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A frequent starting point of quantum computation platforms is the two-state quantum system, i.e., the qubit.
However, in the context of integer optimization problems, relevant to scheduling optimization and operations
research, it is often more resource-efficient to employ quantum systems with more than two basis states, so-
called qudits. Here, we discuss the quantum approximate optimization algorithm (QAOA) for qudit systems.
We illustrate how the QAOA can be used to formulate a variety of integer optimization problems such as graph
coloring problems or electric vehicle charging optimization. In addition, we comment on the implementation of
constraints and describe three methods to include these in a quantum circuit of a QAOA by penalty contributions
to the cost Hamiltonian, conditional gates using ancilla qubits, and a dynamical decoupling strategy. Finally, as
a showcase of qudit-based QAOA, we present numerical results for a charging optimization problem mapped
onto a maximum-k-graph-coloring problem. Our work illustrates the flexibility of qudit systems to solve integer
optimization problems.
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I. INTRODUCTION

Integer optimization problems [1,2] are at the heart
of challenging real-world applications, such as scheduling
optimization [3], operations research [4], and portfolio selec-
tion [5]. The practical importance of these problems makes
the development of efficient solution algorithms a particularly
active field of research. In recent years, quantum informa-
tion processing technology has advanced substantially and
a multitude of industry-relevant problems have been ap-
proached with quantum computing technology, for example,
with quantum annealing [6,7]. Many problems have also been
addressed by employing algorithms for gate-based univer-
sal quantum computing, such as job-shop scheduling [8],
graph coloring [9–12], and flight-gate assignment [12,13].
A paradigmatic example of a hybrid classical-quantum al-
gorithm is the quantum approximate optimization algorithm
(QAOA), proposed in Refs. [14,15]. Furthermore, it was
recognized that the QAOA (i) is a computational model it-
self [16], (ii) can lead to an optimal query complexity [17],
and (iii) exhibits the possibility for quantum advantage [18].
Moreover, important research questions involve the role
of quantum effects [19], the choice of the classical opti-
mizer [20], and the performance of the QAOA for low- and
high-depth circuits [21,22].

*Corresponding author: sebastian.schmitt@honda-ri.de

The typical starting point for the QAOA is the qubit, i.e.,
a quantum mechanical system with two basis states. Sev-
eral qubits can then be used to represent integer numbers.
However, such a binary representation of integers can lead to
hardware overhead [12,23–25], and it may be more resource-
friendly to work with quantum systems of a finite basis size
with dimension d > 2, called qudits. Although the represen-
tation of qudits with arbitrary dimension in elementary qubits
is computationally efficient, even small improvements in hard-
ware requirements can be of great practical importance in the
era of noisy intermediate-scale quantum (NISQ) devices [26].
In addition, there is an increased interest in employing qudit
systems as quantum information platforms [27], and there has
been great experimental progress in realizing quantum infor-
mation processing with qudits such as photons [28], ions [29],
superconducting circuits [30], nuclear magnetic resonance
platforms [31], and Rydberg atoms [24,32].

In this paper, we discuss the QAOA for qudit systems and
its possible realization in cold atomic systems with long-range
interactions, e.g., in cold atomic mixtures [33] or quantum
gases inside an optical cavity [34]. Specifically, we elabo-
rate the representations of cost functions and constraints of
integer optimization problems with qudits. Furthermore, we
give examples of integer optimization problems such as graph
coloring and electric vehicle (EV) charging problems, where
the qudit formulation provides a convenient representation
of integers. Finally, we numerically benchmark a simplified
charging optimization problem for small instances.
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The paper is organized as follows: In Sec. II, we discuss
the QAOA for qudit systems and how to encode integer cost
functions into Hamiltonians employing angular momentum
operators and generalized Pauli operators. Furthermore, we
discuss different ways to implement linear constraints in qudit
systems generalizing the work of Refs. [15,35]. In Sec. III,
we illustrate the implementation of concrete integer opti-
mization problems, and in Sec. IV we numerically analyze
the performance of the QAOA for a simplified EV charging
optimization problem, which amounts to a graph k-coloring
problem with additional coloring cost.

II. QAOA FOR QUDIT SYSTEMS

This section revisits the QAOA approach and discusses
how to apply the QAOA to qudit systems. The approach is
analogous to the case of qubits, only with enlarged local basis
states and operators. We first discuss the Hilbert space for
qudits and operators acting on this Hilbert space, namely,
angular momentum operators and generalized Pauli operators.
These two classes of operators can be implemented experi-
mentally, for example, in atomic mixtures [33] or trapped-ion
setups [29]. Next, we give a summary of the general structure
of the QAOA [14]. Then, we give two different ways of
encoding cost functions into Hamiltonians employing angular
momentum operators and generalized Pauli operators. The
two different encodings may prove advantageous for differ-
ent experimental qudit implementations. This section mainly
provides background information necessary for the following
sections.

A. Hilbert space and operators

We consider the N-fold tensor product of a d-dimensional
complex Hilbert space, i.e., H = ⊗N

i=1C
d . The total dimen-

sion of the Hilbert space is dimH = dN , and an orthonormal
basis for the d-dimensional Hilbert space is denoted by |z〉
with z ∈ {0, . . . , d − 1}. A state vector |ψ〉 ∈ H can be writ-
ten as

|ψ〉 =
d−1∑
z1=0

· · ·
d−1∑
zN =0

αz1···zN |z〉 , (1)

where αz1···zn is the complex amplitude and the states |z〉 =
|z1, . . . , zN 〉 form an orthonormal basis, i.e., 〈z|z′〉 = δz,z′ .

The generalized Pauli Z and X operators [27] for one qudit
are defined via

Z =
d−1∑
z=0

e2π iz/d |z〉〈z| , (2a)

X =
d−1∑
z=0

|(z + 1)mod d〉〈z| , (2b)

where the eigenvalues of Z are the roots of unity

Z |z〉 = e2π iz/d |z〉 . (3)

The definition of the generalized Pauli operators on H is
given by

Zj = 1 ⊗ · · · 1⊗︸ ︷︷ ︸
j−1

Z ⊗ 1 · · · ⊗ 1︸ ︷︷ ︸
N− j

, (4a)

Xj = 1 ⊗ · · · 1⊗︸ ︷︷ ︸
j−1

X ⊗ 1 · · · ⊗ 1︸ ︷︷ ︸
N− j

, (4b)

which only acts nontrivially on the jth qudit. By construction
the basis states |z〉 are also eigenstates of products of general-
ized Pauli Z operators

N∏
j=1

Z
aj

j |z〉 = e2π ia·z/d |z〉 , (5)

where a = (a1, . . . , aN ) with a ∈ ZN summarizes the expo-
nents in the previous expression.

In the following, we define angular momentum operators
on the single qudit, which can be realized, for example, in cold
atomic gases; see Appendix A for details. First, we define the
vectors

|�, m〉 ≡ |z〉 (6)

with � = (d − 1)/2 and m = z − (d − 1)/2. Using this basis,
we define the angular momentum operators acting on the local
Hilbert space

Lz |�, m〉 = m |�, m〉 , (7a)

L+ |�, m〉 =
√

(� − m)(� + m + 1)|�, m + 1〉, (7b)

L− |�, m〉 =
√

(� + m)(� − m + 1)|�, m − 1〉. (7c)

Furthermore, the raising and the lowering operators, L+
and L−, allow us to define the x and y angular momentum
operators,

Lx = 1
2 (L+ + L−), (8a)

Ly = 1
2i (L+ − L−), (8b)

which generate rotations around the x and the y axis, respec-
tively. Finally, we can relate the angular momentum operator
to the generalized Pauli Z operator by

Z = e
2π i
d [Lz+(d−1)/2]

, (9)

where we used that |z〉 is an eigenvector of Lz.

B. Structure of QAOA

The goal of the QAOA is to find the state z0 which mini-
mizes a given cost function C(z). In the following, we recount
the building blocks and structure of the QAOA [14,15]. The
starting point of the QAOA is the initial state |ψ0〉, which
we assume can be prepared efficiently and with high fidelity
experimentally. We will frequently use the equal superposition
state

|ψ0〉 = 1

dN/2

∑
z

|z〉 , (10)

which is an eigenstate to the generalized Pauli X operators
of Eq. (4b). Other initial states are possible, for example,
an eigenstate to angular momentum operator Lx of Eq. (8a)
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FIG. 1. QAOA for qudits. General structure of the QAOA, con-
sisting of preparation of the initial state |ψ0〉, which is the equal
superposition of all basis states; application of the alternating QAOA
circuit [consisting of phase separation gate UC (γ ) and mixing gate
UM (β)]; and measurement together with subsequent classical opti-
mization of the variational parameters with respect to the expectation
value of the cost Hamiltonian.

or even an eigenstate to the Lz operator, e.g., |0, . . . , 0〉. We
tested several choices of initial states in our numerical exper-
iments and did not find any qualitative differences between
these choices. It should therefore in principle not matter which
initial state is used, and the choice should be guided by which
states are most easily prepared in the experimental setup.

The quantum circuit of the QAOA starts from |ψ0〉 with
subsequent layers of gates (gray boxes in Fig. 1). Each layer
is composed of two parametrized quantum gates, the so-called
phase separation gate UC (γ ) and the mixing gate UM (β ),
which are applied alternatingly. The generator of the phase
separation gate is the cost Hamiltonian HC encoding the clas-
sical cost function

UC (γ ) = e−iγ HC (11)

with

HC |z〉 = C(z) |z〉 , (12)

where |z〉 denotes the computational basis states.
The mixing gate is defined as

UM (β ) = e−iβHM (13)

via a mixing Hamiltonian HM . Several forms of mixing gates
are discussed in the literature [15]. Regarding the limitations
of the current NISQ hardware, both the phase separation and
the mixing gate should have an efficient decomposition into
the native gate set of the experimental platform, which imple-
ments the QAOA.

The QAOA circuit of depth p � 1 is defined as

U (γ,β) = e−iβpHM e−iγpHC · · · e−iβ1HM e−iγ1HC , (14)

where γ,β ∈ Rp are free variational parameters to be deter-
mined during the execution of the algorithm and p denotes
the number of layers. The trial state

|γ,β〉 = U (γ,β) |ψ0〉 (15)

is the quantum state approximating a possible solution to the
optimization problem. The classical cost function, which is
optimized with the QAOA, is

Eγ,β = 〈γ,β| HC |γ,β〉 , (16)

which is the expectation value of the cost Hamiltonian.

Typically, the variational trial state |γ,β〉 is a superposition
of the computational basis states, and the expectation value
cannot be obtained in a single experimental run. The expecta-
tion value equation (16) is estimated by sampling from the
trial wave function; see, e.g., Ref. [36]. In each sample, a
specific configuration z = (z1, . . . , zN ) is obtained from the
quantum mechanical trial state with the probability P (z) =
|〈z|γ,β〉|2. The expectation value of the cost Hamiltonian is
then obtained via

Eγ,β ≈
∑

samples z

P (z)C(z), (17)

where P (z) is estimated by sampling from the final QAOA
state |γ,β〉. In order to obtain a solution to the original opti-
mization problem, one uses a classical optimization method to
find the parameters γ∗ and β∗ that fulfill

{γ∗,β∗} = argmin
γ,β

Eγ,β. (18)

After the parameters of the QAOA circuit have been opti-
mized, measuring the output state reveals potential solutions
to the optimization problem. In the ideal case, when the
QAOA optimization finds an optimal solution, the trial state
is a single minimal energy state or a superposition of minimal
energy eigenstates of the cost Hamiltonian HC . In particu-
lar, when the cost Hamiltonian is invariant with respect to a
symmetry transformation and the mixing operator does not
break the symmetry, the final state may be a superposition
of lowest-energy eigenstates. However, frequently a minimal
energy state cannot be reached, either because the variational
trial state cannot faithfully represent the ground state(s) or
because the optimization procedure might not find the global
optimum. Therefore the final QAOA state may have contri-
butions from various computational basis states, which are
low-energy states and have energies close to the optimal state.

Candidate solutions for the optimization problem are the
computational basis states with substantial probabilities. Fre-
quently, the final state needs to be prepared several times in
order to sample from the trial state. In an experiment, the
selection of the candidate solutions needs to consider the mea-
surement error of the state sampling. In contrast, in numerical
studies, the probabilities can be evaluated precisely, and we
employ a fixed number of candidate solutions and select the
ones with the lowest cost. For analyzing the theoretical perfor-
mance of the QAOA, we neglect any effect of finite sampling.

C. Cost function Hamiltonian

This section discusses two possibilities of mapping certain
classical cost functions C to cost Hamiltonians HC . We first
discuss a mapping employing generalized Pauli Z operators
and then a second mapping using angular momentum opera-
tors Lz.

Mapping using generalized Pauli Z operators. The defini-
tion of the cost Hamiltonian in Eq. (12) implies the following
diagonal representation:

HC =
∑

z

C(z) |z〉〈z| . (19)
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In order to rewrite the cost Hamiltonian HC as a polynomial
of generalized Pauli Z operators, we use the discrete Fourier
transform of the cost function, Ĉ. The Fourier transform and
its inverse are given by

C(z) = 1

dN

∑
a

Ĉ(a)e2π ia·z/d , (20a)

Ĉ(a) =
∑

z

C(z)e−2π ia·z/d , (20b)

with a ∈ ZN and 0 � a j � d − 1. Using the Fourier transform
Ĉ, we can rewrite the cost Hamiltonian as

HC = 1

dN

∑
z

∑
a

Ĉ(a)e2π ia·z/d |z〉〈z| . (21)

Employing Eq. (5), the Hamiltonian becomes

HC = 1

dN

∑
a

Ĉ(a)
N∏

j=1

Z
aj

j , (22)

which is a polynomial in the generalized Pauli Z opera-
tors [35]. This encoding is especially useful when the Fourier
transform of the cost function has few nonzero Fourier coeffi-
cients.

Mapping using Lz operators. Here we focus on polynomial
functions C(z) in the variables zm. We obtain the cost Hamil-
tonian by substituting zm → (� + Lz,m) into the cost function
leading to

HC = C(� + Lz,1, . . . , � + Lz,n). (23)

For examples and representations of cost functions we refer
the reader to Sec. III and Appendix B.

D. Mixing Hamiltonian

The mixing operator has to be able to traverse the allowed
state space of the optimization problem; see Ref. [15]. For
the local qudit Hilbert space with d levels, d2 − 1 local op-
erators are in principle necessary to form an operator basis.
However, as shown previously [33,37] a reduced set of three
operators is sufficient to generate any state by (possibly many)
repeated finite rotations. In this paper, the cost Hamiltonians
include linear and higher-order terms in Lz, which allows us
to consider a mixing Hamiltonian based only on the angular
momentum operator in the x direction

HM =
N∑

i=1

Lx,i, (24)

which fulfills the abovementioned criteria for unconstrained
integer optimization problems. As detailed in Appendix A,
this mixing operator can be experimentally implemented in
atomic qudit systems. Another viable choice would be to use
the generalized Pauli X operators of Eq. (4b) as the basis for
the mixing Hamiltonian. In principle this should not make
a qualitative difference, which we explicitly confirmed by
testing both choices in our numerical experiments.

E. Constraints

In many important optimization problems, the variables of
the cost function must satisfy constraints, which can be given
by equalities or inequalities, i.e.,

gm(z) � 0 or gm(z) = 0 (25)

with m = 1, . . . , M. Hence it is an important question how to
incorporate constraints in the QAOA. One common way to
enforce constraints in QAOA circuits is by adding appropri-
ate penalty terms to the cost function. Alternatively, one can
engineer the mixing operator such that the evolution of the
quantum state only takes place in the space of feasible solu-
tions [15]. In this section, we explicitly implement strategies
to enforce constraints in the QAOA. The results developed
here are applicable to both qudit and qubit systems.

A standard route to implement constraints in classical op-
timization is by adding penalty terms to the cost function

C̃(z) = C(z) +
∑

m

λmPm[gm(z)], (26)

where λm are the penalty factors, Pm are the penalty func-
tions, and gm(z) are the constraints given by Eq. (25). Adding
penalty terms is typical for black-box optimization [38–40].
Possible penalty functions [41] are

Peq[g(z)] = |g(z)|a (27)

for equality constraints g(z) = 0 and

Pineq[g(z)] = max[0, g(z)]a (28)

for inequality constraints g(z) � 0, with typical values for the
exponents being a = 1 and a = 2. One way to implement the
modified cost function C̃(z) in the QAOA is to use the cost
Hamiltonian HC generated by C(z) for the quantum circuit but
employ C̃(z) in the classical optimization loop with the cost
function

Ẽγ,β =
∑

z

|〈z|γ,β〉|2
{

C(z) +
∑

m

λmPm[gm(z)]

}
. (29)

In addition, one has to tune the penalty parameters during
the optimization process. Not including the constraints in the
cost Hamiltonian simplifies the experimental realization of
the phase separation gate and relaxes the requirements on the
hardware. However, depending on the optimization problem
and, in particular, on how the constraints confine the feasible
search space, the trial states may produce infeasible solutions
for randomly chosen γ and β.

In a situation where the cost Hamiltonian and the mixer
are invariant with respect to a symmetry, the trial state is also
symmetric. However, if one constraint violates the symmetry
(not implemented in the Hamiltonian), the trial state will not
be able to reflect this violation of the symmetry. This scenario
may render the QAOA less effective because more candidate
solutions must be sampled.

An alternative is to implement the constraint in the cir-
cuits. Here, we present three different ways to implement
constraints in the quantum circuit: (i) including penalty terms
in the cost Hamiltonian, (ii) using conditional gates, and (iii)
employing dynamical decoupling.
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1. Penalty terms in the cost Hamiltonian

One can include constraints in the QAOA by using HC̃
instead of HC ; see Refs. [6,7] for details. The penalized cost
Hamiltonian is given by

HC̃ = HC +
∑

m

λmPm(Gm), (30)

where we introduced the constraint operator Gm via

Gm |z〉 = gm(z) |z〉 . (31)

The cost Hamiltonian including the constraints also has a
diagonal representation

HC̃ =
∑

z

C̃(z) |z〉〈z| , (32)

where C̃(z) is given by Eq. (26). Using the results of Sec. II C,
one can write the penalized Hamiltonian HC̃ with the help of
generalized Pauli Z or angular momentum operators, where
the angular momentum encoding works when C̃(z) is a
polynomial. Again, constructing the Hamiltonian HC̃ with
generalized Pauli operators involves a discrete Fourier trans-
form [see Eqs. (20a) and (20b)], which results in polynomials
of generalized Pauli Z operators. Here, the max function in
the inequality constraint may introduce higher powers of gen-
eralized Z operators.

Using the cost Hamiltonian HC̃ in the unitary evolution of
Eq. (14) leads to variational states |γ,β〉 that satisfy the con-
straints gm for appropriate choice of the penalty parameters
λm. A major disadvantage of including penalties in the cost
Hamiltonian is the necessity for tuning the penalty factors λm.
The penalty factors directly affect the cost function landscape
and thus significantly influence search performance.

2. Constraints via conditional gates

Here we enforce equality and inequality constraints via
conditional gates [35]. Specifically, we introduce the unitary
operator Ug that acts on the N computational qudits and on
one ancilla qubit |y〉 = α |0〉 + β |1〉 via

Ug |z〉|y〉 =
{|z〉|y〉 for g(z) = 0 or g(z) � 0
|z〉 X |y〉 otherwise. (33)

If the quantum state |z〉 does fulfill the constraint, the ancilla
qubit does not change, whereas we apply X on the ancilla if
the constraint is not fulfilled. The operator Ug belongs to the
class of conditional operators:

Ug(Q) =
∑

z:g(z)�0

|z〉〈z| ⊗ I +
∑

z:g(z)>0

|z〉〈z| ⊗ Q, (34a)

Ug(Q) =
∑

z:g(z)=0

|z〉〈z| ⊗ I +
∑

z:g(z)
=0

|z〉〈z| ⊗ Q, (34b)

where the first equation is for inequalities and the second
equation is for equalities. Furthermore, I is the identity op-
erator and Q is an arbitrary unitary operator. The conditional
operator Ug(Q) does only apply the operator Q on the ancilla
qubit if the quantum state |z〉 does not fulfill the inequality
g(z) � 0 or equality g(z) = 0.

We represent Ug(Q) as a matrix exponential in order
to discuss the implementation with an appropriately chosen

FIG. 2. QAOA with conditional gates for constraints: In order to
enforce constraints, one performs a conditional gate Ug and measures
the ancilla qubit |0〉. If the measurement returns the value 0, the
constraint is fulfilled, and we do not change the cost function. If
the measurement yields the value 1, then the constraint is violated,
and we forward the measurement result to the cost function, use the
Hamiltonian HC̃ , and penalize the violation of the constraint.

Hamiltonian. Direct calculation [35] shows

Ug(Q) = e−iHg⊗HQ , (35)

with

Hg =
∑

z

[1 − δmax[g(z),0)],0]|z〉〈z|, (36a)

Hg =
∑

z

[1 − δg(z),0]|z〉〈z| (36b)

and

HQ = (π/2)X. (37)

Particularly, we can implement Hg again using the Pauli op-
erator encoding. In order to enforce one constraint g after one
layer of the QAOA circuit, we initialize the ancilla qubit in
|0〉; apply the conditional gate equation (33) on the quantum
state |ψ〉, which we assume fulfills all constraints, leading to

Uge−iβHM |ψ〉 |0〉 ; (38)

and measure the ancilla qubit |y〉. If the measurement on the
ancilla qubit returns the value zero, the constraint is fulfilled,
and we apply the unconstrained cost function Hamiltonian
HC . On the other hand, if the measurement of the ancilla
qubit yields the result 1, the inequality is violated, and we
use HC̃ and the mixing Hamiltonian in the next step. Then
we apply the conditional unitary operator Ug again and iterate
this procedure. The quantum circuit illustrating this approach
is schematically shown in Fig. 2.

Using conditional gates is more involved as it requires an
additional qubit for tracking the constraint. Finally, condi-
tional gates as described above effectively implement the max
function in the cost Hamiltonian for inequality constraints.

3. Equality constraints via dynamical decoupling

Another way to implement equality constraints is via dy-
namical decoupling [42,43], a quantum control technique
suppressing coupling to an environment. The technique dates
back to nuclear magnetic resonance experiments [44–46]; for
a review, see Ref. [47]. Dynamical decoupling techniques
can also be employed to suppress transitions to undesired
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subspaces; see, for example, Refs. [48,49] in the context of
quantum simulations of lattice gauge theories. Here we dis-
cuss how to use dynamical decoupling to enforce constraints.

To apply dynamical decoupling to the QAOA, we choose
an initial state |ψ0〉 that already fulfills all equality constraints

Gm |ψ0〉 = 0 (39)

for all m. The unitary operator U (γ,β) of the QAOA may lead
to a trial state |γ,β〉 where the constraints are not fulfilled, i.e.,

Gm |γ,β〉 
= 0. (40)

The goal is to construct a unitary mixing operator that does
not evolve the initial state out of the feasible subspace given
by the equality constraints. Therefore the mixing term must
commute with all constraints. In order to obtain such a unitary
mixing term, we employ a dynamical decoupling strategy.

For simplicity, we assume that Gm has only integer eigen-
values and denote the largest eigenvalue by 
m. We start from
the identity

e−iθGm |ψ0〉 = |ψ0〉 ∀ θ ∈ R, (41)

which follows from Eq. (39). We define the symmetrization
operation of any operator O by

Ō =
∏

m

∫ 2π

m

0

dθm

(2π/
m)
e−iθmGmOeiθmGm . (42)

Specifically, the symmetrization implies

e−iφGmŌeiφGm = Ō (43)

for all m, which follows from using the integer spectrum of Gm

and shifting the integration variables. The above equation is
equivalent to [e−iφGm , Ō] = 0 for all m. Equality constraints
with a rational spectrum can always be reformulated as con-
straints with an integer spectrum by multiplying with the
least common multiple, while constraints with an irrational
spectrum can be approximated with a rational spectrum. Em-
ploying Eq. (42), we symmetrize the mixing Hamiltonian
according to

H̄M =
∏

m

∫ 2π

m

0

dθm

(2π/
m)
e−iθmGm HMeiθmGm , (44)

which leads to [e−iφGm , H̄M] = 0 for all m and its infinitesimal
version [Gm, H̄M ] = 0 for all m. Using the symmetrized mix-
ing Hamiltonian, we engineer a new unitary mixing operator

UM (β ) = eiβH̄M (45)

that does not commute with the cost Hamiltonian [15] but
guarantees that the final state

GmU (γ,β) |ψ0〉 = 0 (46)

also fulfills the constraints given Gm |ψ0〉 = 0.
Implementing the continuous integral of the the dynamical

decoupling strategy of Eq. (42) in a circuit is challenging. One
strategy is to sample or discretize the integral into a finite
sum and use Floquet engineering to determine an appropriate
discretization; see, e.g., Ref. [47]. Because of this sampling at
each layer, the dynamical decoupling strategy is only possible
for low circuit depth. However, in order to reduce the number

of decoupling layers, one can selectively introduce the dynam-
ical decoupling, especially in the last layer.

III. APPLICATIONS

This section discusses optimization problems involving
integer variables, which can be addressed with the QAOA
based on qudits. Primarily, we illustrate the encodings of
Sec. II C, which leads to feasible implementations in current
qudit systems. Specifically, we treat a graph coloring problem
and the optimization of an electric vehicle charging plan. Fur-
ther integer optimization problems, i.e., a knapsack problem,
multiway number partitioning, job-shop scheduling, and their
respective qudit encodings, can be found in Appendix B.

A. Graph coloring

Let G = (V, E ) be a graph with N vertices and M edges.
A proper vertex k-coloring of G is given, if one can assign
one of k colors to each vertex such that adjacent vertices
have different colors. If one can find such a proper vertex
k-coloring, the graph G is k-colorable [15,23]. We denote
the assignment of colors to the vertices by z = (z1, . . . , zN )
with zi ∈ {0, . . . , k − 1}. The coloring task can be expressed
as finding the minimum of an objective function which counts
the number of edges between nodes with the same color, i.e.,

C(z) =
∑

(n,m)∈E

δzn,zm , (47)

where n and m denote vertices of the graph, zn and zm denote
the color of the vertices, and E is the set of edges of the graph.

Minimizing C(z) leads to the largest induced subgraph that
can be properly k-colored. Moreover, the cost function can be
encoded with Pauli Z operators [50] into the cost Hamiltonian

HC = 1

kN−1

∑
(n,m)∈E

k−1∑
a,b=0

δ((a + b) mod k, 0)Za
n Zb

m

= 1

kN−1

∑
(n,m)∈E

(
1 +

k−1∑
a=0

Za
n Zk−a

m

)
, (48)

where we used the Fourier transform of the Kronecker delta,
δ̂(a, b) = kδ[(a + b) mod k, 0]. For k = 3 this becomes

HC = 1

3N−1

∑
(n,m)∈E

(
1 + Z3

m + ZnZ2
m + Z2

n Zm
)
. (49)

This expression can be reformulated in terms of angular mo-
mentum operators Lz,n resulting in a polynomial in powers of
Lz,n and Lz,m with Ld−1

z,m Ld−1
z,n as the largest power.

B. Charging optimization

Many problems in the energy management domain require
optimizing a schedule for the distribution of electrical energy
among technical devices. A representative problem is the
charging schedule of electric vehicles (EVs). Designing these
schedules typically leads to integer or mixed-integer pro-
gramming problems; see, for example, Refs. [3,51–53]. We
consider the following EV charging problem: An operator of
charging stations needs to charge N EVs during the working
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hours of a business complex. The operator can purchase and
sell energy for real-time electricity market prices and charge
or discharge each EV. The goal is to minimize the electric-
ity cost for the operator while meeting operation constraints.
Possible constraints are as follows: (i) Each EV has a desired
target state of charge (SOC) of the battery, which needs to be
reached at the end of the time period. (ii) Each battery has a
minimal and maximal SOC. (iii) There is an upper and lower
limit for the total cumulative charging power of all vehicles
at all times. A simple variant of the EV charging problem
without constraints and preemptive charging was discussed in
Ref. [54] using the QAOA for qubits.

The charging plan for the EVs must be optimized for the
total time T , where we divide T into equidistant time steps of
duration t . In each time step the EV n can either be charged,
not charged, or discharged, which is represented by the ternary
variables Ln,t = 1, Ln,t = 0, or Ln,t = −1, respectively. The
total electricity cost function is

C(L) =
N∑

n=1

T∑
t=1

tP0
n

(
ec

t + ed
t

2
Ln,t + ec

t − ed
t

2
L2

n,t

)
, (50)

where P0
n is the charging and discharging power of vehicle n

and the prices for buying and selling energy are ec
t and ed

t .
Specifically, the charging costs for car n are tP0

n ec
t , whereas

the discharging costs are −tP0
n ed

t .
The SOC of each battery at time t is

En,t = E init
n +

t∑
k=1

tP0
n

(
Ln,k − δn L2

n,k

)
, (51)

where E init
n denotes the initial SOC of EV n and δn � 0 en-

codes conversion losses in the EV since the SOC increases
(decreases) by (±1 − δn)tP0

n during charging (discharging)
with power P0

n . The constraints on the SOC of each battery are

En,T � E target
n ∀n, (52a)

Emin
n � En,t ∀n, t, (52b)

En,t � Emax
n ∀n, t, (52c)

where E target
n is the required minimal final SOC at time t = T

and Emin
n and Emax

n specify the generally allowed SOC for ve-
hicle n. The limits on the maximum charging and discharging
power are

Pmin �
∑

n

P0
n Ln,t ∀t, (53a)

Pmax �
∑

n

P0
n Ln,t ∀t, (53b)

with Pmin < 0 being the largest possible discharging power
and Pmax > 0 being the maximum charging power. This
amounts to N (1 + 2T ) + 2T constraints in total.

C. Combination of charging and graph coloring

Here we consider the EV charging optimization problem
of the previous section with additional constraints on the
charging time slots. Therefore we consider a graph where each
vertex represents an EV and each edge indicates overlapping
charging time slots. Furthermore, the vertex color represents

FIG. 3. Schematic representation of the simplified EV charging
problem. N cars need to be assigned to k charging stations, where
each car needs to be placed at a charging station for a given time
period. Here, we consider N = 5 cars and k = 3 charging stations.
No two cars with overlapping charging periods can be assigned to the
same charging station, which can be formulated as a conflict graph
where cars with overlapping time slots are connected by an edge. If
we denote each charging station by a different color, the charging
station assignment can be formulated as a coloring problem of the
conflict graph. Furthermore, we assume that each charging station
incurs different costs, which are dimensionless numbers.

the number of the charging station, whereby each charging
station has different costs. Finally, the constraint that two
EVs cannot be charged at the same station simultaneously is
modeled by the condition that two connected vertices must not
have the same color. This charging problem is schematically
illustrated in Fig. 3.

A cost function, which combines the different charging
station costs and penalizes charging two vehicles at the same
station simultaneously, is

C(z) =
N∑

n=1

k−1∑
i=0

ciz
i
n + λ

∑
(u,v)∈E

δzu,zv
, (54)

where zn is the color of node n, the parameters ci encode the
cost for each color, and λ > 0 is the penalty factor. Note that
we always use dimensionless cost functions and thus the ci

and the penalty factors λ are also dimensionless. When all
colors have equal costs, all coefficients ci for i > 0 are zero,
and this problem reduces to the pure maximum-k-coloring
problem of Sec. III A. For the case with three colors, k = 3,
and associated costs c−1, c0, and c1, the cost Hamiltonian is

HC =
N∑

n=1

(
c0 + c1 − c−1

2
Lz,n + c1 + c−1 − 2c0

2
L2

z,n

)

+ λ
∑

(n,m)∈E

[
1 − L2

z,n − L2
z,m + 1

2
Lz,nLz,m + 3

2
L2

z,nL2
z,m

]
,

(55)

where the vertices are denoted by n and m. Specifically, the
coloring constraint induces two-site interactions with up to
quadratic terms in Lz on each vertex.
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IV. NUMERICAL RESULTS

In the following, we discuss numerical results of the QAOA
for the cost Hamiltonian equation (55) for three colors k = 3.
We consider different graphs ranging from N = 4 to N = 9
and include the graph coloring constraint term with a penalty
factor λ = 20 directly in the quantum circuit, as detailed in
Sec. II E. Furthermore, we consider two cases for the costs:
(i) (c−1, c0, c1) = (0, 0, 0), where the charging problem re-
duces to maximum-k-graph-coloring, and (ii) (c−1, c0, c1) =
(0, 1, 2). A recent work [50] benchmarked QAOA on pure
maximum-k-graph-coloring with qutrits (k = 3) on random
3-colorable constant-degree graphs up to a size of N = 300,
which was possible for p = 1 (a circuit with one layer).
In contrast, we employ several layers ranging from p = 1
to p = 8, introduce an additional cost contribution for each
vertex color, and focus on individual instances of highly con-
nected graphs. Furthermore, we compare the performance of
two classical optimization algorithms for the cost function
encoded by Eq. (55).

We employ two classical optimization algorithms:
The limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm [55] and the covariance matrix
adaptation evolutionary strategy (CMA-ES) [56] taken
from Ref. [57]. For each setting (graph, cost function, and
circuit depth), we execute 50 different QAOA optimization
runs of the CMA-ES with randomly chosen initial values for
γ and β. The population-based CMA-ES evaluates between 6
and 12 candidate solutions in each generation, depending on
the search space dimension 2p. For the L-BFGS optimizer, we
use between 300 and 600 optimization runs to be comparable
to the number of circuit evaluations with CMA-ES. Figure 4
shows the probability distribution of the computational basis
states determined by the final QAOA state for N = 6, different
circuit depth, and with or without coloring cost. For example,
the pure graph coloring problem without coloring cost has 12
optimal states for the graph given in Fig. 4. The probability
distribution of the computational basis states is shown in
Figs. 4(a) and 4(c), and example graph colorings are depicted
in Fig. 4(e). However, lifting the color symmetry by including
costs for different colors leads to a single optimal solution, as
can be seen from the asymmetric probability distribution in
Figs. 4(b) and 4(d).

In Fig. 5, we show results for a representative example
of the simplified charging problem on a graph with N = 6
nodes and three colors (k = 3) with and without coloring
cost. Figures 5(a) and 5(b) show the optimality gap, i.e.,
the difference between the exact minimum and the minimum
obtained from the QAOA cost function for different circuit
depths p � 8. The exact minimum was obtained by exhaustive
search of the whole state space, which was possible for the
limited problem size considered here. Generally, the lowest
value of the optimality gap decreases for both optimizers with
increasing circuit depth, indicating that a deeper circuit can, in
principle, achieve smaller values of the cost function [21,58].
However, there are considerable variations in the optimality
gap between the runs.

This behavior of the optimality gap is understandable as
the cost function landscape of the QAOA is typically highly
multimodal with many local minima and maxima, as can

)b()a(

)d()c(

(e)

FIG. 4. Probability distributions of the optimized state and opti-
mal solution graphs. Probability distribution of representative final
QAOA states for a N = 6 graph without coloring cost [(a) and (c)]
and with coloring cost (c−1, c0, c1) = (0, 1, 2) [(b) and (d)]. (a) and
(b) depict results for shallow circuits with depth p = 1, while (c) and
(d) show results for depth p = 5. The red dashed lines indicate the
12 (1) optimal solutions without (with) coloring cost. The insets in
(c) and (d) show the energy spectra of the respective Hamiltonian
in arbitrary units. (e) Candidate solutions for the simplified charg-
ing problem, where the colors red, green, and blue have cost c−1,
c0, and c1, respectively. Without coloring cost, all shown graphs
are optimal solutions, and the additional eight optimal solutions
can be generated by pairwise color exchange. With coloring cost
(c−1, c0, c1) = (0, 1, 2), only the leftmost graph of (e) is optimal.

be seen in Figs. 5(c) and 5(d), where a part of the p =
1 two-dimensional search landscape is shown. The multi-
modal and, in particular, the ridgelike structure of the cost
function landscape makes the optimization problem consid-
erably harder for algorithms such as L-BFGS, which use
gradient information, as it introduces saddle-point-like fea-
tures known to cause problems in many settings including
deep-learning applications [59–61]. Hence the L-BFGS op-
timization process may end up in a local minimum with a
high probability, essentially determined by the location of
the random initial starting point. In contrast, the CMA-ES is
a population-based global optimizer capable of dealing with
this cost function landscape and finds lower cost minima more
reliably.

However, for larger circuits, particularly for p � 4, the
CMA-ES may also result in suboptimal local minima, a com-
mon behavior for evolutionary algorithms in a larger search
space. In Fig. 6 we show the progress of the CMA-ES
optimization runs as a function of the internal generation
number. For the more straightforward problem with p = 1
shown in Fig. 6(a), the CMA-ES converges rather quickly in
about 200 generations. In contrast, for the more challenging
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FIG. 5. Optimality gap and cost function landscape. Optimality
gap of the final QAOA states for a graph with N = 6 (a) without
coloring cost, i.e., (c−1, c0, c1) = (0, 0, 0), and (b) with coloring cost
(c−1, c0, c1) = (0, 1, 2), as a function of the circuit depth p and for
the two optimizers L-BFGS (orange) and CMA-ES (blue). The plots
show the best result for each of the 50 (300) CMA-ES (L-BFGS)
runs. (c) and (d) show the cost function landscape for circuit depth
p = 1 in a certain parameter region of the search space for the same
N = 6 graph without (c) and with (d) coloring cost.

optimization problem with p = 5, we can observe that some
runs do not converge even after 1400 generations. In principle,
this limitation can be removed by running the algorithms for
more generations, which comes at the cost of more circuit
evaluations.

It is instructive to investigate how the improvement of the
optimality gap for deeper circuits (cf. Fig. 5) is reflected in
the probability distribution. For shallow circuits, i.e., p = 1,
the global minima are clearly visible, as indicated by the red
dashed lines in Figs. 4(a) and 4(b). However, other states with
higher energy do have sizable contributions in the probability
distribution of the final state. Increasing the circuit depth
leads to better separation of the optimal states compared with
suboptimal states and a smaller value of the cost function; see
Figs. 4(c) and 4(d).

)b()a(

FIG. 6. Optimization progress. Optimality gap values of 50
CMA-ES optimization runs as a function of the internal optimization
generation number for an N = 6 graph without coloring cost and
with a circuit depth of p = 1 (a) and p = 5 (b). Each color represents
one individual optimization run with different initial values for the
search parameters γ and β.

)b()a(

)d()c(

)f()e(

FIG. 7. Distribution of optimal solutions over several QAOA
runs. Number of optimal solutions found in one QAOA optimization
run for simplified charging problem instances on graphs with N = 5
[(a) and (b)], N = 6 [(c) and (d)], and N = 8 [(e) and (f)] without
[(a), (c), and (d)] and with [(b), (d), and (f)] charging cost. The
colored bars show the number of found optimal solutions in each
run, where a larger width implies a larger number of found solutions.
Lines show the mean number of found solutions aggregated over
all 50 and 300–600 different optimization runs using CMA-ES and
L-BFGS, respectively.

Comparing the probability distribution of the case with-
out color cost in Figs. 4(a) and 4(c) and with color cost in
Figs. 4(b) and 4(d) shows a qualitative difference, which can
be understood from the spectrum of the cost Hamiltonian. The
spectrum of the pure graph coloring Hamiltonian [see the inset
of Fig. 4(c)] has a large gap between the (degenerate) ground
state manifold and the first excited states. As the QAOA
circuit is an approximation to an adiabatic time evolution, a
large energy gap between the ground state and excited state
is beneficial for finding the ground state. In contrast, we do
not observe a clear energy gap when considering coloring
costs; see the inset of Fig. 4(d). Especially the appearance
of multiple low-lying energy states makes the problem of
separating those states in the quantum circuit harder. Con-
sequently, nonoptimal states have higher amplitudes for the
problem containing coloring costs compared with the pure
graph coloring problem.

By preparing and sampling from the final QAOA state,
one can then extract multiple candidates for the optimum
of the cost function. We extract several candidate solutions
and test for optimality for different graphs for the simplified
charging problem with and without coloring cost. In addition,
we perform several optimization runs and depict the average

062410-9



YANNICK DELLER et al. PHYSICAL REVIEW A 107, 062410 (2023)

number of optimal solutions (with and without coloring costs)
in Fig. 7. The vertical axis of Fig. 7 always extends to the total
number of optimal solutions (determined by a classical opti-
mizer), and the error bars indicate the minimal and maximal
numbers of solutions found with the QAOA after the classical
optimization loop. In most cases, we can find β and γ such
that the QAOA state allows for detecting all optimal solutions
regardless of the circuit depth, the optimization algorithm, and
the problem instance. Exceptions, where the QAOA could not
find all optimal solutions, are shown in Fig. 7(f) for N = 8
and p � 3 with coloring costs and in Fig. 7(e) for N = 8 and
p = 1 without coloring cost.

Inspecting the average number of found optimal solutions,
we can observe that the variation between different runs is
substantial. In particular, for the instance without coloring
cost on a graph with N = 5 nodes shown in Fig. 7(a), the
QAOA reliably finds almost all 42 optimal solutions when
employing the CMA-ES for not-too-deep circuits, while in-
troducing coloring cost on the same graphs [see Fig. 7(b)]
leads to a situation where on average almost none of the two
optimal solutions are found. We point out that finding all opti-
mal solutions with the CMA-ES becomes more difficult with
increasing circuit depth, which is a typical behavior for evo-
lutionary algorithms when increasing parameter space. Both
optimization algorithms show lower performance in finding
all optimal solutions in one run on average for the problem
with color cost than the pure graph coloring problem. This
effect results from lifting the degeneracy by introducing the
coloring cost, which leads to multiple low-lying states close
in energy. The relation between the spectrum of the Hamilto-
nian and the performance of the QAOA is a field of current
study [21].

V. CONCLUSION

In this paper, we discussed the QAOA for current or up-
coming qudit experiments. First, we described how to map
cost functions onto cost Hamiltonians utilizing generalized
Pauli or angular momentum operators. Additionally, we il-
lustrated different ways to incorporate equality or inequality
constraints. Therefore we laid out a scheme to include con-
straints in the classical optimization loop. We also presented
three alternative methods to incorporate constraints into the
quantum circuit. The first method adds penalty functions for
the constraints into the cost Hamiltonian. The second method
realizes equality and inequality constraints using conditional
gates and ancilla qubits, similar to an error-correcting code.
Finally, the third approach implements constraints by exploit-
ing dynamical decoupling, which suppresses computational
basis states which violate equality constraints.

As an application of the QAOA with qudits, we discussed
theoretical and industry-relevant optimization problems, for
example, the graph k-coloring or an EV charging prob-
lem with global power constraints. Since these problems
only involve bounded integer variables, they can be mapped
on qudits. Motivated by current experiments with ultracold
atoms or ions, we propose to use the x-angular momentum
operator Lx as a mixing operator. Finally, we numerically
studied a simplified EV charging optimization problem, which
amounts to a maximum-k-graph-coloring problem with an

additional color cost term on the vertices. We compared solu-
tions of the QAOA obtained with the gradient-based classical
L-BFGS optimizer and the global evolutionary CMA-ES op-
timizer for our numerical studies. Our results showed that
the global evolutionary optimizer was less sensitive to the
initialization of the search and reliably produced better results
than the gradient-based approach for the instances consid-
ered. This performance behavior can be understood by the
highly multimodal cost function landscape. Starting from
pure maximum-k-coloring and introducing a coloring cost
function, the performance with both optimizers typically de-
creased. This behavior is a direct consequence of reducing the
symmetry of the cost Hamiltonian.

We extracted solutions from the final state by selecting
states with the largest amplitudes. In our examples, we could
find multiple optimal solutions. In particular, the final state
is also symmetric when the cost Hamiltonian is invariant with
respect to a symmetry, and the mixing operator does not break
this symmetry. The final state thus includes equal-weight
superpositions of symmetry-related states. Finding several
candidate solutions is a highly desirable feature for practical
applications, as one has the chance to obtain a large subset
of all possible solutions. However, these degeneracies may
lead to detrimental performance since the amplitude of the
optimal states may be distributed such that the sampling of the
candidate solutions becomes inefficient. Notably, the signal-
to-noise ratio between optimal and suboptimal states may be
reduced. In order to improve the signal-to-noise ratio, one can
single out optimal states by investigating ways to reduce the
number of candidate solutions, e.g., via sparsity constraint, on
the QAOA trial state. This approach is left for future study.

In this paper, we studied a selection of optimization prob-
lems. However, we expect that the insights generated here
are relevant for general problem instances on larger graphs
and different types of problems. Specifically, the cost function
landscape will generally be multimodal due to the structural
form of the mixer and phase separation operators. Therefore
global black-box optimizers are expected to be very useful for
the QAOA [20]. Another promising and highly relevant aspect
of qudit-based implementations of QAOA is the possibil-
ity of resource-efficient implementation on hardware, which
was shown in previous work [24]. The question of how this
advantage over qubit-based implementations extends to the
formulation of realistic problems including constraints in de-
tails is left for future research. In total, we have extended the
QAOA toolbox for qudit systems and applied it to relevant
theoretical and practical applications opening up an avenue
for current and future qudit platforms to solve integer opti-
mization problems.
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APPENDIX A: REALIZATION OF THE QUDIT-QAOA
WITH ATOMIC SYSTEMS

This Appendix discusses the experimental capabilities of
ultracold atoms to realize the angular momentum encoding
of quadratic cost functions and the mixing Hamiltonian given
in Eq. (24). Specifically, quadratic cost functions can be ex-
perimentally realized in three distinct atomic platforms: Cold
atomic mixtures [33], cold quantum gases in a cavity, and Ry-
dberg atoms [34,62]. In both systems, the qudit is realized as a
long collective spin by cooling atoms with internal degrees of
freedom to the ground state of optical lattice sites. In the mix-
ture system, the effective interaction between different qudits
is mediated by phononic excitations, theoretically proposed
in Ref. [33]. In the cavity system, the long-range interaction
between the atoms is mediated via a photonic mode, which
was experimentally demonstrated with a high degree of con-
trol over the interaction and the connectivity in Ref. [34].

Both the mixture and the cavity system are described by
the effective Hamiltonian

HC =
∑
x,y

U (x, y)Lz(x)Lz(y) +
∑

x

b(x)Lz(x), (A1)

where x and y denote the minima of the lattice potential,
U (x, y) is the long-range potential between the qudits, and
b(x) is a locally controllable energy shift. The mixing Hamil-
tonian can be engineered by standard tools such as global
microwave pulses [63] that lead to terms of the form

HM = �
∑

z

Lx(x). (A2)

A major advantage of employing these two platforms with
high connectivity is the natural implementation of quadratic
cost functions.

However, quadratic Hamiltonians do not suffice to encode
the cost functions for all problems we consider in this pa-
per, e.g., the graph coloring of Sec. III A. Nevertheless, cost
functions containing higher powers of angular momentum
operators may be implemented by Trotterization or by em-
ploying resource Hamiltonians, as demonstrated in the context
of variational quantum simulation [64]. Another possibility is
to employ a universal quantum computer which is based on
qudits. For example, trapped-ion platforms are able to imple-
ment generalized Pauli operators and can entangle qudits, and
as such, they can implement the QAOA; see Ref. [29] for more
details.

APPENDIX B: OTHER OPTIMIZATION PROBLEMS

This Appendix introduces several optimization problems
whose cost functions are naturally expressed in terms of
qudits, namely, the knapsack problem, multiway number par-
titioning, and job-shop scheduling.

1. Knapsack problem

The knapsack problem consists in assigning a set of items
to a container [23]. There are N different items with c copies
each. Furthermore, each item i has a weight wi and a value
vi, and the goal is to maximize the total value in the container
while not exceeding a given weight limit W . The cost function
of the bounded knapsack problem [65] is

C(z) =
N∑

i=1

vizi, (B1)

which has to be maximized and is subject to the weight con-
straint

N∑
i=1

wizi � W, (B2)

where zi ∈ [0, c].
The bounded knapsack problem can be straightforwardly

mapped to qudits by using the angular momentum encoding
discussed in Sec. II C promoting the integer variables zi to
qudits with d = c + 1. Using the angular momentum operator
Lz,i for � = c/2, we obtain the cost function

HC = −
N∑

i=1

viLz,i, (B3)

where we included a minus sign in order to transform the
problem into a minimization problem. The constraints (B2)
are linear in the angular momentum operators and can be
implemented by using the methods developed in Sec. II E.

2. Multiway number partitioning

The number-partitioning problem is the task of partitioning
a list S of n positive integers, S = (s1, s2, . . . , sn), into k
subsets S1, S2, . . . , Sk , such that the numbers are as equally
distributed as possible. That is, the sum of the numbers in
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different subsets Vi = ∑
l∈Si

sl for 1 � i � k is requested to
be as similar as possible. For instance, if S = (1, 1, 2, 3, 4, 5)
and k = 2, the optimal partitions are (1,1,2,4) and (3,5),
which in this case yields a completely balanced partition with
V1 = V2 = 8. For the case of k = 2 the decision version of
the number-partitioning problem is NP-complete [66], though
there are various algorithms that solve the problem efficiently
in many cases. A trapped-ion setup for two-way number par-
titioning has been proposed in Ref. [67].

The multiway number partitioning can be cast into a math-
ematical cost function as follows. The sum of the elements in
the set Si is

Vi(z) =
n∑

l=1

slδi,zl , (B4)

where the value of the variable zl = 1, . . . , k indicates the
subset Si of which sl is a member. We then choose the cost
function

C(z) =
∑
a<b

[Va(z) − Vb(z)]2, (B5)

which minimizes the differences between the sum of the par-
titions with the vector z = (z1, . . . , zn).

The implementation in k-level systems zl automatically
ensures that each sl is a member of exactly one set Si with
i = 1, . . . , k. In general, the realization of δi,zl in Eq. (B4)
requires a polynomial of order k in the zl . For example, for k =
3, δ1,zl = 3 − 5zl/2 + z2

l /2. Importantly, these higher-order
terms within Vi(z) act locally, but the qudits are then coupled
in a pairwise fashion via C(z).

In the literature there exist various other approaches to
mathematically formulate the multiway number-partitioning
problem, which become equivalent in the case of k = 2; see
Ref. [68]. Here, we have opted for a cost function that employs
integer variables and leads to a direct construction using only
two-qudit interactions.

3. Job-shop scheduling

The problem consists of the task of scheduling the exe-
cution of N jobs j on M machines. Each job is subdivided
into K operations, where jn,k denotes the operation k of job n
and each operation has a predefined processing duration pn,k ,
where n ∈ [1, N] and k ∈ [1, K]. The operations of one job
must be executed in a predefined order jn,1 → jn,2 → · · · →
jn,K and must not overlap. Furthermore, each operation jn,k

has to be executed on one specific machine mn,k ∈ [1, M],
and operations executed on one machine must not overlap. A
schematic representation of this problem is shown in Fig. 8.

An encoding based on qudits is formulated by discretizing
the time into T equally spaced time intervals, t = 1, . . . , T .
The problem is then formulated with the variables tn,k ∈
{1, . . . , T }, which specify the time at which the execution of
operation jn,k on machine mn,k starts.

There are two constraints to be respected. First, two oper-
ations of the same job must not overlap, i.e., the predecessor
operation must finish before the successor can start:

tn,k + pn,k < tn,k+1, (B6)

FIG. 8. Job-shop scheduling. Table representation of a job sched-
ule. The horizontal line denotes the discretized time, whereas the
vertical axis denotes the machine. Filling the box corresponds to
using the machine with the job jn,k .

which needs to to be fulfilled for all k ∈ [1, K − 1] and all jobs
n. Second, two operations on one machine must not overlap,
i.e., only one operation can run at any given time on one
machine. This means that for any two operations jn,k and
jn′,k′ to be executed on the same machine, the one operation
must either be finished before the other operation or start
after it, i.e.,

(tn,k + pn,k < tn′,k′ ) XOR (tn,k > tn′,k′ + pn′,k′ ) (B7)

for all machines m and all (n, k), (n′, k′) ∈ om, where om =
{(n, k)|mn,k = m} is the list of operations to be run on ma-
chine m. The latter condition can also be transformed into a
quadratic constraint

(tn,k + pn,k − tn′,k′ )(tn,k − tn′,k′ − pn′,k′ ) > 0. (B8)

Depending on the application scenario, multiple different
cost functions can be employed [69,70]. A typical cost func-
tion is given by the average job completion time,

C(t ) = 1

N

N∑
n=1

(tn,K + pn,K ), (B9)

which represents overall machine-usage efficiency and needs
to be minimized.

Another cost function is the makespan, which is the finish-
ing time of the last operation,

C(t ) = max
n

(tn,K + pn,K ). (B10)

In order to avoid the nonlinear max function, a linear cost
function can be formulated with an additional auxiliary vari-
able,

C′(t ′) = tN+1,K , (B11)

which needs to fulfill N additional linear constraints

tn,K + pn,K < tN+1,K (B12)

for all jobs n = 1, . . . , N .
The above formulation directly lends itself to addressing

the job-shop scheduling problem with QAOA by replacing
the classical variable tn,k with an angular momentum op-
erator with total spin � = (T − 1)/2. All constraints and
the cost functions can be expressed as operators by replac-
ing the classical variables with these Lz operators. Thus
we need kN qudits (kN + 1 qudits) for the average com-
pletion time (makespan) formulation, where each qudit has
dimension d = T .
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