then detecting them by the spin projection measurement is
particularly desired. Based on this idea, the precise measure-
ment of parameter � encoded in the harmonic oscillator state
can be accomplished by the following steps.

(i) Let the spin-oscillator interferometer prepared in a
spin-dependent entangled state undergo a dynamic evolution
Û (�), i.e., |�i〉 → |ψ (�)〉 = Û (�)|�i〉 for implementing the
parameter encoding.

(ii) Apply a global operation F̂ = exp(iηŜ ⊗ Â) (with η

being the interaction strength between the spin and the oscil-
lator) on the state |ψ (�)〉 to transfer the parameter into the
spin state. Here, Ŝ and Â represent the operators acting on
the spin state and the harmonic oscillator state, respectively.
After such an operation, the state |ψ (�)〉 of the interferometer
evolves into

|ψ f 〉 = F̂ |ψ (�)〉. (4)

(iii) Perform the spin projection measurements after a
π/2-pulse operation on the spin, which is equal to a Hadamard
gate transforming the state |↓ (↑)〉 into |+ (−)〉. The probabil-

ity of the spin at the state |↓〉(|↑〉) is obtained as

P↓(�) = 〈ψ (�)|F̂ †(|+〉〈+| ⊗ I )F̂ |ψ (�)〉, (5)

with I being the identity operator of the oscillator, |↓〉
(|↑〉) being the eigenstate of the Pauli operator σz with
eigenvalue 1 (−1), P↑(�) = 1 − P↓(�), and |+〉 = (|↓〉 + |↑
〉)/

√
2. Specifically, if Ŝ = σz, then Eq. (5) can be specifically

expressed as

P↓(�) = 1
2 [1 + 〈ψ2|e−i�T H0 e2iηÂei�T H0 |ψ1〉]. (6)

Obviously, if η = 0 or [Â, Ĥ0] = 0, the spin measurement
P↓(�) does not contain any information of the parameter �,
and thus such a measurement is invalid. While, for [Ĥ0, Â] �=
0, the result of the spin measurement must be a function of
the parameter �. Consequently, according to the error propa-
gation formula, the sensitivity of the parameter estimation can
be expressed as

�� =
√

P↓(�) − P2
↓ (�)

d|P↓(�)|/d�
. (7)

This indicates that the sensitivity of the parameter estimation
is closely related to the variation of |P↓(�)| with respect to the
estimated parameter �. For example, if |〈ψ ′

2|ψ ′
1〉| �= 1 with

|ψ ′
j〉 = ei(−1) j+1ηÂei�T Ĥ0 |ψ j〉 ( j = 1, 2), the value of |P↓(�)|

may decay with the increase of �T , yielding the decrease of
measurement sensitivity. Typically, as shown in Ref. [27], if
the spin-dependent cat state is utilized to measure the param-
eter �, the spin measurement result

P̃↓(�) = 1
2 [1 + e2iαβ sin(�T )e−8α2 sin2(�T/2)] (8)

decays exponentially with the increase of �T � π , due to
the spin-state decoherence. Above, α and β are the coherent
displacement amplitudes of mode a and mode b, respectively.
Obviously, in this case, the high sensitivity of the parameter
estimation can only be achieved for certain �T satisfying
the condition 8α2 sin2(�T/2) � 1, such as �T � 1. Alter-
natively, in the following, we prove that, by inputting a proper
state to the interferometer and then performing the suitable
quantum operations, the above spin-decoherent effect induced
by spin-oscillator entanglement can be effectively avoided.
As a consequence, the desired precise measurements of the
arbitrary �T parameter can be achieved with the proposed
spin-oscillator hybrid quantum interferometer.

III. QUANTUM METROLOGY BY USING THE HYBRID
INTERFEROMETER WITH NOON-LIKE STATE INPUTS

From Eq. (6) we can see that the result of the spin-
state population measurement is related to the initial state,
the dynamic evolution, and the spin-oscillator interaction in
the interferometer. Physically, the spin-oscillator entangle-
ment might lead to spin decoherence, which decreases the
sensitivity of spin-state population measurement. Recently,
Gilmore et al. [23] has demonstrated an effective approach
to avoid such a limit. For the weak-force measurements with
the one-dimensional vibration of a trapped ion crystal, they
showed that the influence of the spin-oscillator entanglement-
induced decoherence on the population measurement can be
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effectively avoided by applying an inverse spin-dependent
disentangled operation. In this section, we generalize such an
idea to the proposed two-dimensional oscillator by similarly
performing an inverse spin-oscillator operation to disentangle
the spin and the oscillator before the spin-state population
measurement.

For a typical parameter estimation model, wherein the dy-
namical evolution of the two-mode oscillator is described by
the Hamiltonian Ĥ0 = Jy, suppose the hybrid interferometer is
input with a spin-dependent entangled state,

|�h〉 = Ĉa

(
π

2

)
ei π

2 Jy |N, 0〉|+〉

= (−i)N

√
2N+1N!

[(â† + ib̂†)N |0a, 0b〉|↓〉

+ (−1)N (â† − ib̂†)N |0a, 0b〉|↑〉], (9)

with |N, 0〉 = |N〉a|0〉b and |±〉 = (|↑〉 ± |↓〉)/
√

2 being the
Fock state of the oscillator and the spin superposition state, re-
spectively. Above, Ĉa(π/2) = eiπ â†âσz/2 is a controlled-phase
gate (CPG) [30–32], acting on mode a of the oscillator, to
generate the desired entangled state. The estimated parameter
� is encoded into the hybrid quantum interferometer under a
free evolution:

|�(�)〉 = ei�T Jy |�h〉. (10)

The achievable sensitivity of its estimation is determined by
the QFI of the output state |�(�)〉 of the interferometer. With

Eq. (3), we have �Jy|ϕk〉 = 0 and |〈ϕ1|Jy|ϕ1〉 − 〈ϕ2|Jy|ϕ2〉|
2

=
N2, with |ϕk〉 = e(−1)k+1iπ â†â/2eiπ/2Jy |N, 0〉 (k = 1 and 2), and
thus F Q(|�(�)〉) = N2. According to the Cramer-Rao in-
equality [29], the sensitivity of the estimated parameter can
approach the HL. To implement the desired parameter estima-
tion by using the spin-state population measurement, we apply
an inverse CPG Ĉ†

a (π/2) and rotation e−iπJy/2 to the output
state, and we obtain

|� f 〉 = e−iπJy/2Ĉ†
a (π/2)|�(�)〉

= e−iπJy/2e−iπ â†âσz/2eiθJy eiπ â†âσz/2eiπJy/2|N, 0〉|+〉
= 1√

2
(eiNθ/2|↓〉 + e−iNθ/2|↑〉)|N, 0〉, (11)

by which the parameter information is transferred into the
relative phase of the spin state, with θ = �T . After a π/2
pulse, the population of the spin state |↓ (↑)〉 reads as follows:

P↓(↑)(θ ) = 1
2 [1 ± cos(Nθ )], (12)

which implies that the sensitivity to estimate the phase θ can
be obtained as

�θ = 1

N
. (13)

With the phase being precisely estimated, the parameter �

can be precisely determined with the corresponding sensitiv-
ity �� = �θ/T . Equations (12) and (13) show clearly that
the spin population oscillates rapidly with the phase θ = �T
and the higher sensitivity of the parameter estimation can be
achieved by using the Fock state |N〉 with the larger phonon
number of mode a.

Note that, although the conventional two-mode interfer-
ometer with the NOON state input could also be utilized to
implement the precise measurement approaching the HL, the
required phonon-number-resolvable detection is a challenge
to be realized in practice. More importantly, the sensitivity
reduces significantly with the loss of photon number, as the
input NOON state is very fragile in the realistic environment.
In the next section, we show that the interferometer proposed
above is very robust against the phonon loss under certain
conditions, alternatively.

IV. ROBUSTNESS FOR THE “PARTICLE” LOSSES

Physically, an entangled quantum system is usually fragile
and its coherence is easily lost under the disturbance of the
environmental noise [7]. Due to this decoherence, the sensitiv-
ity of the parameter estimation achieved by the interferometer
with an entangled state input would decrease. For example,
the photon loss affects significantly the sensitivity of the typ-
ical two-mode interferometers [7,10]. For the spin-oscillator
hybrid quantum interferometer proposed here, the vibrational
phonon loss of the oscillator is also one of the main noises
and leads to the decoherence of the hybrid quantum system.
This will significantly reduce the achievable sensitivity of the
parameter estimation.

Physically, the particle (e.g., phonon) loss of the spin-
oscillator hybrid interferometer can be described by a beam
splitter [9], wherein the noisy environment can be represented
as a thermal bath in the vacuum state |0E 〉. As a consequence,
the input state (9) of the hybrid quantum interferometer should
be replaced as

|�〉l = exp[ηa(â†ĉ − âĉ†)] exp[ηb(b̂†ê − b̂ê†)]|�h〉|0E 〉,
(14)

where ĉ†(ĉ) and ê†(ê) are the creation (annihilation) operators
of the environment interacting with mode a and mode b of the
oscillator, respectively. Ra = sin2(ηa) and Rb = sin2(ηb) are
the corresponding loss rates. Considering these particle losses,
Eq. (14) can be rewritten as (see Appendix A)

|�〉l = Ĉa(π/2)eiπJy/2

√
N!

(uâ† + vb̂† + pê + qĉσz )N

× |0a0b, 0E 〉|+〉, (15)

where u = [cos(ηa) + cos(ηb)]/2, v = [cos(ηa) −
cos(ηb)]/2, q = i sin(ηa)/

√
2, and p = sin(ηb)/

√
2. After the

second CPG, by tracing the wave function of the environment
and the harmonic oscillator, the reduced density matrix of the
spin state is obtained as (see Appendix B for detail)

ρL = 1
2 (|↓〉〈↓| + |↑〉〈↑|) + R|↓〉〈↑| + R∗|↑〉〈↓|). (16)

It is seen that the information of the parameter θ = �T is
related to the off-diagonal element

R = (u2eiθ + v2e−iθ + |p|2 − |q|2)N (17)

of the above reduced density matrix. Similar to the Ramsey
interference, after a π/2-pulse operation the measured result
of the spin-state population is

PL
↓ (θ ) = 1

2 [1 + |R| cos (φ(θ ))], φ(θ ) = arg(R), (18)
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FIG. 2. The off-diagonal element of the reduced matrix of spin
|R| versus the phase θ for the particle loss occurring only in one
mode (mode b [panel (a)] or mode a [panel (b)]) with different loss
rates.

Obviously, with the error propagation formula, the estimated
sensitivity of the θ parameter can be expressed as

�θ =
√

PL
↓ − (PL

↓ )2

|dPL
↓ /dθ | ≈

√
1 − |R|2 cos2 (φ(θ ))

|R|| sin (φ(θ ))dφ(θ )/dθ | .
(19)

It is seen from Eq. (19) that the sensitivity �θ is mainly
determined by the value of the off-diagonal element R [i.e.,
the value of |R| and φ(θ ) = arg(R)]. Obviously, when |R| = 1,
the spin state ρL of Eq. (16) is a pure state, and the sensi-
tivity of Eq. (19) depends only on the derivation dφ(θ )/dθ

and becomes �θ ≈ 1/|dφ(θ )/dθ |. While |R| < 1, the state
ρL becomes a mixed state, and the estimation sensitivity �θ

decreases. Here the value of |R| is related to the loss rates Ra

and Rb and to the value of θ as shown in Eq. (17). Figure 2
shows how the value of the off-diagonal element for the spin
state varies with the phase θ for single-mode loss (either mode
a or mode b). It is shown that the value of |R| ≈ 1 is achieved
around θ = 0 (or θ = π ) as long as the particle loss only
occurs in mode b with Ra = 0 (or mode a for Rb = 0). Though
with the increase of loss rate the value of |R| decays more
rapidly with θ , and |R| ≈ 1 can still be achieved. This implies
that the high sensitivity can still be achieved in this case as
shown below. While the particle loss occurs in both modes,
the value of |R|(� 1) also drops quickly and cannot achieve
1 again for any θ as shown in Fig. 3. Given θ is precisely
determined, the value of � can be estimated finally with the
sensitivity being �� = �θ/T for a fixed evolution time T .

Note that the influence of different loss rates for two modes
on the estimated sensitivity of the phase achieved by the
conventional two-mode interferometers has been widely in-
vestigated [6,7,33–36]. For example, Refs. [6,33] have proven
that in a two-mode interferometer with either NOON state
or ECS input, the sensitivity of the parameter estimation is
mainly determined by the larger loss rate of the two modes.
Therefore, as long as one mode loses a relatively large parti-
cle number, the achieved sensitivity of the estimation would
rapidly decrease regardless of whether the other mode experi-
ences the particle loss. Alternatively, with the hybrid quantum

FIG. 3. The off-diagonal element |R| of the reduced density ma-
trix of spin versus the phase θ under the different particle loss rates
of mode a. Here, the loss rate for mode b is fixed as Rb = 0.5, for
N = 25.

interferometer proposed here, the optimal sensitivity achieved
by using this hybrid system is mainly determined by the
smaller loss rate since the value of |R| mainly depends on the
smaller loss rate shown in Fig. 3. Figure 4 shows how the
variation of the phase measurement sensitivity, characterized
by 1/�θ in the y axis, changes with the phase θ for different
loss rates. Obviously, the larger value of 1/�θ corresponds to
the higher achievable sensitivity of the phase estimation. It can
be seen that, if particle loss only occurs in mode b, the optimal
sensitivity of the phase estimation can be achieved at θ ≈ 0.
Typically, even if the loss rate of mode b is relatively large,
approaching, for example, 50%, the optimal sensitivity still
obviously surpasses the SQL. To show more clearly the loss
robustness of the present hybrid interferometer input by |�h〉,
let us compare its reachable sensitivity with that typically
demonstrated with the conventional two-mode interferometer
input by the ECS [34]. Figure 5 shows that, if the particle loss
occurs only in one mode with the same rate, the sensitivity

FIG. 4. The sensitivity of the phase estimation, characterized by
1/�θ , changes with the phase θ for various loss rates of mode a. It
can be seen that the sensitivity is still far beyond the SQL though
the loss rate of mode a is large as Ra = 0.5 for the relatively large
particle N = 25, and Rb = 0.
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FIG. 5. The sensitivity, characterized by 1/�θ , achieved by the
present hybrid interferometry (marked by its input state |�h〉) com-
pared with that demonstrated by the conventional interferometer
input with the entangled coherent state (ECS) (typically in Ref. [34])
marked as |�E 〉 in the figure. It can be seen that, compared with the
counterpart for |ψE 〉, the sensitivity for |ψh〉 is much higher and still
far beyond the SQL under the same loss condition for Ra = 0.001,
0.1, and 0.5; Rb = 0; and θ = 0.01.

achieved by the present hybrid interferometer is much higher
than that achieved by the conventional two-mode interferom-
eter. Furthermore, even for a relatively small loss rate, such
as R = 0.1, the sensitivity with the ECS quickly decreases to
the SQL, while the sensitivity with |�h〉 is still significantly
high approaching the HL. Even if the loss rate is relatively
large, such as Rb = 0.5, the sensitivity with |�h〉 is still about
seven times larger than the SQL, typically for N = 100 and
θ = 0.01.

FIG. 6. (a) The sensitivity of the present hybrid interferometry
compared with that of the conventional interferometer under the
same condition with loss in both arms: Ra = 0.001, 0.01, and 0.02;
Rb = 0.3; and θ = 0.01 ∗ π . (b) The contour plot of the ratio of the
sensitivities, characterized by �θ|ψE 〉/�θ|ψh〉, versus the loss rate Ra

and the parameter θ (the inset figure) with fixed Rb = 0.3 and N =
100. One can see that the optimal sensitivity of the present hybrid
interferometer is still much higher than that of the conventional ones
(green dotted lines for Ra = 0.001, 0.01, and 0.02 which are almost
the same) even for the case in which loss occurs in both arms. Here,
�θ|ψE 〉 = 1/

√
FQE , with FQE given in Eq. (C7) in Appendix C.

Importantly, as shown in Fig. 6, the present hybrid interfer-
ometer is still robust if the particle losses occur in both of the
arms. In fact, from Fig. 6(a) one can be see that the estimated
sensitivity with the hybrid interferometer depends sensitively
on the loss rate Ra, i.e., with the smaller value of Ra the
higher sensitivity can be achieved. This is different from the
conventional interferometer, by which the achieved sensitivity
almost does not change with the loss rate Ra. Therefore, we
can see from Fig. 6(b) that the optimal estimation sensitivity
with the hybrid interferometer will be always higher than that
with the conventional ones, if the parameter Ra is sufficiently
small (such as Ra < 0.02).

V. CONCLUSIONS AND DISCUSSIONS

In summary, an entangled hybrid quantum interferometer
is proposed to implement the quantum precision measurement
of the parameters encoded in a two-dimensional oscillator.
It is shown that the parameter one wants to estimate can be
completely transferred into the spin state of the interferometer
by using the spin-oscillator interaction. After a free evolution,
another spin-oscillator disentangled operation is applied to
transfer the information into the spin state for the spin-state
population measurement. The significant advantage of this
precision measurement scheme is that the desired spin-state
population measurements can avoid the influence from the
spin-oscillator entanglement. Therefore, the achievable sen-
sitivity of the parameter estimation can be significantly high,
even if one of the vibrational modes of the oscillator exists
the dissipation due to the particle loss. By comparing with
the conventional spin-free two-mode bosonic interferometers,
wherein the loss of the particles in any mode would lead to
the rapid decrease of the sensitivity, we showed that the spin-
oscillator hybrid quantum interferometer input with a certain
spin-dependent entangled state proposed here is more robust
to the particle losses.

The key point for the implementation of the proposed
hybrid interferometers is to realize the CPG between the
spin and the oscillator. Theoretically, such a CPG can be
implemented by dispersively coupling a spin to an oscillator
with sufficiently strong coupling, which have been demon-
strated experimentally in the circuit QED system (where the
superconducting qubit is strongly coupled to the quantized
cavity) [37]. Given that several experimental platforms (such
as the well-known cooled trapping ions, the vibrational spin
ensembles, and also the electrons trapped in liquid helium,
[8,38–41]) have demonstrated the interaction between the
two-level atoms (spins) and the two-dimensional bosonic vi-
brations, and also that the desired vibrational Fock states
have been successful prepared experimentally [42,43], we
believe that the quantum metrology with the hybrid interfer-
ometers proposed here is feasible. Certainly, the robustness
of the proposed interferometer against the particle losses
in the vibrations of the two modes can also be discussed
similarly.
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APPENDIX A: DERIVATION OF EQ. (15)

In this Appendix, we provide the relevant derivations by
considering the effects of the population losses on mea-
surement accuracy. Following in the conventional two-mode
quantum interferometer, the particle loss can be modeled by

the beam splitters (BSs) of mode a and mode b. Here, the BSs
of loss are described by the operators B̂k j = exp[ηk (k̂† ĵ −
k̂ ĵ†)] (k j = ac and be) [9] with Rk = sin2(ηk ) (k = a and
b) representing the loss rate of the particles of mode a
and mode b, respectively. Alternatively, it can be also
represented by Êk j = exp[iηk (k̂† ĵ + k̂ ĵ†)] [6], wherein Êk j

and B̂k j are just different by a factor of phase π/2 and
thus are essentially the same. Therefore, with the particle
number loss, the input state of the interferometer can be
written as

|�〉l = exp[ηa(â†ĉ − âĉ†)] exp[ηb(b̂†ê − b̂ê†)]|�h〉

= Ĉa(π/2)eiπ/2Jy exp

{
i
ηa√

2
σz[(â

† + b̂†)ĉ + H.c.] + ηa√
2

[(b̂† − â†)ê − H.c.]

}
|N, 0〉|0E 〉|+〉, (A1)

where |0E 〉 = |0c, 0e〉 and Ĉa(π/2) = exp(iπ â†âσz/2). Above, we have used the relationships Ĉ†
a (φ)âĈa(φ) = Ĉa(φ)âeiφ ,

and eiθJy âe−iθJy = cos(θ/2)â − sin(θ/2)b̂, eiθJy b̂e−iθJy = cos(θ/2)b̂ + sin(θ/2)â, and X̂Ŷ = Ŷ Ŷ †X̂Ŷ , with X̂ being an arbitrary
operator and Ŷ any unitary one.

Using the Baker-Hausdorff formula [44],

eÂB̂e−Â =
∞∑

n=0

1

n!
[Â(n), B̂], (A2)

with [Â(n), B̂] = [Â, [Â(n−1), B̂]] and [Â(0), B̂] = B̂, and letting Â = i ηa√
2
σz[(â† + b̂†)ĉ + H.c.] + ηb√

2
[(b̂† − â†)ê − H.c.], B̂ = â†,

we have

[Â(2n+1), â†] = 2n

(
i
ηa√

2
σz

)2n+1

ĉ† + (−1)n2n

(
ηb√

2

)2n+1

ê†,

[Â(2n), â†] = 2n−1

(
i
ηa√

2
σz

)2n

(â† + b̂†) + (−1)n−12n−1

(
ηb√

2

)2n

(b̂† − â†). (A3)

Consequently, we have

eÂâ†e−Â =
∞∑

n=0

1

n!
[Â(n), â†]

=
∑
k=0

(iηaσz )2k

2(2k)!
(â† + b̂†) +

∑
k=0

(−1)k+1η2k
b

2(2k)!
(b̂† − â†) +

∑
k=0

(iηaσz )2k+1

√
2(2k + 1)!

ĉ† +
∑
k=0

(−1)kη2k+1
b√

2(2k + 1)!
ê†

= 1

2
[cos(ηa)(â† + b̂†) − cos(ηb)(b̂† − â†)] + 1√

2
i sin(ηa)σzĉ

† + 1√
2

sin(ηb)ê†

= uâ† + vb̂† + pê† + qĉ†σz, (A4)

where u = [cos(ηa) + cos(ηb)]/2, v = [cos(ηa) − cos(ηb)]/2, q = i sin(ηa)/
√

2, and p = sin(ηb)/
√

2. By noting that
eÂ|N, 0〉|0E 〉 = [eÂâ†eÂ]N/

√
N!|�〉, with |�〉 = |0a, 0b〉|0E 〉 being the vacuum of the oscillator system and the environment,

and combining with the above Eq. (A4), we get

|̃�〉l = exp(Â)|N, 0〉|0E 〉|+〉

= 1√
N!

(uâ† + vb̂† + pê† + qĉ†σz )N |�〉|+〉

= 1√
N!

N∑
k=0

Ck
N ŜN−k (pê† + qĉ†σz )k|�〉|+〉

= 1√
2N!

N∑
k=0

Ck
N ŜN−k (pê† + qĉ†)k|�〉|↓〉 + 1√

2N!

N∑
k=0

Ck
N ŜN−k (pê† − qĉ†)k|�〉|↑〉

≡ D̂|�〉|↓〉 + Û |�〉|↑〉, (A5)

062411-7



X. N. FENG, D. HE, AND L. F. WEI PHYSICAL REVIEW A 107, 062411 (2023)

where Ŝ = uâ† + vb̂† and

|�〉l = Ĉa(π/2)eiπ/2Jy |̃�〉l = Ĉa(π/2)eiπJy/2

√
N!

(uâ† + vb̂† + pê + qĉσz )N |0a0b, 0E 〉|+〉. (A6)

Thus, Eq. (15) is obtained.

APPENDIX B: DERIVATION OF EQ. (16) OF THE REDUCED DENSITY MATRIX OF SPIN UNDER PARTICLE LOSS

The state |̃�〉l can be also represented as a density matrix:

ρ̂ =D̂|�〉〈�|D̂†ρ↓↓ + Û |�〉〈�|Û †ρ↑↑ + D̂|�〉〈�|Û †ρ↓↑ + Û |�〉〈�|D̂†ρ↑↓, (B1)

where ρ↓↓ = |↓〉〈↓|, ρ↑↑ = |↑〉〈↑|, and ρ↓↑ = |↑〉〈↑| = ρ∗
↑↓. Tracing out the environment variables, we get

ρ̂1 =ρ̂00ρ↓↓ + ρ̂11ρ↑↑ + ρ̂01ρ↓↑ + ρ̂10ρ↑↓, (B2)

where |0s〉 = |0a, 0b〉 is the ground state of the two-dimensional oscillator, and also

ρ̂00 = TrE [D̂|�〉〈�|D̂†]

=
N∑

n=0,k=0

ŜN−kTrE [(pê† + qĉ†)k|�〉〈�|(p∗ê + q∗ĉ)n]Ŝ†(N−n)

2N!

=
N∑

k=0

ŜN−kTrE [(pê† + qĉ†)k|�〉〈�|(p∗ê + q∗ĉ)k]Ŝ†(N−k)

2N!

=
N∑

k=0

k∑
m=0

(
Cm

k

)2|p|2m|q|2k−2mm!(k − m)!ŜN−k|0s〉〈0s|Ŝ†(N−k)

2N!

= 1

2N!

N∑
k=0

k!(|p|2 + |q|2)kŜN−k|0s〉〈0s|Ŝ†(N−k), (B3)

and

ρ̂01 = TrE [D̂|�〉〈�|Û †]

=
N∑

k=0,n=0

ŜN−kTrE [(pê† + qĉ†)k|�〉〈�|(p∗ê − q∗ĉ)n]Ŝ†(N−n)

2N!

=
N∑

k=0

ŜN−kTrE [(pê† + qĉ†)k|�〉〈�|(p∗ê − q∗ĉ)k]Ŝ†(N−k)

2N!

=
N∑

k=0

k∑
m=0

(
Cm

k

)2|p|2m(−|q|2)k−mm!(k − m)!ŜN−k|0s〉〈0s|Ŝ†(N−k)

2N!

= 1

2N!

N∑
k=0

k!(|p|2 − |q|2)kŜN−k|0s〉〈0s|Ŝ†(N−k). (B4)

After the phase shift and the reverse CPG Ĉ†
a (π/2) and reverse rotation e−iπJy/2 operations, the output state of the hybrid system

can be represented as the following density matrix:

ρ̂L = eiθJzσzρ1e−iθJzσz . (B5)

Furthermore, by tracing out the harmonic oscillator variables and letting α = ueiθ/2 and β = ve−iθ/2, the reduced density matrix
of the spin state is finally obtained as

ρ̂s = ρ00|↓〉〈↓| + ρ11|↑〉〈↑| + R|↓〉〈↑| + R∗|↑〉〈↓|, (B6)
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with

ρ00 = Tr(ρ̂00)

=
N∑

k=0

N−k∑
l=0

(
Cl

N−k

)2|α|2l |β|2N−2k−2l l!(N − k − l )!k!(p2 + |q|2)k

2N!

= 1

2N!

N∑
k=0

(|α|2 + |β|2)N−k (|p|2 + |q|2)k (N − k)!k! = 1

2
(B7)

and

R = Tr(ρ̂01)

=
N∑

k=0

N−k∑
j=0

(
C j

N−k

)2[
Ck

N

]2
α2 jβ2N−2k−2 j j!(N − k − j)!k!(|p|2 − |q|2)k

2N!

= 1

2N!

∑
k=0

[
Ck

N

]2
(N − k)!k!(|p|2 − |q|2)k (α2 + β2)N−k

= 1

2
(α2 + β2 + |p|2 − |q|2)N . (B8)

Therefore, the reduced density matrix of the spin state is

ρ̂s = 1
2 (|↓〉〈↓| + |↑〉〈↑|) + ρ01|↓〉〈↑| + ρ10|↑〉〈↓|. (B9)

Thus, Eq. (16) can be obtained.

APPENDIX C: DERIVATION OF THE QFI OF A ECS WITH UNEQUAL PARTICLE LOSS IN BOTH OF THE ARMS

The general two-mode entangled coherent state (ECS) can be written as

|ψE 〉 = Nα (|α〉1 + |α〉2), (C1)

where |α〉 is a coherent state with the normalization coefficient Nα = 1/
√

2(1 + e−|α|2 ). With the particle loss, the ECS becomes

|ψl〉 = exp[ηa(â†ĉ − âĉ†)] exp[ηb(b̂†ê − b̂ê†)]|ψE 〉|0E 〉. (C2)

Similarly, after the phase accumulation and then tracing out the environmental modes, we have the following reduced density
matrix:

ρl = N2
α [|Taα〉11〈Taα| + |Tbαeiθ 〉22〈Tbαeiθ | + e−(Ra+Rb)|α|2/2(|Taα〉12〈Tbαeiθ | + |Tbαeiθ 〉21〈Taα|)], (C3)

in the nonorthogonal basis spanned by |�1〉 = |√Taα〉1 and |�2〉 = |√Tbαeiθ 〉1. Following the methods used in Ref. [6], by
calculating the eigenvectors and eigenvalues of the following matrix

ρ̃l = N2
α

(
1 + e−|α|2 e−T |α|2 + e−R|α|2

e−T |α|2 + e−R|α|2 1 + e−|α|2

)
, (C4)

where T = (Ta + Tb)/2 and R = (Ra + Rb)/2, we get the eigenvectors of the reduced density matrix ρ̃l :

|λ±(θ )〉 ∝ ±|√Taα〉1 + |√Tbαeiθ 〉, (C5)

and the corresponding eigenvalues:

λ± = N2
α

[(
1 + e−|α|2) ± (

e−T |α|2 + e−R|α|2)]. (C6)

According to the method used in Ref. [6], the corresponding QFI can be finally calculated as

FQE = 4N2
α |α|2Tb

[
1 + |α|2Tb −N2

α |α|2Tb

(
1 + 1 − e−2R|α|2

1 − e−2T |α|2

)]
≈ 2n̄Tb + (n̄Tb)2e−Rn̄, (C7)

with n̄ = N2
α |α|2 being the average particle number.
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