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Quantifying entanglement for quantum states whose density matrices are unknown is a difficult task, but also
becomes more and more necessary because of the fast development of quantum engineering. Machine learning
provides practical solutions to this fundamental problem, where one has to train a proper machine learning model
to predict entanglement measures of unknown quantum states based on experimentally measurable data, say,
moments of density matrices or correlation data produced by local measurements. In this paper, we compare the
performance of these two different machine learning approaches systematically. Particularly, we first show that
the approach based on moments enjoys a remarkable advantage over that based on correlation data, though the
cost of measuring moments is much higher. Next, since correlation data is much easier to obtain experimentally,
we try to better its performance by proposing a hybrid quantum-classical machine learning framework for this
problem, where the key is to train optimal local measurements, or even optimal tensor products of single-qubit
observables, to generate more informative correlation data. Our numerical simulations show that the new hybrid
framework brings us comparable performance with the approach based on moments to quantify entanglement,
and furthermore, it turns out that the new hybrid framework has a nice noise-resistant capability when handling
realistic correlation data.
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I. INTRODUCTION

Quantum entanglement is a crucial resource for many
quantum schemes and quantum protocols, such as quantum
superdense coding [1], quantum teleportation [2], and quan-
tum cryptography [3]. As a result, numerous measures have
been raised to quantify the amount of entanglement contained
in quantum states [4,5]. For bipartite pure states, entanglement
measure is uniquely defined by the von Neumann entropy of
subsystems. However, the landscape is far more complex for
bipartite mixed states, where many important questions on
entanglement quantifications have not been answered [6,7].
An even more complicated case is the quantifications of
multipartite quantum entanglement, for which many different
measures have been proposed but most of them are very hard
to calculate [8–10]. It can be said that quantum entanglement
has not been understood well theoretically.

Meanwhile, in recent years many subareas of quantum
engineering have been under fast development, and because
of this, detecting and even quantifying entanglement for quan-
tum states whose density matrices are not known is becoming
more and more realistic and necessary. However, the follow-
ing two facts imply that this is a difficult task to fulfill. First,
even if the underlying density matrix is given completely,
determining whether a quantum state is entangled or not is
already an NP-hard problem [11,12]. Second, when prior
knowledge on target quantum states is missing, before looking
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into underlying entanglement we have to characterize these
quantum states at least partially by performing quantum mea-
surements. As a result, quantifying entanglement for unknown
quantum states is an even harder problem than only certifying
the existence of quantum entanglement for quantum states
with known density matrices.

Existing methods that are able to quantify entanglement
for unknown quantum states can be mainly divided into
four branches. First, quantum tomography is the most pop-
ular approach adopted by quantum experimentalists when
the size of target quantum states is small [13,14], where
reconstructing quantum states allows us to look into the under-
lying entanglement. However, quantum tomography requires
exponential cost, which is unbearable in high-dimensional
quantum systems. Second, recently a new technique of quan-
tifying entanglement, say, estimating the Rényi entropies,
has been proposed, which performs random measurements
on quantum states and then analyzes the outcome statis-
tics [15–18]. Nevertheless, the cost of this technique is very
high, where a large number of measurement settings are
necessary. Third, device-independent protocols have been
proposed to lower bound various entanglement measures
[19–21]. These device-independent methods quantify entan-
glement exclusively from the observed measurement statistics
on subsystems, thus independent of any assumptions on the
interested quantum systems. In the realm of the noisy interme-
diate scale quantum (NISQ) era, device-independent protocols
are attractive due to their efficiency and reliability. However,
such device-independent protocols usually have limited appli-
cations in practice as they can provide nontrivial results only
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when the observed quantum nonlocality is very strong. Fourth,
in addition to these analytical methods, machine learning has
also been utilized to provide practical solutions to quantify
entanglement experimentally [22–25]. In such methods, dif-
ferent experimentally accessible data on quantum states is
collected and fed into machine learning models such that
the mappings from experimental data to target entanglement
measures are learned, by which one can predict the entangle-
ment measures of quantum states unseen before. In the current
paper, we will focus on the fourth kind of method.

In fact, according to the sorts of involved experimental
data, there exist already two different approaches to apply
machine learning onto quantifying entanglement experimen-
tally [22,23]. Specifically, in Ref. [22] the target entanglement
measure is negativity, and for this the moment data of partially
transposed states is fed into machine learning models as data
features, which are usually very costly to obtain [26,27]. In
Ref. [23], correlation data serves as data features to quantify
entanglement, which is relatively convenient to prepare as one
only needs to measure subsystems of target quantum states
with a small set of local measurements chosen beforehand.

In this paper, we first show that several entanglement mea-
sures, like the relative entropy of entanglement, can also be
quantified accurately using machine learning models based on
the original moments of quantum state ρ defined as μm(ρ) =
Tr(ρm). Then we compare this new approach with the one
in Ref. [23], and show that it can beat the latter easily in
performance, though usually moment data are much harder to
extract than correlation data. For example, a large number of
measurement devices are already needed even if only μ2(ρ)
is measured [16,28].

Meanwhile, since correlation data comes from a small set
of local measurements and is much easier to collect, it will
be nice if we can somehow improve the performance of the
machine learning approach based on correlation data. Note
that in the above comparisons, correlation data is generated
by a certain fixed set of local measurements for all training
and test quantum states. Therefore, a possible way to improve
the performance is to choose better local measurements for
correlation data generations. For this, we propose a hybrid
quantum-classical machine learning framework to quantify
entanglement based on correlation data, where optimal local
measurements, or even optimal tensor products of single-qubit
observables, are trained to generate correlation data. Our nu-
merical simulations show that the new framework allows the
correlation method to achieve a comparable performance with
the machine learning approach based on moments in entangle-
ment quantification.

Lastly, we stress that the new hybrid framework has
a nice noise-resistant capability, and enjoys decent perfor-
mance when handling realistic correlation data produced by
noisy quantum operations. Due to this, we expect that our
new hybrid framework can be deployed on near-term quan-
tum devices to quantify entanglement for unknown quantum
states [29].

II. SETTINGS AND ENTANGLEMENT MEASURES

Consider a bipartite state ρ shared by two separated par-
ties, Alice and Bob. Alice (Bob) has a set of measurement

devices labeled by X (Y ) to measure her (his) subsystem,
and the possible measurement outcomes are labeled by A
(B). After repeating the measurement many times, Alice and
Bob calculate the joint conditional probabilities p(ab|xy),
which indicates the probability of obtaining outcomes (a, b) ∈
A × B upon selecting measurement settings (x, y) ∈ X × Y .
Suppose {Ma

x } is the operator for the quantum measurement
performed by Alice’s measurement device x ∈ X , where a ∈
A, and analogously for {Nb

y }, then it holds that

p(ab|xy) = Tr
[(

Ma
x ⊗ Nb

y

)
ρ
]
. (1)

A correlation p = [p(ab|xy)] is a vector containing all the
joint conditional probabilities of form p(ab|xy).

We now turn to moments of quantum states, which are
defined as [30,31]

μm(ρ) = Tr(ρm). (2)

Clearly, μ1(ρ) = Tr(ρ) = 1 and μ2(ρ) is the purity of ρ.
Experimentally, μm(ρ) can be measured directly by perform-
ing joint measurements on m copies of the same state ρ

[30], while this operation is very hard with current quantum
technologies, especially when m is large. To overcome this
difficulty, techniques that can estimate μm(ρ) on single-copy
states have also been developed [15].

A complete supervised machine learning system contains
three ingredients: data features, data labels, and a machine
learning model [32,33]. The training data features with correct
labels are fed into the machine learning model, where the pa-
rameters contained in the learning model are trained properly
such that the resulting system can predict labels of unknown
test data precisely. In our problem, correlation data or mo-
ments serve as data features of quantum states, data labels are
the values of target entanglement measures, and the machine
learning model is supposed to learn an unknown nonlinear
relationship between data features and data labels. According
to the no free lunch theorem [34], a small target error rate
implies that we need a large set of representative training data.
However, it is well known that for bipartite mixed quantum
states and multipartite quantum states, most entanglement
measures are extremely hard to calculate, which means that
it is hard for us to prepare correct labels for training data sets.
According to the computation hardness and the importance of
entanglement measures, in this paper we choose the coherent
information and the relative entropy of entanglement as our
target measures to quantify entanglement.

Coherent information is a fundamental quantity
that measures the capability of transition of quantum
information [35,36]. For an arbitrary bipartite quantum
state ρ ∈ HA ⊗ HB, its coherent information is defined as

IC (ρ) = S(ρA) − S(ρ), (3)

where S(ρ) is the von Neumann entropy of ρ and ρA = TrB(ρ)
is the subsystem in HA. A crucial property of the coherent
information is that for any bipartite ρ, it holds that [37]

EF (ρ) � ED(ρ) � IC (ρ), (4)

where EF (ρ) and ED(ρ) are the two most important measures
of entanglement, the entanglement of formation and the
entanglement of distillation, respectively [38]. Therefore,
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a good estimation of IC (ρ) implies that we obtain a very
nontrivial piece of information on the amount of entanglement
for ρ. Furthermore, it is not hard to see that the coherent
information is very easy to calculate, which means that if we
pick it as the data label, we can generate a large amount of
training or test data at low cost.

Another quantity we will utilize is the relative entropy of
entanglement [39], defined as

ER(ρ) = min
σ∈SEP

S(ρ‖σ ) = min
σ∈SEP

Tr(ρ log2 ρ − ρ log2 σ ), (5)

where SEP denotes the set of all separable states. Relative
entropy of entanglement has a good geometric interpretation,
as ER(ρ) measures a certain “distance” between ρ and the set
of separable states. Based on a machine learning model called
active learning, we can numerically compute the relative en-
tropy of entanglement for some particular quantum states with
high accuracy [40]. At the same time, it turns out that the
relative entropy of entanglement satisfies that [10]

EF (ρ) � ER(ρ) � ED(ρ). (6)

Therefore, similar to IC (ρ), estimating ER(ρ) of a quantum
state ρ also helps us to obtain nontrivial information of EF (ρ)
and ED(ρ).

III. COMPARISONS BETWEEN MACHINE LEARNING
MODELS BASED ON CORRELATION

DATA AND MOMENTS

In this section, we first present machine learning models
that take correlation data and moments as data features, re-
spectively, then we compare their performance in predicting
both the coherent information and the relative entropy of
entanglement systematically. For convenience, we call the for-
mer the correlation method and the latter the moment method.

A. Quantifying the coherent information

We begin with quantifying the coherent information of ar-
bitrary three-dimensional bipartite quantum states ρ ∈ H3 ⊗
H3. To generate more representative training data, we try to
evenly sample quantum states according to the distribution
of their coherent information. More concretely, we generate
a random quantum state in Hd ⊗ Hd based on its spectral
decomposition

ρ =
k−1∑
i=0

λi|ui〉〈ui|, (7)

where k ∈ {1, 2, . . . , d2} is uniformly randomly chosen, the
positive λi’s are drawn uniformly from the interval [0,1) and
normalized to satisfy

∑k−1
i=0 λi = 1, and {|ui〉} are the first

k columns of a Haar random unitary U , i.e., |ui〉 is the ith
column of U . Here, we have d = 3. After sampling a random
quantum state, we check its value of coherent information
and decide whether to pick it or not, and thus ensure that
the coherent information of the sampled quantum states dis-
tributes roughly evenly. However, due to the low efficiency
of sampling quantum states with coherent information less
than -1.5, in fact we only sample quantum states with co-
herent information ranging from -1.5 to log2 3. Specifically,

we divide this range into 31 intervals of size 0.1, and in each
of these intervals we sample 1291 quantum states randomly.
Eventually, totally 40 021 states are randomly sampled to
compose the set of quantum states for training.

To investigate the representativeness of the training quan-
tum states, we calculate the average fidelity among them and
obtain the value to be 0.2180, which means that these sampled
quantum states distribute relatively far from each other on
average. Therefore, our sampling method is reasonable, and
gives us a representative set of training quantum states.

After sampling the training quantum states, we generate
the corresponding training data features for the correla-
tion method, which is achieved by performing the local
measurements that maximize the violation of the Collins-
Gisin-Linden-Masser-Popescu (CGLMP) inequality on the
training quantum states [41,42], and then record the outcome
statistics. More concretely, Alice’s measurement Ak can be
characterized by the eigenvectors

|r〉Ak = 1√
d

d−1∑
q=0

exp

(
2π i

d
q(r − αk )

)
|q〉A, (8)

and Bob’s measurement Bl can be characterized by the eigen-
vectors

|r〉Bl = 1√
d

d−1∑
q=0

exp

(
−2π i

d
q(r − βl )

)
|q〉B, (9)

where 0 � r � d − 1, 1 � k, l � N , αk = (k − 1/2)/N, βl =
l/N , and N = |X | = |Y | [43]. In the current task, we let d = 3
and N = 2. That is, both Alice and Bob have two different
measurement devices.

Meanwhile, to apply the moment method, we generate two
different sets of training data, which contain different orders
of moments. Specifically, for each quantum state ρ, one set
contains {μ2(ρA), μ2(ρ)} as its features, and the other con-
tains {μ2(ρA), μ2(ρ), μ3(ρA), μ3(ρ)} as its feature, where ρA

is Alice’s reduced density matrix.
To test the performance of the above three cases (one for

the correlation method and two for the moment method),
again we roughly evenly sample around 2000 quantum states
according to the distribution of their coherent information,
and then produce the corresponding test correlation data or
moments of these states.

During the training stage, each training data set is fed into a
four-hidden-layer fully connected neural network (FNN) with
400, 200, 100, and 50 neurons in each layer, respectively.
After training, we test its performance with the corresponding
test set sampled above. The results of all three cases are shown
in Fig. 1. As we can see, the moment method that utilizes
only the second order of moment already beats the correlation
method in this task, whose corresponding mean squared errors
(MSEs) are 0.0582 and 0.0035, respectively. In some sense
this is not surprising since the number of measurement devices
required by the moment method is much larger than that of
the correlation method, and thus the moment data is more
informative.

In addition, if we strengthen the moment method by also
factoring in the third order of moment, apparent further im-
provements can be observed, where the MSE decreases to
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FIG. 1. The neural network predictions for IC (ρ ). The blue stars
represent the prediction values of the correlation method and the
corresponding MSE is 0.0582. The green dots and orange diamonds
represent the prediction values of the moment method with m = 2
and m = 2, 3, whose MSEs are 0.0035 and 0.0004, respectively.

0.0004, representing an excellent performance. As a result,
compared with the correlation method, the moment method
enjoys higher accuracy in coherent information quantification
tasks.

We now increase the dimension of target quantum states
ρ ∈ Hd ⊗ Hd to d = 5, 8, 10, and still aim to quantify the
coherent information. In this case, the quantum state sampling
procedure is similar to the three-dimensional case. Firstly,
around 40 000 training quantum states are sampled roughly
evenly by Eq. (7) according to the distribution of coherent
information, and then around 2000 test quantum states are
sampled similarly. The generations of data features for these
quantum states are exactly the same as the previous task.

The training models for the moment method remain
unchanged, i.e., a four-hidden-layer FNN with 400, 200, 100,
and 50 neurons in each hidden layer is adopted. However,
for the correlation method, since convolutional neural
networks (CNNs, see Refs. [44,45] for further introductions)
behave better than FNNs when dimension increases, in
the current task we utilize CNNs to predict the coherent
information instead of FNNs. Table I describes the structure
and configuration details of our CNN model.

TABLE II. The MSEs of predicting the coherent information of
random quantum states for different methods and dimensions.

Dimension d = 3 d = 5 d = 8 d = 10

Correlation, N = 2 0.0582 0.0362 0.0212 0.0146
Moments, m = 2 0.0035 0.0034 0.0025 0.0026
Moments, m = 2, 3 0.0004 0.0010 0.0011 0.0010

Apply the trained models on the test data sets we have
chosen, and the results for each case are listed in Table II.

Similar to the three-dimensional case, there still exists
an obvious gap between the performance of the correlation
method and that of the moment method. Furthermore, it is
interesting to see that the improvements of introducing the
third order of moment (m = 2, 3) over only using the second
order (m = 2) decrease as the quantum dimension goes up.
Therefore, considering the experimental difficulty of measur-
ing moments, it is a good choice to set m = 2 when predicting
coherent information for high-dimensional random quantum
states.

Lastly, we would like to point out that both of the above
approaches can be used to quantify entanglement for ground
states of many-body quantum systems. For this purpose, we
train the neural network models using pure quantum states in
Hd ⊗ Hd with the form

|ψ〉 ∝ α|ψ ′〉 + (1 − α)|ψ sep〉, (10)

where α ∈ [0, 1], |ψ ′〉 is a random pure state generated by
setting k = 1 in Eq. (7), and |ψ sep〉 is a tensor product of two
random pure states in Hd . Here, we let d = 8. To generate the
set of training quantum states, we first sample around 40 000
pure states according to Eq. (10) in such a way that their
coherent information distributes roughly evenly, and then gen-
erate the data features similarly as before. An only difference
is that, since μm(ρ) = 1 for all pure states, we choose data
features {μ2(ρA), μ3(ρA), μ4(ρA)} for the moment method.

When choosing the structure for the neural network, it
remains the same as before for the correlation method, while
for the moment method we choose a two-hidden-layer FNN
with 64 and 32 neurons in each hidden layer.

After training the neural networks, we test the performance
of the two approaches with the Heisenberg XY model, which
is a physical model consisting of two spins coupled via the
Heisenberg XY interaction. For this model, the Hamiltonian

TABLE I. The structure and configuration details of the convolutional neural network. For each “·/·”, the former parameter represents for
d = 5 and the latter parameter represents for d = 8, 10.

Layers Type Neurons Filters Kernel size Strides Pool size

0–1 Convolution 2D (None, 9/18, 9/18, 32) 32 2 × 2/3 × 3 1 × 1 –
1–2 Max-pooling 2D (None, 8/16, 8/16, 32) – – 1 × 1 2 × 2/3 × 3
2–3 Convolution 2D (None, 7/14, 7/14, 64) 64 2 × 2/3 × 3 1 × 1 –
3–4 Max-pooling 2D (None, 6/12, 6/12, 64) – – 1 × 1 2 × 2/3 × 3
4–5 Convolution 2D (None, 5/10, 5/10, 64) 64 2 × 2/3 × 3 1 × 1 –
5–6 Fully connected (None, 64) – – – –
6–7 Fully connected (None, 32) – – – –
7–8 Fully connected (None, 1) – – – –
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TABLE III. The MSEs of predicting the coherent information of
ground states for different methods.

XX model XY model

Correlation, N = 2 0.0174 0.0284
Moments, m = 4 0.0122 0.0118

with periodic boundary conditions is given by [46,47]

HXY = − J

2

n∑
i=1

[
(1 + γ )σ x

i σ x
i+1 + (1 − γ )σ y

i σ
y
i+1

]

− h

2

n∑
i=1

(−1)t ·iσ z
i , (11)

where n is the number of sites, σ
x,y,z
i denote the Pauli matri-

ces at site i ∈ {1, 2, . . . , n}, J specifies the coupling constant
along two spins, t ∈ {0, 1}, and h is a magnetic field strength.
Notice that the Heisenberg XX model (γ = 0) is a special
case of this Hamiltonian. Here, we set n = 6, and consider
the partition between the first three spins and the other three
spins.

To obtain convincing test performance, we sample many
different instances of the XY model and the XX model ac-
cording to Eq. (11) and then use both the correlation method
and the moment method to quantify the coherent information
of their ground states. Specifically, for the XX model, we let
J = 2, t = 1, and choose h ∈ [0, 4] at intervals of size 0.01.
For the XY model, we let t = 0, and then randomly sam-
ple γ ∈ [−1, 0) ∪ (0, 1], J ∈ [0, 2], and h ∈ [0, 4] to generate
2000 Hamiltonians such that the coherent information of their
ground states distributes roughly evenly.

The overall prediction qualities of the correlation method
and the moment method on these Hamiltonians are listed in
Table III, where it can be seen that both methods exhibit very
good performance, implying that our models can also perform
well on real-world tasks.

B. Quantifying the relative entropy of entanglement

In addition to coherent information, we now show that
the relative entropy of entanglement can also be predicted
by the correlation method and the moment method. Recall
that the relative entropy of entanglement is defined as an
optimization problem over the set of separable states. Despite
being convex, the set of separable states is still very hard
to fully characterize, making the calculation of the relative
entropy of entanglement NP-hard [48–50].

In Ref. [40], a technique to upper bound the relative
entropy of entanglement was proposed based on active learn-
ing. Even though this method only provides upper bounds,
Ref. [40] demonstrated that these upper bounds are quite tight
for many quantum states, such as Werner states, isotropic
states, and random bipartite quantum states with low di-
mensions. However, it should be stressed that the method
introduced in Ref. [40] requires full descriptions of quantum
states, i.e., the density matrix of the state, while our mission is
quantifying entanglement based on experimentally measured
quantities. In our task, we only utilize the active learning

method to provide labels for our data sets, due to its high
accuracy.

As usual, to generate representative training data, we
would like to sample quantum states with evenly distributed
relative entropy of entanglement. However, when the tar-
get values of relative entropy of entanglement are high, the
sampling efficiency is very low. In addition, to provide high-
precision labels for sampling quantum states, we have to
calculate their relative entropy of entanglement using the ac-
tive learning method introduced above, which is very costly.
Both of these facts make it challenging for us to generate
proper training and test data.

To prepare training data, here we focus on quantum states
with the form

ρ = (1 − ε)ρ0 + ε|ψ+〉〈ψ+|, (12)

where ε ∈ [0, 1], ρ0 is a random quantum state in Hd ⊗ Hd

generated according to Eq. (7), and |ψ+〉 = 1√
d

∑d
i=1 |ii〉. For

each case of the dimension d = 2, 3, 4, 3 000 states are sam-
pled by randomly selecting ε and ρ0. Together with 1000
random separable states, totally 4000 states are sampled to
serve as the training quantum states.

We next generate training data based on the sampled quan-
tum states. For the correlation method, we prepare the training
data by measuring the quantum states via the local measure-
ments given in Eqs. (8) and (9), where for each party the
number of measurement devices N is fixed as 2. For the
moment method, the moments {μm(ρA), μm(ρB), μm(ρ)} are
chosen as data features. Again, two sets of training data with
m = 2 and m = 2, 3 are generated, in order to compare the
power of moments of different orders.

As mentioned, the labels of the training data are pro-
vided by the active learning method. Meanwhile, the machine
learning models for all three cases are the same, which is a
four-hidden-layer FNN with 400, 200, 100, and 50 neurons in
each layer.

After training, to estimate the performance of these mod-
els, we first run them on isotropic states, whose parametrized
form is given by

ρme
dε

= (1 − ε)

d2
Id2 + ε|ψ+〉〈ψ+|, (13)

where ε ∈ [0, 1]. Given an isotropic state, its relative entropy
of entanglement can be analytically calculated [51], thus al-
lowing us to benchmark the performance of models. We make
the comparisons between the results given by all three cases
and the exact results for d = 2, 3, 4. The results are depicted
in Fig. 2, and the corresponding MSEs are shown in the first
part of Table IV.

As illustrated, all three cases (one for the correlation
method and two for the moment method) predict the relative
entropy of entanglement of isotropic states correctly with high
precision. Particularly, the results given by the active learning
method, whose MSEs are in the order of 10−7∼10−5, match
the analytical results given by Ref. [51] accurately.

Since the active learning method provides us a reliable
way to calculate the relative entropy of entanglement, we
now apply it to provide labels for random quantum states,
which allows us to test our models on more general quantum
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TABLE IV. The MSEs of predicting the relative entropy of entanglement for different methods and dimensions.

Dimension d = 2 d = 3 d = 4

Correlation, N = 2 1.71 × 10−4 4.14 × 10−4 6.45 × 10−4

Isotropic Moments, m = 2 3.57 × 10−5 2.57 × 10−3 9.08 × 10−4

Moments, m = 2, 3 4.88 × 10−5 6.92 × 10−5 1.37 × 10−4

Correlation, N = 2 2.99 × 10−3 6.90 × 10−3 7.59 × 10−3

General Moments, m = 2 2.26 × 10−4 9.26 × 10−4 1.45 × 10−3

Moments, m = 2, 3 2.01 × 10−4 5.75 × 10−4 9.12 × 10−4

states, not just isotropic ones where the relative entropy of
entanglement is analytically known.

Specifically, for each dimension, we sample 300 quantum
states admitting the form Eq. (12), and combined with 100
random separable states, these 400 quantum states serve as
test quantum states. The generations of data features for differ-
ent methods are the same as before. Then we apply our trained
FNNs to predict the relative entropy of entanglement of these
quantum states, and the corresponding MSEs are listed in the
second part of Table IV.

It can be seen that in this task the overall behaviors of
the MSEs of the correlation method and the moment method
are similar to those in the coherent information prediction
tasks. Actually in this task the performance of the correlation
method is even better, but a stable advantage of the moment
method can still be observed.

IV. HYBRID QUANTUM-CLASSICAL FRAMEWORK
ASSISTED CORRELATION METHOD

In Sec. III, we fixed local quantum measurements as the
ones that achieve the maximal violation of the CGLMP in-
equality, and fixed the number of measurement devices for
each party to be N = 2. Due to these two constraints, the
power of the correlation method may be underestimated.

FIG. 2. The neural network predictions for ER(ρme
dε

). The red
triangles, blue dots, and orange diamonds represent the prediction
values of the correlation method, the moment method with m = 2,
and the moment method with m = 2, 3, respectively. The exact val-
ues are represented by the gray dashed line. All the corresponding
MSEs are listed in the first part of Table IV.

Hence, a natural question is: Can we improve the performance
of the correlation method by relaxing the constraints, say,
enlarging the number of measurement devices N or changing
the measurement devices?

A. More measurement devices

Intuitively, enlarging the set of available measurement de-
vices can probably provide more information about target
quantum states, and therefore may improve the performance
of the correlation method. To check whether this idea works,
we demonstrate it by setting N = 3, 4 in the coherent infor-
mation prediction tasks for random quantum states.

For each quantum dimension d = 3, 5, 8, 10, the sampled
training and test quantum states and the mathematical struc-
tures of machine learning models remain the same as before.
The only difference is that now the training and test data sets
are composed of measurement outcome statistics involving
N = 3, 4 measurement devices, rather than 2. It turns out that
very limited improvements are achieved by this change in pre-
dicting coherent information. Table V lists the corresponding
MSEs.

The limited improvements given by increasing the number
of measurement devices are unexpected, because more mea-
surement devices should have revealed more information. A
possible reason is that though the number of the measurement
devices we have utilized is increased, they are still of the form
in Eqs. (8) and (9). Therefore, to improve the performance of
the correlation method further, we need to find out whether
this form is optimal or not.

B. Learnable measurement devices

Looking back at all our previous machine learning models
that have been discussed, we will see that all of them are
classical models that deal with pure classical information,
where all data features of involved quantum states are about
correlation data or moments, which are essentially classical.
However, we now need to choose better local measurements to
generate more informative correlation data, which means that
we have new quantum structures to learn. For this purpose,

TABLE V. The MSEs of predicting coherent information with
fixed measurement devices.

Dimension d = 3 d = 5 d = 8 d = 10

CGLMP, N = 3 0.0584 0.0356 0.0180 0.0170
CGLMP, N = 4 0.0540 0.0364 0.0183 0.0138
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FIG. 3. The hybrid quantum-classical framework for the correlation method. (1) The input quantum state ρ, for which the full information
is required. (2) The generation of correlation, where the local measurements Ma

x and Nb
y contain trainable variables. (3) The classical training

part, which can be, for example, a CNN.

below we introduce a hybrid quantum-classical framework for
our machine learning tasks.

In fact, a series of hybrid quantum-classical algo-
rithms have been proposed [52–56], where the concept of
parametrized quantum circuits (PQCs) is widely used to
optimize a target function by iteratively tuning parameters
contained in underlying quantum circuits. In our hybrid
quantum-classical framework, the tuning target is quantum
measurements. Since a general quantum measurement can
be realized by first performing a unitary operation and then
measuring in the computational basis, what we are aiming at
is essentially learning 2N such unitary operators.

Our hybrid quantum-classical framework works as follows.
First, since we want to find the best local measurements
for our tasks, the entries of observables {Mx} and {Ny} are
now regarded as trainable variables and will be updated
repeatedly, which is the quantum part of our hybrid quantum-
classical machine learning framework. Second, after choosing
the training quantum states, we need to generate their training
data features by measuring the parametrized observables {Mx}
and {Ny}, and then collecting the outcome statistics. Along
with the correct labels, these data features will be fed into
the classical learning part, which is the same as the previous
models we have discussed. Figure 3 illustrates the whole
framework. It is worth mentioning that according to our pre-
vious experience, different permutations of the measurement
devices can result in quite a different prediction performance,
especially when the training model is a CNN. Therefore, in-
troducing trainable measurements will bring us the optimized
permutation automatically.

We apply the hybrid quantum-classical machine learning
framework to predict the coherent information of random
quantum states for the cases N = 2, 3, 4, 5. The sampled
training and test quantum states and the mathematical struc-
ture of the classical machine learning part remain the same as
Sec. III A, where the dimension d = 3, 5, 8, 10. The results
are listed in Fig. 4 and Table VI.

Comparing the case N = 2 with the old results in Table II,
it can be seen that almost no improvement is achieved for each
dimension except d = 3, which indicates that in generating
statistics data the local measurements in Eqs. (8) and (9) are
almost optimal for these cases. However, once we enlarge
the number of possible measurement devices by only one,
that is, N = 3, the situation becomes totally different, where
the corresponding MSEs are 0.0206, 0.0121, and 0.0091 for

dimensions 5, 8, and 10, respectively. Compared with the
original version of the correlation method, 43.09%, 42.92%,
and 37.67% improvements are achieved for dimensions 5, 8,
and 10, respectively.

Furthermore, if we increase the number of measurement
devices further, the improvements are even more remarkable.
As illustrated in Fig. 4, when d = 3, our hybrid model with
N = 4 has the same order of MSE as the moment method with
m = 2, and when d = 8, 10, it is even comparable with that
of the moment method with m = 2, 3. In fact, it turns out that
even if we restrict Alice and Bob to perform the same set of lo-
cal measurements, the obtained MSEs differ very little in high
dimensions, e.g., d = 5, 8, 10. Therefore, a half number of
the variables in the quantum part can be reduced to achieve a
similar performance, hence facilitating the training efficiency.

Finally, in order to make the physical implementations
more convenient, we restrict each local measurement per-
formed by Alice and Bob to tensor products of single-qubit
observables. Specifically, we regard a quantum state in Hd ⊗

FIG. 4. Comparisons between the correlation method using the
CGLMP measurements, learnable measurements, and the moment
method. The MSEs of the correlation method using learnable mea-
surements decrease as N increases. Particularly, when N = 3 an
apparent improvement is achieved. When N = 4, the hybrid model
even has the same order of MSE as the moment method with
m = 2, 3 in high dimensions. The values of each MSE are listed in
Table VI.
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TABLE VI. The MSEs of predicting coherent information with
learnable measurement devices.

Dimension d = 3 d = 5 d = 8 d = 10

Learnable, N = 2 0.0398 0.0345 0.0205 0.0143
Learnable, N = 3 0.0149 0.0206 0.0121 0.0091
Learnable, N = 4 0.0088 0.0184 0.0096 0.0081
Learnable, N = 5 0.0085 0.0126 0.0080 0.0069

Hd as a 2n-qubit state, where n = �log2 d. The local ob-
servables performed by Alice and Bob admit the form Mx =⊗n−1

i=0 M (i)
x and Ny = ⊗n−1

i=0 N (i)
y , where M (i)

x and N (i)
y are

observables on the ith qubit of Alice’s and Bob’s side, respec-
tively. For convenience, we call such Mx and Ny qubit-based
local measurements. Besides, to simplify the training proce-
dure, Alice and Bob are assumed to perform the same set
of qubit-based local measurements to produce the outcome
statistics data. All experimental configurations are the same
as before except for the form of the measured observables.
The results are listed in Table VII.

It can be seen that compared with the previous setting,
i.e., global measurements are allowed for each subsystem, the
MSEs are slightly worse but comparable. Therefore, when
replacing d-dimensional local measurements with qubit-based
local observables, we can still quantify entanglement from the
outcome statistics data with very good precision.

In addition, when d = 3, 5, 10, notice that 2n > d , that is,
after the form of quantum measurements changes, the num-
ber of outcomes increases. As a result, when N = 2, 3, the
performance of prediction is remarkably better than that of
the previous results, which implies that the outcome statistics
data brought by qubit-based local observables is more infor-
mative than before. However, when N increases to 4,5, the
performance of prediction is a little bit worse. Nevertheless, in
all cases our hybrid model with qubit-based local observables
still has the same order of MSEs as the moment method.

Recall that though the moment method has very good
performance, the experimental cost of measuring moments
is much higher than that of generating correlation data.
Therefore, our result clearly implies that our hybrid quantum-
classical framework of machine learning largely overcomes
this difficulty, and achieves similar performance.

C. Noise resistance of the hybrid framework

In practice, collecting ideal outcome statistics data is chal-
lenging due to imperfect measurement devices and shot noise
[57–60]. Therefore, it is very important to estimate the impact

TABLE VII. The MSEs of predicting the coherent information
with learnable qubit-based local measurement devices.

Dimension d = 3 d = 5 d = 8 d = 10

Learnable, N = 2 0.0197 0.0272 0.0213 0.0108
Learnable, N = 3 0.0105 0.0190 0.0123 0.0091
Learnable, N = 4 0.0102 0.0155 0.0101 0.0090
Learnable, N = 5 0.0097 0.0162 0.0099 0.0079

TABLE VIII. The MSEs of predicting the coherent information
of noisy test quantum states with models trained by noiseless training
quantum states.

Dimension d = 3 d = 5 d = 8 d = 10

Learnable, N = 2 0.0399 0.0371 0.0215 0.0149
Learnable, N = 3 0.0151 0.0234 0.0128 0.0101
Learnable, N = 4 0.0086 0.0216 0.0095 0.0079
Learnable, N = 5 0.0093 0.0138 0.0088 0.0074

of small errors in collecting outcome statistics data on the
performance of our hybrid framework. It turns out that our
models enjoy a nice noise-resistant capability. To demonstrate
that this is indeed the case, for simplicity we now suppose that
all test quantum states suffer from a depolarizing noise before
they are measured, and apparently this will bring errors to the
underlying outcome statistics data.

Specifically, let us go back to the previously trained hybrid
quantum-classical models for predicting coherent information
(see Table VI). We also use the same set of test quantum
states ρ ∈ Hd ⊗ Hd sampled there, where d = 3, 5, 8, 10.
However, before measuring these test quantum states via the
same quantum measurements, we adjust them with the trans-
formation

ρnoisy = (1 − ε)ρ + ε

d2
Id2 , (14)

where Id2/d2 is the maximally mixed state. Here we let ε =
0.01. Without further training, we apply the same model with
learnable measurements previously trained in Sec. IV B to
predict the coherent information of these test quantum states
based on the imperfect outcome statistics data, and the results
are listed in Table VIII.

Compared with the results in Table VI, it can be seen that
the performance of the predictions on noisy quantum states
is comparable to that on noiseless quantum states, and the
average increment of MSE is only 9.37 × 10−4. Therefore,
our hybrid framework enjoys a nice noise-resistant capability,
and errors in outcome statistics data produced in practical
physical implementations do not hurt the performance of our
models much.

V. CONCLUSION

Quantifying entanglement experimentally is a very chal-
lenging task today. However, considering the profound
importance of quantum entanglement and the fast develop-
ments of quantum industries, fulfilling this kind of tasks
will probably become a daily routine in the future. As a
result, finding realistic and economical solutions for this
problem from the viewpoint of engineering is extremely
necessary, and a promising approach for this is using
machine learning methods, which in recent years have
been widely applied in quantum information processing
tasks [61–66].

In this paper, we focus on two known machine learning
approaches for quantifying entanglement experimentally, one
using moments as data features and the other using correlation
data. We systematically compare their performance in
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predicting the coherent information and the relative entropy
of entanglement. According to our results, the moment
method behaves much better than the correlation method,
which is consistent with the intuition. In fact, as mentioned,
each moment is a quantity related to the eigenvalues of
the corresponding density matrix, and all the moments
together in principle can pin down the essential information
of the density matrix. Hence, the moment method naturally
enjoys a remarkable advantage in quantifying entanglement.
However, estimating moments is much harder than correlation
data.

This motivates us to improve the performance of the
correlation method in quantifying entanglement. For this, we
propose a hybrid quantum-classical framework of machine
learning models to generate more informative correlation
data. Specifically, we studied two possible directions to
achieve this, where one directly enlarges the number of local
measurements fixed beforehand to produce more informative
correlation data, and the other adds a new quantum module
for the machine learning model to search for better local

measurements or even tensor products of qubit observables
utilized in correlation data generations, and at the same
time increases their number. It turns out that the former
direction only has a little improvement, while the latter is
much better, and it even achieves comparable performance
with the moment method.

Furthermore, we have shown that our models exhibit a
nice noise-resistant capability, and still enjoy decent perfor-
mance when handling realistic correlation data produced by
noisy quantum operations. Therefore, our hybrid framework is
expected to have potential applications in quantifying entan-
glement for unknown quantum states on near-term quantum
devices.
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