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Bosonic codes provide an alternative option for quantum error correction. An important category of bosonic
codes called the Gottesman-Kitaev-Preskill (GKP) code has aroused much interest recently. Theoretically, the
error correction ability of the GKP code is limited since it can only correct small shift errors in position and
momentum quadratures. A natural approach to promote the GKP error correction for large-scale, fault-tolerant
quantum computation is concatenating encoded GKP states with a stabilizer code. The performance of the XZZX
surface-GKP code, i.e., the single-mode GKP code concatenated with the XZZX surface code is investigated in
this paper under two different noise models. Firstly, in the code-capacity noise model, the asymmetric rectangular
GKP code with parameter λ is introduced. Using the minimum weight perfect matching decoder combined
with the continuous-variable GKP information, the optimal threshold of the XZZX-surface GKP code reaches
σ ≈ 0.67 when λ = 2.1, compared with the threshold σ ≈ 0.60 of the standard surface-GKP code. Secondly,
we analyze the shift errors of two-qubit gates in the actual implementation and build the full circuit-level noise
model. By setting the appropriate bias parameters, the logical error rate is reduced by several times in some cases.
These results indicate the XZZX surface-GKP codes are more suitable for asymmetric concatenation under the
general noise models. We also estimate the overhead of the XZZX-surface GKP code which uses about 291 GKP
states with the noise parameter 18.5 dB (κ/g ≈ 0.71%) to encode a logical qubit with the error rate 2.53 × 10−7,
compared with the qubit-based surface code using 3041 qubits to achieve almost the same logical error rate.
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I. INTRODUCTION

Quantum computation is promised to offer speedups over
the best-known classical algorithms for solving certain types
of problems [1–6]. To realize large-scale practical quan-
tum computation, the quantum error correction is a crucial
problem since physical quantum states are too fragile to be
preserved in the uncontrolled environment [7–11].

The fundamental idea of the quantum error correction
is introducing redundancy by encoding logical qubits in a
high-dimensional Hilbert space. Unlike the two-level qubit-
based systems, continuous-variable quantum systems provide
an attractive alternative for the quantum error correction
[12–16]. The bosonic codes encode the quantum information
in bosonic modes which provide infinite-dimensional Hilbert
space [17,18]. With the rapid developments in quantum hard-
ware and control technology, bosonic codes have shown their
unprecedented potential in quantum error correction in many
different experiments [19–23]. In the last few years, bosonic
quantum error correction has attracted a lot of interest, since
it is demonstrated to reach the break-even point [19,24,25],
i.e., the lifetime of a logical qubit is enhanced to exceed that
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of any individual components composing the experimental
system. The representative bosonic codes based on a single
bosonic mode include the cat code [19,26,27], the binomial
code [17,20,28], and the Gottesman-Kitaev-Preskill (GKP)
code [29,30].

The GKP code was proposed by Gottesman, Kitaev, and
Preskill in 2001, encoding the qubit into a harmonic oscillator
[29]. It was considered to be impractical for a long time, but
now arouses extensive attention because of the recent experi-
mental realizations [21,22,24]. Theoretically, the GKP-qubit
encoding is close to the optimal encoding for the quantum
capacity of Gaussian thermal loss channels with average
photon-number constraint [31]. Nevertheless, the protection
of quantum information provided by the GKP code is limited.
The GKP code is helpless for the shift error beyond a certain
boundary, in which case the logical error may be produced.

To overcome the logical errors of the GKP state, it is
natural to introduce a high-level stabilizer code [32]. As the
main representatives of the two-dimensional topological sta-
bilizer codes, surface codes [33,34] and color codes [35,36]
concatenated with the GKP code have been considered in
many previous works [37–40], which discuss the performance
of the concatenation codes in different noise models.

Reference [41] proposes a variant of the surface code—the
XZZX surface code which shows its high threshold and low
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overhead under biased noise. It should be noted that even if the
bias is equal to 1, the threshold of the XZZX surface code us-
ing the minimum weight perfect matching (MWPM) decoder
[42,43] is still slightly higher than the conventional surface
code. Therefore, it is natural to expect a better performance
of the concatenation of the GKP code with the XZZX surface
code than with the conventional surface code.

The goal of this paper is to study the concatenation of the
GKP code with the XZZX surface code (the XZZX surface-
GKP code). The performance of the XZZX surface-GKP code
is investigated under two noise models. Concretely, in the
first noise model, the code-capacity noise model [44], all
the components except data GKP qubits are noiseless. For
utilizing the advantage of the XZZX surface code in handling
biased noise, the asymmetric rectangular GKP code [45] with
parameter λ is introduced to create the bias artificially. Using
the MWPM decoder combined with the continuous-variable
GKP information, the optimal code-capacity threshold of the
XZZX-surface GKP code reaches σ ≈ 0.67 when λ = 2.1,
exceeding the previous result of the standard GKP-surface
code with the threshold σ ≈ 0.60 [37]. Another work about
the asymmetric GKP concatenation studies the rectangular
GKP code concatenated with the conventional surface code
[45], where they use the Bravyi, Suchara, and Vargo (BSV)
decoder [46] without the GKP continuous-variable informa-
tion and improve the threshold from σ ≈ 0.54 to σ ≈ 0.58.
Compared with their result, the XZZX-surface GKP code is a
more promising candidate for the asymmetric GKP concate-
nation code.

The second noise model called the full circuit-level noise
model is more realistic, where the noises in GKP state prepa-
rations, homodyne measurements, two-qubit gates, and idle
operations are taken into account. This error model is built
on the specific derivation of the Gaussian shift errors after
CNOT, CZ gates, and balanced beam-splitter operations. The
maximum likelihood (ML) decoding strategy in Ref. [39] is
adapted to the full circuit-level noise model. The threshold of
the XZZX-surface GKP code under this noise model reaches
16.1 dB (κ/g ≈ 1.23%), which is superior to the previous
result 18.6 dB (κ/g ≈ 0.69%) of the surface GKP code under
the same error model [38]. Meanwhile, by setting the appro-
priate bias parameters, the logical error rate is reduced by
several times compared with the square GKP concatenation
code. Finally, we estimate the overhead of the XZZX-surface
GKP code to achieve a logical error rate that is low enough.
For example, if the noise parameter reaches 18.5 dB (κ/g ≈
0.71%), one needs about 291 GKP states to encode a logical
qubit with the error rate 2.53 × 10−7, which is much fewer
than the qubit-based surface code.

The rest of the paper is organized as follows. Section II
starts with some basic aspects of the conventional surface
code and the XZZX surface code. Then we discuss some
decoding algorithms, especially the MWPM algorithm that
will be applied in the decoding in the following paper. Sec-
tion III introduces the asymmetric rectangular GKP code and
the construction and error correction circuits of the XZZX
surface-GKP code. At the end of this section, the code ca-
pacity threshold of the XZZX surface-GKP code with the
designed bias is obtained by numerical simulations. In Sec. IV
we discuss the full circuit-level noise model and the ML

decoding strategy of two-qubit gates in detail. Section IV also
presents the numerical results and estimates the overhead of
the XZZX surface-GKP code. Lastly, the conclusion of this
paper and the outlook for future work are described in Sec. V.

II. THE XZZX SURFACE CODE
A. Conventional surface code

The surface code is a kind of topological stabilizer code.
Let Pn denote the n-fold Pauli group, the elements of which
are n-fold tensor products of the single-qubit Pauli opera-
tors {I, X,Y, Z} with the phase ±1 or ±i. Given a quantum
state |ψ〉, an operator S ∈ Pn is called the stabilizer of |ψ〉 if
S |ψ〉 = +1 |ψ〉.

In the stabilizer formalism [47], a logical state of the sur-
face code is described by an Abelian subgroup called the
stabilizer group in which all the operators are the stabilizers
of the quantum state. Note that every two stabilizer operators
in a stabilizer group commute and the identity operator I
is always in the stabilizer group. The stabilizer group of a
logical state of the surface code is generated by two types of
operators, X -type stabilizers and Z-type stabilizers, which are
the XXXX tensor product and the ZZZZ tensor product of
four data qubits in each square face [see Fig. 1(a)].

Let us focus on the rotated surface code that uses fewer
data qubits to encode a logical qubit compared with the planar
surface code [48]. The rotated surface code can be described
intuitively in a two-dimensional regular lattice, as shown in
Fig. 1(a). The data qubits that are encoded to store quantum
information lie on the vertices, and each stabilizer operator
corresponds to a colored face. Concretely, the form of X -
(or Z-) type stabilizers is SX = ∏

i∈∂ f Xi (or SZ = ∏
i∈∂ f Zi),

where {i} are the labels of the vertices incident on face f . Note
that the boundary stabilizers have the weight of 2 and the other
stabilizers have the weight of 4 since the boundary face only
has two vertices.

The surface code reduces the logical error rate efficiently
by increasing the code distance d . The code distance dx (or dz)
is the Pauli weight of the logical Pauli operator XL (or ZL), that
is, the X (or Z) tensor product of the data qubit in the string
between two horizontal (or vertical) boundaries. If the error
rate of each data qubit p is small enough, the logical error rate
PL can be approximated well by the empirical formula [34]

PL
∼= c(p/pth )(d+1)/2, (1)

where pth is an important parameter in the quantum error
correction theory called the threshold. Apparently, if the data
qubit error rate is less than the threshold, the logical error
rate tends to be infinitely small with the increase of the code
distance.

B. tXZZX surface code

In many original works of surface code threshold, the noise
model is the single-qubit Pauli noise channel where the data
qubit suffers the X , Y , and Z error with equal probabilities.
However, in many experimental architectures [49–51], the
realistic noise is biased towards dephasing, i.e., the Z error
rate is much higher than the X and Y error’s. Usually, the noise
bias is defined as η = pz/(px + py), where px, py, and pz are
the Pauli X , Y , and Z error rate of the qubits, respectively.
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(a) (b) (c)

FIG. 1. Two types of rotated surface codes and error strings. (a) The conventional surface code. Data qubits lie on the vertices of each
square face, and each face indicates a stabilizer, which is the X (or Z) tensor product of the adjacent data qubits. The X -type stabilizers and the
Z-type stabilizers are green and yellow, respectively. (b) The XZZX surface code. The XZZX surface code only has XZZX-type stabilizers,
which is blue in the figure. (c) Error strings of the XZZX surface code. The labeled stabilizers (bold dots on the faces) of the XZZX surface
code caused by only X or Z errors can be connected with disjoint strings. Each string can be viewed as a repetition code.

In order to better adapt to the realistic noise model, some
well-designed surface codes are developed, one of which is
the XZZX surface code [41,52,53]. It has been shown numer-
ically that the XZZX surface code has a high threshold under
the biased noise model, which exceeds the hashing bound
[11].

The XZZX surface code can be defined in the same two-
dimensional lattice as the conventional surface code. Without
regard to the boundary, there is only one type of stabilizer
generator of the XZZX surface—the tensor product of Pauli
operator XZZX. Note that the XZZX surface code can be
converted to the conventional surface code by locally acting
Hadamard operators on alternate data qubits.

Suppose that some Pauli errors occur in the surface code;
the stabilizer generators are labeled if the generators anticom-
mute with the Pauli errors. A good characteristic of the XZZX
surface code is that the labeled stabilizers caused by only Z
(or X ) errors can be connected with disjoint strings, as shown
in Fig. 1(c). Under the Z error-dominated noise, these parallel
strings can be viewed as in the independent repetition codes
[54] if we ignore the X or Y errors. It is well known that
the repetition code has an ideal threshold pth = 0.5, which is
much higher than the conventional surface code’s 0.1. There-
fore, the threshold of the XZZX surface code is superior to
the conventional surface code under a bias dephasing noise
model.

Figure 1(b) shows a d = 5 XZZX surface code where the
logical Z and X operators have equal length. However, be-
cause of the biased noise, the logical Z operator is longer than
the logical X operator in the practical XZZX surface code. In
other words, the array of the data qubits is typically a rectangle
rather than a square, which provides the approach for XZZX
surface codes to achieve a target logical failure rate with low
overhead.

C. Decoding

Turn our attention to the decoding problem of the surface
code. Assuming S generated by {Sk} is the stabilizer group

of a quantum code C, a n-qubit Pauli operator e ∈ Pn is a
detectable error if there exists at least one stabilizer Si ∈ {Sk}
such that Si anticommutes e. The outcomes of measuring all
these stabilizer generators form the syndromes of error e,
denoted by se. Suppose an error e occurs in some data qubits
with the syndrome se; a decoding algorithm outputs a recover
operator R according to the syndrome, such that Re commutes
with all the stabilizers in S .

However, the decoding algorithm does not always output
an expected R. The error e is corrected successfully if Re ∈ S ,
otherwise the decoding process produces a logical error that
cannot be detected by the stabilizer measurements. Generally,
the decoding algorithm is hoped to have the logical error rate
as low as possible.

In fact, for a given syndrome se, the recover operator R may
come from one of the following four sets:

eS, eXLS, eZLS, eXLZLS. (2)

These four sets are the cosets of S and here we assume the
quantum error correction code only encodes one logical qubit.
The recover operators in the same coset are equivalent when
we recover an error state. Selecting a recover operator from
the most likely coset will reduce the logical error rate, which
is exactly what the maximum-likelihood decoder (MLD) does
[55].

The MLD is optimal from the point of getting a high
success probability of decoding. However, the exact MLD
under a general noise model costs a lot of time to execute.
Compared with the MLD, the MWPM decoder is more widely
used, because of its efficiency.

The MWPM decoder turns the decoding problem into
matching the labeled stabilizers in pairs with the lowest link
weight. Firstly it transforms the surface code lattice into a
decoding graph where the vertices denote the stabilizers and
each data qubit lies on the edge [56]. Consider a path E on
the decoding graph where E corresponds to an error (say e)
whose labeled stabilizers are the starting and ending vertices
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of E . The probability of the error e occurring is

pE =
∏
i �∈E

(1 − pi )
∏
i∈E

pi

= P0

∏
i∈E

(
pi

1 − pi

)
,

(3)

where i is the label of the edge, pi is the error rate of the
data qubits adjacent to E , and P0 = ∏

i(1 − pi ) is a constant
irrelevant to E . Therefore, if one sets the weight of the edge
i as wi = − ln pi

1−pi
, − ln pE is exactly the sum of the weights

of the edge in path E (up to a constant):

− ln pE =
∑
i∈E

wi − ln P0. (4)

Given the weight of each possible path, the minimum
weight perfect matching algorithm can be applied to connect
the labeled stabilizers in pairs such that the sum of weights
is minimal. Then the recover operators are applied along the
connecting path. As mentioned, executing the MWPM de-
coder is more efficient since the time cost of the minimum
weight perfect matching algorithm is polynomial. Although
the MWPM decoder is not optimal, it still performs well
enough in many usual noise models. More importantly, the
MWPM decoder can naturally adapt to the surface code de-
coding adding the GKP continuous-variable information by
modifying the matching weights, which is discussed in the
following sections.

III. THE XZZX SURFACE-GKP CODE

In this section, we introduce the main topic of this
paper—the XZZX surface-GKP code. Specifically, this sec-
tion describes the concatenation of the rectangular GKP code
with the XZZX surface code in several aspects including basic
concepts, construction, and error correction process. At the
end of this section, we investigate the performance of the
XZZX surface-GKP code in the code-capacity noise model
and show the numerical results.

A. Rectangular GKP code

The GKP error correction code is a kind of bosonic code
that has attracted much attention recently. Many previous
works focus on the GKP code on the square lattice (square
GKP code). The square GKP code protects against small
shift error in position and momentum quadratures with equal
logical X̄ or Z̄ error rates. As a more general case, here we
review the basic aspects of the rectangular GKP code.

For a harmonic oscillator, the position and momentum
operators are defined as

q̂ = 1√
2

(â + â†), p̂ = − i√
2

(â − â†), (5)

where â† and â are annihilation and creation operators satisfy-
ing [â†, â] = 1. The code space of the rectangular GKP code
is stabilized by two commuting stabilizer operators:

Ŝp,λ = e−i2(
√

πλ)p̂, Ŝq,λ = ei2(
√

π/λ)q̂, (6)

where λ is the parameter of asymmetry. The logical states are
defined as

|0̄λ〉 ∝
∑
n∈Z

|q = 2nλ
√

π〉,

|1̄λ〉 ∝
∑
n∈Z

|q = (2n + 1)λ
√

π〉. (7)

Correspondingly, the logical Pauli operators are

X̄λ = e−i(
√

πλ)p̂, Z̄λ = ei(
√

π/λ)q̂. (8)

The Clifford gates of the GKP code can be performed
by interactions that are at most quadratic in the creation and
annihilation operators. In particular, the rescaled CNOTβ gate
with parameter β has the following form:

CNOTβ = e−iq̂ j p̂k/β, (9)

where j, k are the control qubit and target qubit, respectively.
The CNOTβ gate holds the following relationships with q̂ and
p̂ operators in the Heisenberg representation [57]:

(CNOTβ )−1q̂ jCNOTβ = q̂ j,

(CNOTβ )−1q̂kCNOTβ = q̂k + q̂ j/β,

(CNOTβ )−1 p̂ jCNOTβ = p̂ j − pk/β,

(CNOTβ )−1 p̂kCNOTβ = p̂k . (10)

Likewise, the rescaled CZβ gate is

CZβ = e−iq̂ j q̂k/β . (11)

One can easily find how the CZβ transforms q̂ and p̂ in
the Heisenberg representation by exchanging q̂k and p̂k in
Eq. (10), since CZβ = H−1

k CNOTβHk where Hk = eiπ â†â is
the Hadamard gate of qubit k.

Another important operation in the error correction of the
GKP code is the beam splitter

Bθ = e−iθ (q̂ j p̂k−p̂ j q̂k ), (12)

which transforms q̂ and p̂ as follows:

(Bθ )−1q̂ jBθ = cos θ q̂ j − sin θ q̂k,

(Bθ )−1q̂kBθ = cos θ q̂k + sin θ q̂ j,

(Bθ )−1 p̂ jBθ = cos θ p̂ j − sin θ p̂k,

(Bθ )−1 p̂kBθ = cos θ p̂k + sin θ p̂ j . (13)

We call this operation a balanced beam splitter if θ = π/4.
Generally, the noise channel of the GKP code is considered

as a Gaussian shift error channel N [32]:

N (ρ) ≡
∫∫

Pσ (u)Pσ (v)e−iup̂eivq̂ρe−ivq̂eiup̂du dv, (14)

where Pσ (x) = 1√
2πσ 2

e−x2/2σ 2
is the Gaussian distribution

function with variance σ 2. Such an error channel is the result
of Pauli twirling approximation [58]. A logical X̄ (or Z̄) error
occurs when the Gaussian shift error |u mod 2

√
πλ| >

√
π

2 λ

(or |v mod 2
√

π/λ| >
√

π

2λ
) in the q̂ (or p̂) quadrature. In this

paper, the mod function a mod b has the range [− b
2 , b

2 ).
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(a)

(b)

FIG. 2. The error correction process of the rectangle GKP code.
(a) The error correction range of the rectangular GKP code in q̂ and
p̂ quadratures. An ideal GKP error correction procedure can only
correct the shift errors in the blue area. The logical error will be
produced if the shift errors are beyond the blue area. (b) The quantum
circuit of the teleportation-based GKP error correction (labeled as
EC). Two balanced beam splitters (labeled as BS) are used for state
teleportation.

The logical X and Z error probabilities are

pX̄ = 1 −
∑
k∈Z

∫ 2k
√

πλ+(
√

πλ/2)

2k
√

πλ−(
√

πλ/2)
Pσ (u)du,

pZ̄ = 1 −
∑
k∈Z

∫ 2k
√

π/λ+(
√

π/2λ)

2k
√

π/λ−(
√

π/2λ)
Pσ (v)dv. (15)

When the error shift goes beyond the blue area in Fig. 2(a),
the error correction procedure will introduce a logical X or Z
error. Intuitively, the logical error probability is the probability
of the Gaussian shift error out of the correctable range in
Fig. 2(a).

The GKP code provides extra continuous-variable infor-
mation for surface code decoding. The error rates conditioned
on the measurement results qm and pm are [32]

p(X̄ |qm) = 1 −
∑

k∈Z Pσ (qm − 2k
√

πλ)∑
k∈Z Pσ (qm − k

√
πλ)

,

p(Z̄|pm) = 1 −
∑

k∈Z Pσ (pm − 2k
√

π/λ)∑
k∈Z Pσ (pm − k

√
π/λ)

(16)

for X̄ or Z̄ error, respectively, where qm and pm are the
measurement results in the GKP error correction. These con-
ditional error rates provide more accurate matching weights
for the MWPM decoder.

Obviously, the rectangular GKP code goes back to the
square GKP code if λ = 1. The square GKP code protects
against shift errors with the same ranges in q̂ and p̂ quadra-
tures, in which the probabilities of logical X̄ or Z̄ error are
equal. The rectangular GKP code naturally owns the bias with

(a)

(b)

FIG. 3. The qubit layout and stabilizer measurements of the
XZZX surface-GKP code. (a) The qubit layout of the XZZX surface-
GKP code. Each data qubit (blue) or syndrome qubit (black) requires
two extra ancilla GKP states for GKP error correction. The number
near CZ or CNOT gates indicates the time order of the action. (b) The
quantum circuit of the XZZX stabilizer measurement. The data and
syndrome qubits are rectangle GKP states with different parameters.
The CZ and CNOT gates are also rescaled. The teleportation-based
error corrections are applied after CZ and CNOT gates and idle
operations.

the parameter

η = pZ̄ − pZ̄ pX̄

pX̄
. (17)

For utilizing the superiority of the XZZX surface code under
the biased noise, we can design the bias of the rectangular
GKP code by setting λ �= 1.

B. XZZX surface-GKP code and its error correction

The GKP error correction code can protect against small
shift errors. If the shift error is larger than

√
π

2 λ in q̂ quadrature

or
√

π

2 /λ in p̂ quadrature, the higher level stabilizer code is
necessary to deal with the GKP logical error. Now let us
discuss the concatenation of the GKP code with the XZZX
surface code.

The data qubits of the XZZX surface code are replaced by
encoded GKP states following the same array as Fig. 1(b).
Moreover, referring to Fig. 3(a), two extra GKP states are
placed next to each data or syndrome qubit, which is used for
the GKP error correction. The GKP error correction protocol
used in this paper is the teleportation-based scheme [59].
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The teleportation-based GKP error correction scheme uti-
lizes the GKP Bell pair and the balanced beam-splitter
operations. The GKP Bell pair is prepared from two qunaught
states [59]

|∅λ〉 ∝
∑
n∈Z

|q̂ = n
√

2πλ〉 ∝
∑
n∈Z

| p̂ = n
√

2π/λ〉 , (18)

acted by a balanced beam splitter, as shown in Fig. 2(b). The
quantum information in data GKP qubits will teleport to the
second ancilla GKP qubits, where the GKP error correction
is done naturally. Just like the normal quantum teleportation,
the logical X̄ or Z̄ error may be produced, depending on the
measurement results on the first two qubits. It is unnecessary
to perform real-time error correction, but one can keep track
of the errors in the Pauli frame [60,61] until a non-Clifford
gate is applied.

It has been shown that the teleportation-based scheme out-
performs the Steane scheme where they assume the finite
squeezing of the GKP states is the only noise source [39].
In Appendix A 1, we present the details of the teleportation-
based scheme and give a discussion about the superiority
of this scheme under a full circuit-level error model in Ap-
pendix A 2.

In the second level of the error correction, the ancilla
GKP qubits called syndrome qubits are placed in each face
in Fig. 3(a) for stabilizer measurements of the XZZX surface
code. The syndrome qubits are coupled with nearby data
qubits by CNOT or CZ gates.

In particular, if the data qubits are the rectangular GKP
state (say |ψ̄λ〉), the ancilla qubits and two-qubit gates need to
be rescaled. Specifically, in the GKP error correction step, the
GKP ancilla qubits should have the same rescaled parameter
λ as data qubits. In the XZZX stabilizer measurement step,
the rescaled parameter of the syndrome qubits can be chosen
arbitrarily (say β), but the CNOT and CZ gates should adjust
to CNOTβ/λ and CZλβ gates, respectively (see Appendix A 3
for details).

C. Code capacity threshold with the designed bias

In this section, we show the numerical results of the code
capacity threshold of the XZZX surface-GKP code with the
designed bias. In the code-capacity noise model, the only
noise resource is the Gaussian shift error channel on the data
qubits. In other words, all two-qubit gates and measurements
are assumed noiseless in both GKP error correction and stabi-
lizer measurement steps.

We design the bias of the XZZX surface-GKP code by
setting different rescaled parameters λ. Without loss of gener-
ality, we set λ � 1 such that the Z̄ error rate is higher than the
X̄ error rate. A λ larger than 1 will produce a bias as Eq. (17)
gives. On the other hand, such a λ will enlarge the total error
rate of X̄ , Ȳ , and Z̄ error:

p̄ = 1 − (1 − pX̄ )(1 − pZ̄ ) = pX̄ + pZ̄ − pX̄ pZ̄ , (19)

where pX̄ and pZ̄ are defined in Eq. (15). The numerical results
in Ref. [41] show that the threshold of the XZZX surface code
increases with a larger bias. Therefore, we expect a trade-off
that can achieve the optimal threshold of the XZZX surface-
GKP code.

To decode the XZZX surface-GKP code, we use the
MWPM decoder combined with the continuous-variable in-
formation. The matching weight in the decoding graph is
wi = − ln pi

1−pi
, where pi is pX̄ or pZ̄ of GKP qubit i. The

numerical results are shown in Fig. 4(a) where the optimal
threshold is in λ = 2.1 and reaches σ ≈ 0.67. Note that when
λ = 1, the threshold of the XZZX surface code is σ ≈ 0.60,
almost the same as the standard surface-GKP code [37]. When
λ = 2.1 and σ is in the threshold, one can compute the bias
η ≈ 102 by using Eqs. (15) and (17).

A previous work in Ref. [45] promotes the threshold from
σ ≈ 0.54 to σ ≈ 0.58, where they use the BSV decoder with-
out the GKP continuous-variable information. Compared with
that, our threshold is higher and promoted more. We attribute
this improvement to the good performance of the XZZX sur-
face code under biased noise and the application of the GKP
continuous-variable information in the MWPW decoder.

IV. THE XZZX SURFACE-GKP CODE UNDER THE FULL
CIRCUIT-LEVEL NOISE MODEL

In this section, we investigate the performance of the
XZZX surface-GKP code under the full circuit-level noise
model, where the noise in the quantum circuit is taken into
account in detail. The section starts with a discussion of the
noise model and then proposes the decoding strategy. Lastly,
we give the numerical result and compare it with the previous
work.

A. Full circuit-level noise model

The whole quantum circuits for error correction and the
time order of the CNOT and CZ gates are illustrated in
Fig. 3(b). Here we consider an error model that is as detailed
as possible. Specifically, shift errors in q̂ and p̂ quadratures are
assumed to appear after the following operations:

(1) preparations of the initial GKP states (including both
data qubits and ancilla qubits);

(2) homodyne measurements of the q̂ or p̂ operator;
(3) idle operations of data qubits when syndrome qubits are

measured;
(4) two-qubit gates (including CNOT gates, CZ gates, and

balanced beam-splitters).
Simulating the first two kinds of errors is easy. The only

thing required is adding a Gaussian shift error channel after
each operation in (1)–(3), as given in Eq. (14) [31]. Let us
suppose two Gaussian shift error channels in (1)–(3) are Np,
Nm, and Ni with the variance σ 2

p , σ 2
m, and σ 2

i , respectively.
The shift errors after two-qubit gates are more complicated

since they produce a correlation. In this case, the shift errors
on different GKP states cannot be described by independent
Gaussian distribution, and we need to introduce the covariance
matrices.

Suppose the CNOTβ gate, the CZβ gate, and the balanced
beam-splitter operation are realized by the Hamiltonians
ĤCNOT = gq̂ j p̂k/β, ĤCZ = gq̂ j q̂k/β, and ĤBS = gπ

4 (q̂ j p̂k −
p̂ j q̂k ), respectively, and the GKP states suffer photon
loss and heating. Such a noisy gate is equivalent to
an ideal gate followed by correlated Gaussian shift er-
rors with the Gaussian distributions (q̂ j, q̂k ) ∼ N(0, Nqj qk )
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(a) (b)

FIG. 4. Code- capacity threshold of the XZZX surface-GKP code. (a) Threshold of the XZZX surface-GKP code as a function of the
parameter λ. With the increasing λ, the threshold first increases and then decreases, reaching the peak at λ = 2.1. (b) Threshold of the XZZX
surface-GKP code at λ = 2.1. The logical error rates with different code distance d are estimated by the Monte Carlo simulation and the
maximum threshold of the XZZX surface-GKP code is around 0.67.

and ( p̂ j, p̂k ) ∼ N(0, Npj pk ) [or (q̂ j, p̂k ) ∼ N(0, Nqj pk ) and
( p̂ j, q̂k ) ∼ N(0, Npj qk )]. For the CNOTβ gate, the covariance
matrices are

Nqj qk = σ 2
c

[
1 1

2β

1
2β

1 + 1
3β2

]
, Npj pk = σ 2

c

[
1 + 1

3β2 − 1
2β

− 1
2β

1

]
.

(20)

For the CZβ gate, the covariance matrices are

Nqj pk = σ 2
c

[
1 1

2β

1
2β

1 + 1
3β2

]
, Npj qk = σ 2

c

[
1 + 1

3β2 − 1
2β

− 1
2β

1

]
.

(21)

For the balanced beam-splitter operation, the covariance ma-
trices are

Nqj qk = σ 2
c

[
1 0
0 1

]
, Npj pk = σ 2

c

[
1 0
0 1

]
. (22)

Here σ 2
c = κ/g, where g is the coupling strength and κ is

the photon loss and heating rate. The detailed derivations are
presented in Appendix B.

B. Maximum likelihood decoding under the full
circuit-level noise

Independently from our work, the ML decoding strategy
in GKP error correction is firstly proposed by Ref. [39], in
which they only analyze the errors coming from the noisy
initial GKP states. Here we generalize their idea to the full
circuit-level noise model.

To achieve ML decoding after two-qubit gates, it is neces-
sary to analyze the propagation of shift errors in detail. First,
let us prove a circuit identity of the teleportation-based GKP
error correction under the full circuit-level noise model. In the
initial step of the teleportation-based GKP error correction,
the data qubit and ancilla qubits suffer the shift errors in
the q̂ (or p̂) quadrature with the variances σ 2

p + σ 2
c and σ 2

p ,
respectively. After the first beam-splitter (BS) operation, the

variances of the errors in ancilla qubits increase to σ 2
p + σ 2

c .
Then after the second BS operation, the variances of the
errors in the data qubit and the first ancilla qubit increase
to σ 2

p + 2σ 2
c . Finally, in the measurement step, the variances

of the errors in the data qubit and the first ancilla qubit in-
crease to σ 2

p + 2σ 2
c + σ 2

m and the results multiply a factor
√

2.
Overall, the variance of the error in the data qubit increases
from σ 2

p + σ 2
c to 2σ 2

p + 4σ 2
c + 2σ 2

m, and the output state (the
third qubit) suffers the shift error with the variance σ 2

p + σ 2
c .

Figure 5 shows an example where we assume that σ ≡ σp =
σc = σm = σi.

As a result, a noisy GKP error correction by teleportation
scheme is equivalent to an ideal GKP error correction attached
to an input shift error with variance σ 2

p + 3σ 2
c + 2σ 2

m and an
output shift error with variance σ 2

p + σ 2
c . Furthermore, these

two shift errors are independent Gaussian variables because
we only apply the orthogonal transformations in three GKP
states.

Then let us compute the probability density function of
shift errors in the q̂ quadrature after the CNOTβ gate. Before
the CNOTβ gate, the shift errors u = (u1, u2)T of the target
and control qubits in q̂ quadrature have the covariance matrix

Nq0 = (
σ 2

p + σ 2
c

)[1 0
0 1

]
, (23)

which comes from the last noisy GKP error correction. After
the ideal CNOTβ gate, this covariance matrix transforms as
follows:

Nq = (
σ 2

p + σ 2
c

)[1 + 1
β2

1
β

1
β

1

]
. (24)

Note that we exchange the order of the control and target
qubits since the target qubit is the data qubit and the control
qubit is the ancilla qubit in the XZZX stabilizer measurement
circuits. As mentioned, the shift error that comes from the

062408-7



ZHANG, WU, AND GUO PHYSICAL REVIEW A 107, 062408 (2023)

(a)

(b)

FIG. 5. Shift error propagation analysis in the teleportation-
based error correction. (a) Shift errors after each operation. The
variances of the shift error after preparations, BS operations, and
measurements are assumed equal to σ 2. The output qubits suffer the
shift error with variances 2σ 2. The shift errors in the measurements
are 8σ 2 since the Pauli recover operations are determined by

√
2qm or√

2pm. (b) The circuit identity of the teleportation-based GKP error
correction under the full circuit-level noise. The teleportation-based
error correction with full circuit-level noise is equivalent to an ideal
GKP error correction attached to an input shift error with variance
6σ 2 and an output shift error with variance 2σ 2

noisy CNOT gate has the covariance matrix

Nc = σ 2
c

[
1 + 1

3β2
1

2β

1
2β

1

]
. (25)

In the last step, it is required to add the shift errors in the
current GKP error correction with the covariance matrix

NEC = (
σ 2

p + 3σ 2
c + 2σ 2

m

)[1 0
0 1

]
. (26)

Thus, the total shift errors have the covariance matrix

N = Nq + Nc + NEC. (27)

We use Fig. 6 to clearly show the whole process. Ac-
cordingly, the probability density function of shift errors in
q̂ quadrature until an ideal GKP error correction is

p(u1, u2) = 1

2π
√|N| exp

[
1

2
uT N−1u

]
. (28)

Recall that u = (u1, u2)T and u1, u2 are shift errors in the q̂
quadrature of the data qubit and the ancilla qubit, respectively.

Given the measurement results qm1 and qm2, the ML de-
coding process needs to solve the following optimization
problem:

(n1, n2) = arg min
n1,n2

(uT N−1u), (29)

where u1 = √
2qm1 − n1

√
π , u2 = √

2qm2 − n2
√

π . Refer-
ence [39] gives the algorithm to solve this kind of problem.

Up to now, we have discussed the ML decoding strategy of
the shift errors in the q̂ quadrature after a noisy CNOTβ gate.
By carrying out a similar derivation, the optimization problem

FIG. 6. The covariances of the shift errors in the noisy circuit.
After the first GKP error correction, the output shift errors have the
covariance matrix Nq0. Then after the ideal CNOT gate, the covari-
ance matrix Nq0 changes to be Nq. Finally we add the covariance
matrices Nc and NEC which come from the noisy CNOT gate and the
noisy GKP error correction. Thus, the error before the second GKP
error correction decoding has the covariance matrix Nq + Nc + NEC.

to deal with the shift errors in the p̂ quadrature after the noisy
CNOTβ gate is

(n′
1, n′

2) = arg min
n′

1,n
′
2

(vT N′−1v), (30)

where v1 = √
2pm1 − n′

1

√
π , v2 = √

2pm2 − n′
2

√
π , and

N′ = (
σ 2

p + σ 2
c

)[ 1 − 1
β

− 1
β

1 + 1
β2

]

+ σ 2
c

[
1 + 1

3β2 − 1
2β

− 1
2β

1

]
+ NEC. (31)

Since the CNOT gate is locally equivalent to the CZ gate, one
can get similar results of the CZβ gate by exchanging the q̂
and p̂ operators of the target qubit and repeating the above
discussion. As a result, the ML decoding strategy of the CZβ

gate needs to optimize the following problem:

(n′
1, n2) = arg min

n′
1,n2

(wT N−1w),

(n1, n′
2) = arg min

n1,n′
2

(w′T N′−1w′),
(32)

where w = (v1, u2), w′ = (u1, v2), and u1, u2, v1, and v2 are
as defined previously.

C. Numerical results and overhead estimation

In this section, we test the logical error rates and thresholds
of the XZZX surface-GKP codes under three error models
by the numerical simulations. In the first error model, we as-
sume that σ ≡ σp and σc = σm = σi = 0, which corresponds
to the situation where the noise is dominated by the squeezing
of the GKP states. In the second error model, we assume
that σ ≡ σc = σm = σi and σp = 0, where the noise from
two-qubit gates and measurements is dominant. In the third
error model, the strengths of these noises are the same, i.e.,
σ ≡ σc = σm = σi = σp.
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(a) (b)

(c)

FIG. 7. Thresholds of the XZZX surface-GKP code as a function of the parameter β under three circuit-level error models. The optimal
thresholds are close to β = 1 in all three cases. The thresholds in the figures are obtained by the intersection points of the logical error rate
curves with d = 5 and d = 7.

The measurement results of the XZZX stabilizers are
obtained by homodyne measurements of the p̂ operator
on syndrome qubits, which will be affected by Gaus-
sian shift errors. Thus, in our simulation, we repeat the
noisy stabilizer measurement d times appended an ideal
stabilizer measurement, where all the components in the
circuits are noiseless. Here d is the code distance of the
XZZX surface code. As mentioned, we use the ML decod-
ing strategy in the GKP error correction step and use the
MWPM decoder to decode the XZZX surface code under
the circuit-level noise model. The GKP continuous-variable
information has attached to the matching weights in the de-
coding graph (see Appendix C for the details of the matching
weights).

Using the Monte Carlo simulation, we test the thresholds
of the XZZX surface-GKP code with different parameters
β, where λ is fixed to 1. Recall that λ and β are the bias
parameters of the data qubits and syndrome qubits, respec-
tively. We find the optimal thresholds are around β = 1 in

all three error models (see Fig. 7). Referring to [39], the
threshold of the conventional surface-GKP code under the
first error model is 9.9 dB, almost equal to that of the XZZX
surface-GKP code. Here decibel is the unit of the squeezing
quantity σdB, which is defined as σdB = −10 log10(2σ 2). It
seems that the XZZX surface-GKP code provides little im-
provement. However, when the noise strength is below the
threshold, we observe that the logical error rates will be re-
duced when setting the appropriate β. As shown in Fig. 8,
the logical error rates of the XZZX surface-GKP code with
distance 7 have been reduced by several times when setting
β > 1 in some cases. For example, under the third error
model with σdB = 18.5 dB (κ/g = 0.71%), the logical error
rate of the XZZX surface-GKP code with λ = 1, β = 1.3
has decreased by an order of magnitude compared with the
square XZZX surface-GKP code. In the previous work [39],
this phenomenon only occurs when λ = 1, β = 1.1 in the first
error model and the logical error rates are only reduced by a
small fraction. These results indicate the XZZX surface-GKP
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(a) (b)

(c)

FIG. 8. The logical error rates of the XZZX surface-GKP code with d = 7 and different parameters β under three circuit-level error models.
When the noise strength decreases, the logical error rates have been efficiently reduced by asymmetric XZZX surface GKP codes. Within the
noise strength ranges shown in the figures, the logical error rates of the square XZZX surface GKP code and the asymmetric XZZX surface
GKP codes differ by at most an order of magnitude. Here we only show the results of β � 1 since with the noise strengths shown in the figures,
the logical error rates increase when β < 1.

codes are more suitable for asymmetric concatenation under
the general error models.

Meanwhile, as a complement to the previous work, Fig. 7
also shows the threshold of the square XZZX surface-GKP
code (β = 1) under the second and third error models using
the ML decoding. The thresholds are about κ/g ≈ 1.53%
and σdB ≈ 16.1 dB (κ/g ≈ 1.23%) for the second and third
error models, respectively. These results of the conventional
surface-GKP code are κ/g ≈ 0.81% and σdB ≈ 18.6 dB
(κ/g ≈ 0.69%) without using the ML decoding strategy [38].
The improvements demonstrate the effectiveness of the ML
decoding under the full circuit-level noise models.

Furthermore, we estimate the overhead of the XZZX
surface-GKP code to reach a low logical error rate PL under
the third error model and compare it with the overhead of
the qubit-based surface code. In order to encode a logical

qubit with code distance d , an XZZX surface-GKP code needs
totally 3(2d2 − 1) GKP states [d2 data qubits with 2d2 GKP
ancilla qubits and d2 − 1 syndrome qubits with 2(d2 − 1)
GKP ancilla qubits], while a qubit-based surface code requires
2d2 − 1 qubits. Through the optimization of the quantum cir-
cuits in the future, some GKP qubits may be reused to reduce
the total qubit consumption further. Here we only provide a
pessimistic estimation of the overhead of the XZZX surface-
GKP code.

The overhead of the qubit-based surface code is estimated
by the empirical formula PL

∼= 0.01(100p)(d+1)/2. Note that
the empirical formula is obtained from a circuit-level depo-
larizing noise model [34], and PL is only the logical error
rate of XL or ZL which only corresponds to half of the PL

considered in the XZZX surface-GKP code. In order to fit the
empirical formula, we test the error probability of two-qubit
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TABLE I. The overhead estimation of the XZZX surface-GKP code and the qubit-based surface code.

XZZX surface-GKP code with λ = 1, β = 1.3 (σdB = 18.5 dB) Qubit-based surface code (p = 5.64 × 10−3)

d = 3, PL = 3.16 × 10−4, 51 GKP states d = 13, PL = 3.63 × 10−4, 337 qubits
d = 5, PL = 7.19 × 10−6, 147 GKP states d = 27, PL = 6.59 × 10−6, 1457 qubits
d = 7, PL = 2.53 × 10−7, 291 GKP states d = 39, PL = 2.12 × 10−7, 3041 qubits

gates, preparations, measurements, and idles in the XZZX
surface-GKP code. The result shows that when σdB = 18.5 dB
(κ/g ≈ 0.71%), the errors occur with probability p ≈ 5.64 ×
10−3 after two-qubit gates, which is much higher than other
operations with p′ ≈ 1.9 × 10−4. Hence, we only consider
the main term p ≈ 5.64 × 10−3 as the qubit error rate in the
empirical formula.

The whole comparison is shown in Table I. For exam-
ple, the overhead to reach PL = 2.53 × 10−7 by the XZZX
surface-GKP code requires the code with d = 7 and param-
eters λ = 1, β = 1.3. In contrast, the qubit-encoded surface
code to reach a close PL needs d = 39, which is much larger
than for the XZZX surface-GKP code.

V. CONCLUSION AND OUTLOOK

In this paper, we study the concatenation of the GKP code
with the XZZX surface code. By designing bias from the
rectangular GKP code, the threshold of the XZZX surface-
GKP code is improved under the code-capacity noise model.
In addition, our paper also considers more realistic noise
models and provides the ML decoding strategy. The numerical
results show that, in some cases, the threshold and the logical
error rates outperform those in the previous work. Lastly, we
analyze the advantages of the XZZX surface-GKP code from
the perspective of overhead compared with the qubit-based
surface code.

In the code-capacity noise model, we introduce the bias by
designing the asymmetric GKP code and witness a significant
increase in the threshold. However, in the circuit-level noise
model, the threshold is barely improved by the asymmetric
GKP codes. An interesting open question is whether there
exists another effective way in the circuit-level noise model
to introduce bias. Meanwhile, we expect the realization of
bias-preserving gates of the GKP code, just like the previous
work in the cat code [62,63]. By that time, using the array of a
rectangle XZZX surface code with dz ≈ dx(1 − ln η

ln p ) [41] will
further reduce the overhead.

In summary, we believe that the XZZX GKP-surface
code is a competitive candidate for large-scaled fault-tolerant
quantum computation, and expect a brilliant future for the
experimental realization.
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APPENDIX A: THE GKP ERROR CORRECTION
AND THE XZZX STABILIZER MEASUREMENT

1. Details of the teleportation-based error correction scheme

Let us show how the teleportation-based error correc-
tion scheme works. Firstly, a Bell state is produced by two
qunaught states with the action of the balanced beam splitter:

Bπ/4 |∅λ〉 |∅λ〉
∝ Bπ/4

∑
m∈Z

|q̂ = m
√

2πλ〉
∑
n∈Z

|q̂ = n
√

2π/λ〉

∝
∑
m,n

|q̂ = (m − n)
√

πλ〉 |q̂ = (m + n)
√

π/λ〉

∝
∑

m,n is even

|q̂ = m′√πλ〉 |q̂ = n′√π/λ〉

+
∑

m,n is odd

|q̂ = m′√πλ〉 |q̂ = n′√π/λ〉

∝ |0̄λ〉|0̄λ〉 + |1̄λ〉|1̄λ〉. (A1)

Since Bπ/4 also is a real unitary operator, that is, Bπ/4 = B−1
π/4,

we have

Bπ/4(|0̄λ〉|0̄λ〉 + |1̄λ〉|1̄λ〉) ∝ |∅λ〉 |∅λ〉 . (A2)

Using Eq. (13), one can obtain

Bπ/4(|0̄λ〉|1̄λ〉 + |1̄λ〉|0̄λ〉)

= Bπ/4e−i p̂1
√

πλ(|0̄λ〉|0̄λ〉 + |1̄λ〉|1̄λ〉)

∝ e−i p̂1
√

π/2λe−i p̂2
√

π/2λ |∅λ〉 |∅λ〉 ,

Bπ/4(|0̄λ〉|0̄λ〉 − |1̄λ〉|1̄λ〉)

∝ e−iq̂1
√

π/2λe−iq̂2
√

π/2λ |∅λ〉 |∅λ〉 ,

Bπ/4(|0̄λ〉|1̄λ〉 − |1̄λ〉|0̄λ〉)

∝ e−i p̂1
√

π/2λe−i p̂2
√

π/2λe−iq̂1
√

π/2λe−iq̂2
√

π/2λ |∅λ〉 |∅λ〉 .

(A3)

Then, we can achieve the Bell basis measurement by measur-
ing q̂1 and p̂2.

The input state has the following decomposition:

|ψ̄λ〉 (|0̄λ〉 |0̄λ〉 + |1̄λ〉 |1̄λ〉)

= (a |0̄λ〉 + b |1̄λ〉)(|0̄λ〉 |0̄λ〉 + |1̄λ〉 |1̄λ〉)

= (|0̄λ〉 |0̄λ〉 + |1̄λ〉 |1̄λ〉)(a |0̄λ〉 + b |1̄λ〉)

+(|0̄λ〉 |0̄λ〉 − |1̄λ〉 |1̄λ〉)(a |0̄λ〉 − b |0̄λ〉)

+(|0̄λ〉 |1̄λ〉 + |1̄λ〉 |0̄λ〉)(a |1̄λ〉 + b |0̄λ〉)

+(|0̄λ〉 |1̄λ〉 − |1̄λ〉 |0̄λ〉)(a |1̄λ〉 − b |0̄λ〉), (A4)
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FIG. 9. Shift error propagation analysis of the Steane error cor-
rection under full circuit-level noise. The final data qubits suffer the
shift errors with variances 20

3 σ 2 in the q̂ quadrature (above the lines)
and 13

3 σ 2 in the p̂ quadrature (below the lines). The shift errors in the
measurements are 10σ 2 in both the q̂ and the p̂ quadratures.

where |ψ̄λ〉 = a |0̄λ〉 + b |1̄λ〉. After the balanced beam splitter
on the first two qubits, the four Bell states will be distin-
guished by the measurement results qm and pm. The final state
of the third qubit is X̄ n1 Z̄n′

1 |ψ̄λ〉, where n1 = √
2qmλ/

√
π and

n′
1 = √

2pm/
√

π/λ. If we consider the Gaussian shift errors
on the input states, n1 and n′

1 typically are not integers. The

simple closest-integer decoding gives n1 = �
√

2qmλ√
π

+ 1
2 and

n′
1 = �

√
2pm√
πλ

+ 1
2. However, after acting the two-qubit gate,

such as the CNOT or CZ gate, the closest-integer decoding is
no longer optimal. The optimal n1 and n′

1 are obtained by the
ML decoding as presented in the main text.

2. Superiority of the teleportation-based scheme over the Steane
scheme

In Fig. 9, we analyze the error propagation in the Steane
scheme where we also assume that σ ≡ σp = σc = σm. In
the q̂ quadrature, the initial data qubit suffers the error u
with the variances 20

3 σ 2 which comes from the last GKP
error correction (see below for explanation). Let u1, u2 be
initial errors in the ancilla qubits and uc1, u′

c1, uc2, u′
c2 be the

errors after each CNOT gate. After the first CNOT gate,
the errors in the data qubit and the first ancilla qubit are
u + uc1 with the variance 20

3 σ 2 + σ 2 = 23
3 σ 2 and u1 + u +

u′
c1 with the variance σ 2 + 20

3 σ 2 + 4
3σ 2 = 9σ 2, respectively.

After the second CNOT gate, the error of data qubit increases
to u + uc1 + u2 + uc2 with the variance 10σ 2. In addition to
the error um with variance σ 2 in the measurement, the final
error of the measurement result is u1 + u + u′

c1 + um with
the variance 10σ 2. Thus, the errors in the output qubits are
(u + uc1 + u2 + uc2) − (u1 + u + u′

c1 + um) with the variance
20
3 σ 2.

The discussion in the p̂ quadrature is similar. The result
shows that the errors after the error correction have the vari-
ances 20

3 σ 2 and 13
3 σ 2 in the q̂ and p̂ quadratures, respectively,

which is higher than those in the teleportation-based scheme.
On the other hand, the error before the measurement has the
variances 10σ 2, leading to a higher logical error probability
than the teleportation-based scheme. Thus, from these two
perspectives, the teleportation-based error correction scheme
is superior to the Steane scheme.

3. XZZX stabilizer measurement circuit

The stabilizer measurement is projecting the state |ψ〉 to
the eigenspace of the XZZX stabilizer. The key step is the
action of four CNOT or CZ gates:

|0〉 |ψ〉 + |1〉 XZZX |ψ〉 , (A5)

where the first qubit is the syndrome qubit. If XZZX stabilizes
|ψ〉, the final state is |+〉 |ψ〉. If XZZX |ψ〉 = − |ψ〉, the final
state is |−〉 |ψ〉. Hence, the measurement on the first qubit will
give the syndrome information.

Note that now our qubits are rectangle GKP states. Specif-
ically, the data qubit is |ψ̄λ〉 and the syndrome qubit is |+̄β〉.
In the stabilizer measurement circuit, the rescaled CNOT
gate CNOTβ/λ = e−iq̂1 p̂2λ/β performs X̄λ = e−i(

√
πλ)p̂2 on the

data qubit if q1 = (2k + 1)
√

πβ. Likewise, the rescaled CZ
gate CZλβ = e−iq̂1q̂2/(λβ ) performs Z̄λ = e−i(

√
π/λ)q̂2 on the data

qubit if q1 = (2k + 1)
√

πβ.
The parameters λ and β directly affect the error rates

and the error propagation. For instance, a large β will
lead to a high Z̄β error rate on the syndrome qubit. How-
ever, a large β will also reduce the propagated error since
CNOTβ/λe−iup1 = e−iup̂1 e−iup̂2λ/βCNOTβ/λ and CZλβe−iup̂1 =
e−iup̂1 eiuq̂2/(λβ )CZλβ .

APPENDIX B: DERIVATIONS OF THE COVARIANCE
M ATRICES FOR THE NOISY GATES

Although beam-splitter operations can be realized directly
in optical systems, it is more general to implement beam-
splitter operations by engineering time-dependent couplings
[64,65]. Therefore, in the main text, we assume the CNOTβ

gate, CZβ gate, and balanced beam-splitter operation are real-
ized by the Hamiltonians ĤCNOT = gq̂ j p̂k/β, ĤCZ = gq̂ j q̂k/β,
and ĤBS = gπ

4 (q̂ j p̂k − p̂ j q̂k ), respectively, and GKP states
suffer photon loss and heating. This evolution can be de-
scribed by exp[Lt] where L has the form

L(ρ̂ ) = −i[Ĥ, ρ̂] + D(ρ̂)

= −i[Ĥ, ρ̂] + κ
(
â j ρ̂â†

j − 1
2 â†

j â j ρ̂ − 1
2 ρ̂â†

j â j
)

+ κ
(
âk ρ̂â†

k − 1
2 â†

k âk ρ̂ − 1
2 ρ̂â†

k âk
)
. (B1)

Here κ is the photon loss and heating rate.
Utilizing Trotter decomposition exp(−iV̂ t ) =

limn→∞[exp(−iV̂ t/n)]n [66], the gate operations are realized
by repeating exp(−iĤ�t/N ) operations N times, where
N is large enough, �t = 1/g, and Ĥ is ĤCNOT, ĤCZ, or
ĤBS. Note that by Eqs. (10) and (13), exp(−q̂ j p̂k/β/N ),
exp(−q̂ j q̂k/β/N ), and exp[π

4 (q̂ j p̂k − p̂ j q̂k )/N] transforms
(q̂ j, q̂k, p̂ j, p̂k )T by the following matrices:

T
CNOT

q j qk
=

[
1 0
1

βN 1

]
, T

CNOT

p j pk
=

[
1 − 1

βN

0 1

]
; (B2)

T
CZ

q j pk
=

[
1 0
1

βN 1

]
, T

CZ

p j qk
=

[
1 − 1

βN

0 1

]
; (B3)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

FIG. 10. (a) Decoding graph of the XZZX surface code. The red vertices need to be matched in pairs. (b) Four time steps of applying
CNOT or CZ gates. Between syndrome qubit measurements, the four two-qubit gates are executed sequentially. (c) Syndromes of the IZ error
after one to four time steps. These syndromes can also be caused by the measurement errors of the syndrome qubits. (d)–(g) Syndromes of
the ZI error after one to four time steps, respectively. (h)–(k) Syndromes of the IX error after one to four time steps, respectively. (l)–(n)
Syndromes of the IX error after one to three time steps, respectively. The syndromes of IX error after the fourth time step is trivial.

T
BS

q j qk
=

[
cos( π

4N ) − sin( π
4N )

sin( π
4N ) cos( π

4N )

]
,

T
BS

p j pk
=

[
cos( π

4N ) − sin( π
4N )

sin( π
4N ) cos( π

4N )

]
.

(B4)

After realizing exp(−iĤ�t/N ) in one time step (say the
nth step), the photon loss error term D(ρ̂) in Eq. (B1) leads to
Gaussian shift errors with the covariance matrix [31,38]

Nq,n = σ 2
c

N

[
1 0

0 1

]
, Np,n = σ 2

c

N

[
1 0

0 1

]
, (B5)
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where σ 2
c = κ�t = κ/g. After the later N − n steps, these co-

variance matrices will transform to (T q)N−nNq,n(T T
q )N−n and

(T p)N−nNp,n(T T
p )N−n. where for the CNOT gate, T q = T

CNOT

q j qk

and T p = T
CNOT

p j pk
. As a result, for the CNOT gate, the total shift

errors after N time steps have the covariance matrix

N
CNOT

q j qk
= lim

N→∞

N∑
n=1

(T q)N−nNq,n
(
T T

q

)N−n

= σ 2
c

[
1 1

2β
1

2β
1 + 1

3β2

]
, (B6)

N
CNOT

p j pk
= lim

N→∞

N∑
n=1

(T p)N−nNq,n
(
T T

p

)N−n

= σ 2
c

[
1 + 1

3β2 − 1
2β

− 1
2β

1

]
. (B7)

Likewise, one can easily derive the covariance matri-
ces of the shift error after the CZ gate and balanced
beam splitter by using their own transformation matrices
T

CZ

q j pk
, T

CZ

p j qk
, T

BS

q j qk
, T

BS

p j pk
. The results are stated as follows:

N
CZ

q j pk
= σ 2

c

[
1 1

2
1
2 1 + 1

3β2

]
, N

CZ

p j qk
= σ 2

c

[
1 + 1

3β2 − 1
2β

− 1
2β

1

]
;

(B8)

N
BS

q j qk
= σ 2

c

[
1 0

0 1

]
, N

BS

p j pk
= σ 2

c

[
1 0

0 1

]
. (B9)

APPENDIX C: MATCHING WEIGHTS OF THE MWPM
DECODER

The GKP error correction provides continuous-variable in-
formation for the surface code decoding. Here we show the
matching weights of the MWPM decoder when decoding the
XZZX surface code, which is related to the conditional error
rates of the GKP states. The decoding graph is constructed in
a three-dimensional lattice as shown in Fig. 10(a), where each
edge in the bottom face represents a data qubit and the labeled
vertex (red) needs to be matched in pairs. The stabilizer mea-
surement circuit applies CNOT or CZ gates in four time steps
[see Fig. 10(b)]. The error after each time step leads to an edge
that connects two labeled vertices. The edges in Fig. 10 can be
divided into six types: {c}, {d,e,f}, {g}, {h,j,k,m,n}, {i}, {l}.
We assign the weights w = − ln p to each type of edge, where

p is the sum of the probabilities of the errors that correspond to
the same type of edge. Specifically speaking, the conditional
probabilities of the XI error and the IX error (the first operator
acts on the data qubit and the second operator acts on the
syndrome qubit) after the CNOT gate are

p(XI|qm1, qm2)

=
∑

k1,k2∈Z p[u1 − (2k1 + 1)
√

πλ, u2 − k2
√

πβ]∑
k1,k2∈Z p(u1 − k1

√
πλ, u2 − k2

√
πβ )

,

(C1)

p(IX |qm1, qm2)

=
∑

k1,k2∈Z p[u1 − k1
√

πλ, u2 − (2k2 + 1)
√

πβ]∑
k1,k2∈Z p(u1 − k1

√
πλ, u2 − k2

√
πβ )

,

(C2)

where p(x, y) is the probability density function in Eq. (28)
and u1 = √

2qm1 − n1
√

πλ, u2 = √
2qm2 − n2

√
πλ. Note that

qm1, qm2 are the measurement results in the q̂ quadrature and
n1, n2 are obtained by the ML decoding in Sec. IV B. Since the
probability of the XX error usually is much smaller than that
of the XI or IX error, we do not consider the edge caused by
the XX error independently, but view it as the superposition
of XI and IX .

Likewise, it is easy to compute the conditional probability
of the ZI or IZ errors after the CNOT or CZ gate by sub-
stituting the measurement results and the probability density
functions in the p̂ quadrature.

Moreover, we determine the syndrome as +1 if |pm

mod 2
√

π/β| <
√

π

2β
, otherwise it is −1, where pm is the mea-

surement result of the syndrome qubit. The error probability
of the measurement is calculated by

pmeas = 1 −
∑

k∈Z Pσ (pm − 2k
√

π/β )∑
k∈Z Pσ (pm − k

√
π/β )

, (C3)

where σ =
√

σ 2
p + σ 2

c + σ 2
m.

Lastly, when syndrome qubits are measured, data qubits are
applied to GKP error corrections with the error probabilities

pidle(X ) = 1 −
∑

k∈Z P′
σ (qm − 2k

√
πλ)∑

k∈Z P′
σ (qm − k

√
πλ)

, (C4)

pidle(Z ) = 1 −
∑

k∈Z P′
σ (pm − 2k

√
π/λ)∑

k∈Z P′
σ (pm − k

√
π/λ)

, (C5)

where σ ′ =
√

σ 2
p + 2σ 2

c + σ 2
m + σ 2
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