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Entanglement-assisted detection of fading targets via correlation-to-displacement conversion
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Quantum illumination utilizes an entanglement-enhanced sensing system to outperform classical illumination
in detecting a suspected target, despite the entanglement-breaking loss and noise. However, practical and
optimal receiver design to fulfill the quantum advantage has been a long open problem. Recently, Shi et al.
[arXiv:2207.06609 (2022)] proposed the correlation-to-displacement (‘C�D’) conversion module to enable an
optimal receiver design that greatly reduces the complexity of the previous known optimal receiver [Q. Zhuang,
Z. Zhang, and J. H. Shapiro, Phys. Rev. Lett. 118, 040801 (2017)]. There, the analyses of the conversion module
assume an ideal target with a known reflectivity and a fixed return phase. In practical applications, however,
targets often induce a random return phase; moreover, their reflectivities can have fluctuations obeying a Rayleigh
distribution. In this paper, we extend the analyses of the C�D module to realistic targets and show that the
entanglement advantage is maintained albeit reduced. In particular, the conversion module allows exact and
efficient performance evaluation despite the non-Gaussian nature of the quantum channel involved.
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I. INTRODUCTION

Quantum entanglement enables performance boost in a
wide range of optical sensing tasks, such as phase sensing
[1,2], target detection and ranging [3–7], loss sensing [8–16],
noise sensing [17,18], and gain sensing [19]. Despite the va-
rieties of the applications, the sensing processes can often be
modeled as bosonic Gaussian channels [20], which preserve
the Gaussian form of input Wigner functions. The Gaussian
nature of the quantum channel enables efficient exact evalu-
ation of the sensing precision, especially when the source is
also Gaussian [21,22]. Moreover, the structure of the Kraus
operators of the bosonic Gaussian channel also allows the
proof that Gaussian probes are optimal among all possible
input states [1,16,18,19,23].

Taking target detection as an example, the transceiver-to-
receiver path in the presence of a distant target can be modeled
as a Gaussian thermal-loss channel with low transmissivity;
when the target is absent, the thermal-loss channel degrades
to its zero transmissivity limit. In a quantum illumination
(QI) protocol with the common Gaussian entangled source
of a two-mode squeezed vacuum, the error probability per-
formance limit can be obtained via the efficiently calculable
quantum Chernoff bound (QCB) [21,24], which enables the
surprising discovery of a 6-dB error exponent advantage over
classical illumination (CI) despite loss and noise [4].

Things become challenging when non-Gaussian elements
are inevitably involved. To begin with, although the channel
and source are Gaussian, receivers based on only Gaussian
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operations (e.g., optical-parametric amplification and phase
conjugation) are only able to achieve half of the theoreti-
cal maximal 6-dB error exponent advantage [25]. Previously
proposed optimal receiver design relies on complex non-
Gaussian operations that forbid exact performance evaluations
[5,26]. Moreover, a practical target detection scenario involves
fading targets, where the random-phase noise and fluctuating
reflectivity make the quantum channel non-Gaussian. The
non-Gaussian nature of the problem makes it difficult to eval-
uate entanglement’s advantage in detecting fading targets.

In this paper, we utilize the recently proposed correlation-
to-displacement (‘C�D’) conversion module [27] to evaluate
entanglement’s advantage in a practical QI target detection
scenario with fading targets. The conversion module reduces
multimode correlated state detection to single-mode coherent-
state detection, enabling optimal receiver design and also
efficient evaluation even when non-Gaussian elements are
involved. Our results show that when there is only correlated
phase noise across the probing, the error probability still
decays exponentially with the number of probing. Entangle-
ment’s error-exponent advantage is still 6 dB when the signal
brightness is extremely small, but degrades as the brightness
increases. Such robustness resembles previous findings in the
communication case [28]. In the presence of transmissivity
fluctuation of the Rayleigh type, however, the error probabil-
ity decays polynomially with the number of probes, and the
advantage from entanglement is small, despite being nonzero.

II. MODEL FOR FADING TARGET DETECTION

As shown in Fig. 1, in an entanglement-assisted QI tar-
get detection scenario, the probe signal is entangled with an
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FIG. 1. Concept of entanglement-assisted target detection. The
target surface can be rough, causing fading effects.

ancilla. The signal is reflected by a stationary target in a highly
lossy and noisy environment before being detected. A prop-
erly structured receiver is required to measure the received
signal and the ancilla to boost the sensing precision over CI. In
the ideal case of a known phase and a fixed target reflectivity,
this process can be modeled as an overall phase-shift thermal-
loss channel �κ,θ [20], with κ being the transmissivity and θ

being the phase shift (as shown in Fig. 2). For an input mode
described by the annihilation operators âS, the received mode
is

âR = eiθ√κ âS + √
1 − κ âB, (1)

where the mode âB is in a thermal state with mean photon
number NE to model the noise.

To model a realistic setting, we consider a target with
a time-independent PK (·)-distributed random reflectivity and
P�(·)-distributed random-phase shift. This leads to the overall
quantum channel:

�̄ =
∫

dθdκP�(θ )PK (κ )�κ,θ . (2)

The target detection hypothesis testing problem is therefore a
quantum channel discrimination problem between the channel
�̄ (fading target present) and a pure noise channel �0,0.

To benefit from entanglement in QI, we consider M signal-
idler pairs {âSm , âIm}M

m=1, where each pair is in a two-mode

FIG. 2. Schematic illustration of the C�D conversion module.

squeezed-vacuum state with the wave function

φ̂SmIm =
∞∑

n=0

√
Nn

S

(NS + 1)n+1
|n〉Sm

|n〉Im
. (3)

Here |n〉 is the number state and NS is the mean photon number
of the signal (or idler) mode.

When the target is present, after the channel �̄, the density
operator of the return and idler field is

ρ̂RI =
∫

dθdκP�(θ )PK (κ )ρ̂RI(θ, κ ). (4)

Here the state ρ̂RI(θ, κ ) describes the M return-idler pairs
{âRm , âIm}M

m=1 from channel �κ,θ , each maintaining a phase-
sensitive cross-correlation 〈âRm âIm〉 = eiθCp with the ampli-
tude Cp ≡ √

κNS(NS + 1).

III. ANALYSES OF THE
CORRELATION-TO-DISPLACEMENT

CONVERSION MODULE

As shown in Fig. 2, in a C�D conversion module [27], we
perform heterodyne measurement on each return mode and
retain the idlers for further information processing. In general,
the measurement can be described by positive operator-valued
measure (POVM) elements Ê†

x Êx satisfying the completeness
relation

∫
d2Mx Ê†

x Êx = Î , where the overall measurement re-
sult across the M returns x = (x1, · · · , xM )T with each xm

being complex.
The corresponding probability of having measurement re-

sult X = x is given by

PX (x) = Tr(ρ̂RIÊ
†
x Êx) (5)

=
∫

dθdκP�(θ )PK (κ )PX |�,K (x|θ, κ ), (6)

with PX |�,K (x|θ, κ ) = Tr[ρ̂RI(θ, κ )Ê†
x Êx] as the conditional

probability when the channel is �κ,θ , where we have used
Eq. (4). For a given fixed phase and reflectivity, the distri-
bution has been solved in Ref. [27] as a complex Gaussian
distribution with variance 2σ 2

κ = κNS + (1 − κ )NE + 1, i.e.,

PX |�,K (x|θ, κ ) = g(|x|, σk ), (7)

where we define g(x, σ ) = e−x2/2σ 2
/(2πσ 2)M . Note that

PX |�,K (x|θ, κ ) does not depend on the phase shift θ ; therefore,
we obtain the unconditional distribution of the measurement
result as

PX (x) =
∫

dκPK,X (κ, x), (8)

with PK,X (κ, x) ≡ PK (κ )PX |�,K (x|θ, κ ) = PK (κ )g(|x|, σk ).
At the same time, the conditional distribution can be
obtained as

PK|X (κ|x) = PK (κ )g(|x|, σk )∫
dκPK (κ )g(|x|, σk )

≡ f (κ, |x|), (9)

which is only a function of the module |x| and κ .
Conditioned on the measurement result of the

return mode, the signal return-idler joint state is
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projected to

ρ̂ ′
RI(x) = Êxρ̂RIÊ†

x

PX (x)
(10)

=
∫

dθdκP�(θ )PK (κ )Êxρ̂RI(θ, κ )Ê†
x

PX (x)
(11)

=
∫

dθdκ
P�(θ )PK,X (κ, x)

PX (x)
ρ̂RI(θ, κ|x), (12)

where the conditional state

ρ̂RI(θ, κ|x) = Êxρ̂RI(θ, κ )Ê†
x

PX |�,K (x|θ, κ )
(13)

is identical to the return-idler state after the heterodyne detec-
tion, from the Gaussian channel �κ,θ with fixed phase shift θ

and reflectivity κ in Ref. [27]. The first line of Eq. (10) follows
from definition of POVM; In the second line of Eq. (11), we
have utilized Eq. (4). The last line of Eq. (12) comes from
the fact that PK,X (κ, x) ≡ PK (κ )PX |�,K (x|θ, κ ).According to
Ref. [27], the idler mode of ρ̂RI(θ, κ|x) is a product of the
displaced thermal state:

TrR[ρ̂RI(θ, κ|x)] = ⊗mρ̂dm,Eκ
. (14)

The complex displacement of the idler conditioned on the
measurement result is dm = μκeiθ x∗

m, with

μκ =
√

κNS(NS + 1)

[κNS + (1 − κ )NE + 1]
, (15)

and the thermal noise mean photon number

Eκ = (1 − κ )(1 + NE)NS

[κNS + (1 − κ )NE + 1]
. (16)

Conditioned on phase θ and reflectivity κ , one can apply
the beamsplitter array strategy in Ref. [27] on the idler
modes with the weights of the beamsplitter properly chosen
based on the heterodyne detection result (independent of θ

or κ), producing a one-mode displaced thermal state with the
complex displacement, d = ∑

ωmdm = μκeiθ |x|, where the
weight ωm = xm/|x| is independent of κ, θ . The mean photon
number of the displaced thermal state is still Eκ . Considering
the phase shift and reflectivity distribution, the unconditional
output state of the single output mode is

ρ̂I(x) =
∫

dκPK|X (κ|x)ρ̂I,κ (x) (17)

where the conditional state

ρ̂I,κ (x) ≡
∫

dθ P�(θ )ρ̂μκ eiθ |x|,Eκ
. (18)

Note that when the phase is uniform random in [0, 2π ),
ρ̂I,κ (x) is photon number diagonal (see Appendix A). Similar
to Eq. (3) of Ref. [27], the error probability performance limit
of QI based on the C�D conversion module is therefore

PC�D =
∫

d2MxPX (x)PH[ρ̂0,NS , ρ̂I(x)], (19)

where PH(ρ̂, σ̂ ) is the Helstrom bound of the error probability
in discriminating the states ρ̂ and σ̂ with equal prior probabil-
ity [27,29–31].

Noticing that the state ρ̂I(x) and the distribution PX (x)
are only functions of the amplitude |x| and making use of
Eqs. (9) and (7) explicitly, we can further simplify the result
via integrating out the 2M − 1 degree of freedom to obtain

PC�D =
∫

dxPX (x)PH[ρ̂0,NS , ρ̂I(x)]. (20)

Here

PX (x) = 2πM

�(M )

∫
dκPK (κ )x2M−1 g(x, σk ). (21)

is the distribution of the module of measurement result x, and
the corresponding conditional state

ρ̂I(x) =
∫

dθdκP�(θ ) f (κ, x)ρ̂μκ eiθ x,Eκ
. (22)

IV. PERFORMANCE FOR THE RANDOM-PHASE MODEL
(KNOWN REFLECTIVITY)

A. Evaluating the performance of the conversion module

To understand the effect of phase noise, we begin with
the scenario of uniformly distributed phase shift and a fixed
known reflectivity κ . Therefore, the phase noise distribu-
tion P�(θ ) = 1/2π and the reflectivity is a delta function,
PK (κ ′) = δ(κ ′ − κ ). Consequently, ρ̂I = ρ̂I,κ in Eq. (17) is
diagonal in the number basis regardless of the target’s pres-
ence or absence. Therefore, photon counting is the optimal
measurement and the error probability performance limit can
be analytically solved from Eqs. (20) and (21):

PC�D =
∫

dyκP(2M )
χ2 (yκ )PH[ρ̂0,NS , ρ̂I,κ (σκ

√
yκ )] (23)

where P(2M )
χ2 (·) is the χ2 distribution of 2M degrees of free-

dom and we have changed the variable x to yκ = x2/σ 2
κ from

Eq. (20). At the same time, we can explicitly solve

PH[ρ̂0,NS , ρ̂I,κ (σκ

√
yκ )] =

[
1 −

∑
n:γn,κ (yk )>0

γn,κ (yk )

]/
2,

(24)
where we have defined (see Appendix A)

γn,κ (yκ ) = Nn
S

(1 + NS)n+1

− En

(1 + E )1+n
e−ξκ yκ /E

1F̃1

[
n + 1, 1,

ξκyκ

E (1 + E )

]
,

(25)

and the summation includes all positive values of γn(y). Here
1F̃1 is the regularized confluent hypergeometric function [32]
and

ξκ = μ2
κσ

2
κ = κNS(NS + 1)

2[κNS + (1 − κ )NE + 1]
. (26)

Moreover, by the central limit theorem, at the limit of
M � 1, the χ2 distribution P(2M )

χ2 (yκ ) in Eq. (23) can be
approximated as a Gaussian distribution with mean 2M and
variance 4M. Because the standard deviation

√
4M is much

smaller than the mean 2M when M is large, in our evaluation
we can ignore the fluctuations and directly utilize yκ � 2M
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(a)

(b)

FIG. 3. (a) Optimal decision threshold of the photon counts N .
(b) Error probability vs the number of copies M with NS = 0.001,
NE = 20, and κ = 0.01. The abrupt changes of PC�D happen when

the optimal decision threshold changes in (a). The dashed lines from
dark to light represent the error probabilities corresponding to the
decision threshold N = 0, 1, 2, respectively, according to the approx-
imation in Eq. (30). The dotted lines from dark to light indicate
the exact error probabilities for the same thresholds calculated with
Eq. (29).

to obtain the leading-order results. Then, we arrive at the
analytical result

PC�D ≈ PH[ρ̂0,NS , ρ̂I,κ (σκ

√
2M )] (27)

=
⎡
⎣1 −

∑
n:γn,κ (2M )>0

γn,κ (2M )

⎤
⎦/

2. (28)

We numerically verified that the above expression agrees with
the exact result with negligible error in all the parameter
regions relevant to this paper (see Appendix C).

In Fig. 3(b), we plot QI performance PC�D as the red curve

for the same parameter choice of Refs. [5,27]. We see abrupt
changes in the error probability when the number of modes M
increases, due to the integer summation in Eq. (28). To better
understand the performance, we consider a threshold decision
strategy, where one compares the measured photon number
against a threshold N : target presence is declared if and only
if the photon number is larger than N . From Eq. (28), the error
probability of such a threshold decision is

PN
C�D = 1

2

[
1 −

N∑
n=0

γn,κ (2M )

]
. (29)

We plot PN
C�D as the dotted lines for different values of N and

they agree with PC�D within each continuous sector (solid red

curve). The abrupt change of PC�D also corresponds well with

the change in the optimal decision threshold argminN PN
C�D in

Fig. 3(a).
After understanding the performance enabled by the con-

version module, now we compare the QI error probability
PC�D of Eq. (28) with that of CI to show the entanglement’s

advantage. In CI with coherent-state probes, due to the uni-
form random-phase noise, the received state is photon number
diagonal, and the Helstrom limit can be efficiently evaluated
(see Appendix B). As Fig. 3 already has too many lines, we
reprint PC�D (red solid) in Fig. 4(a) in comparison with the

error probability of CI (black solid) and showing orders-of-
magnitude advantage. In particular, the curves indicate that
QI and CI still have different error exponents despite the
fully random phase noise, as we will confirm in the next
section with asymptotic analyses.

B. Asymptotic results and error exponent

To better understand the QI performances, and in par-
ticular to understand the error exponent in the presence of
the random-phase noise, we explore asymptotic solutions of
PC�D. Considering Eqs. (27) and (18) at the low brightness

(NS � 1) and low reflectivity (κ � 1) limit, we can approx-
imate the noisy displaced thermal state in Eq. (18) as a
coherent state and ρ̂0,NS as a vacuum state. Therefore, Eq. (25)
can be approximated as γn,κ (yκ ) = δn,0 − e−ξκ yκ (ξκyκ )n/n!,
where δn,0 is the Kronecker delta function.

Given a threshold N , from Eq. (29), the error probability of
the C�D conversion module in the large-M limit is

PN
C�D ≈ 1

2

N∑
n=0

pn, with pn = e−2ξκ M (2ξM )n/n! (30)

and the minimum error probability PC�D = minN PN
C�D.

When the photon number threshold N = 0, it is just the error
probability of the Kennedy receiver and P0

C�D = (1/2)e−2ξκ M

[33]. The dashed lines in Fig. 3(b) show the approximated
error probabilities for the decision threshold N = 0, 1, 2, re-
spectively. We see a good recovery of the PC�D (solid red

curve) in each continuous sector, which allows us to proceed
with the asymptotic analyses.

Next, we obtain the asymptotic optimal decision thresh-
old. Considering Eq. (27), now we treat ρ̂0,NS as the thermal
state again. Its density matrix is diagonal, with elements
p′

n = Nn
S /(1 + NS)n+1. The optimal threshold is determined

by solving pN = p′
N , where pN is defined in Eq. (30), and we

obtain

N ≈ 2ξκM

ε
, (31)

where ε = −W−1(−NS/e) � 1 and W−1 is the Lambert
W function. The approximation holds when M � 1. An
asymptote of the Helstrom limit PASY

C�D can be obtained by

substituting Eq. (31) into Eq. (30) and its error exponent can
be obtained as (see Appendix D)

rASY
C�D = lim

M→∞
r̃ASY

C�D(M ) = [1 − ln(eε)/ε]2ξκ, (32)

where we defined the finite-M exponent:

r̃ASY
C�D ≡ −lnPASY

C�D(M )/M. (33)

Now we evaluate PASY
C�D in Fig. 4(a) as the black dashed

curve. Indeed, we see a good agreement with PC�D of Eq. (28)
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(a) (b) (c)

FIG. 4. The error performance for the uniform phase and known reflectivity model with the parameters NS = 0.001, NE = 20, and
κ = 0.01. Note: some lines are only partially plotted in a range of x axis limited by numerical precision. (a) The error probabilities and
bounds thereof as a function of M. The red line indicates the error probability limit of the C�D conversion. The black dashed line is the
asymptote of this probability. The blue and green lines are the QCB (upper bound) and NG lower bound, respectively. The black line indicates
the optimum CI’s error probability. (b) The asymptotic behaviors of − ln PE/M (whose asymptotic limits are the error exponents) with PE

being the error performance of the C�D conversion module (red), the asymptote (black, dashed), and the QCB (blue, dashed), respectively.
The orange line indicates the error exponent of the asymptote. (c) The error exponent (normalized by the error exponent of the CI) of the
asymptote and QCB. When NS → 1−, the error exponent of the asymptote deviates from QCB and the low brightness condition does not hold
anymore. The red dotted line indicates the 6-dB advantage over CI.

(red solid). To understand the error exponent, we plot the error
probability in a logarithmic version − ln PE/M in units of 2ξκ

[see Eq. (26)] versus the number of modes M in Fig. 4(b).
As expected, r̃ASY

C�D (black dashed) approaches rASY
C�D (orange

solid) in the large-M limit. The exact result PC�D (red solid)

agrees well with r̃ASY
C�D; however, its evaluation is limited to

rather small M due to numerical precision constraints. The
oscillation in the small-M region is due to the integer effect
of the decision threshold, as we can see in Fig. 4(a). Due to
the ratio over M, the oscillation there becomes visually more
significant in Fig. 4(b).

With the error exponent rASY
C�D in hand, we can now compare

with the error exponent of CI rCI = limM→∞ − ln(PCI)/M
(see Appendix B for the calculation of PCI) to understand the
quantum advantage in the error exponent under different sig-
nal brightness. As shown in Fig. 4(c), rASY

C�D (orange solid) is

always larger than rCI, confirming quantum advantage; more-
over, the error exponent ratio approaches 6 dB (indicated by
the red dotted line) as NS approaches zero, although the rate of
convergence is very slow. This can be confirmed analytically
from Eq. (32) via

lim
NS→0

rASY
C�D = 2ξκ � κNS/NE . (34)

As we have rCI � κNS/4NE , there is indeed a 6-dB advantage
of QI over CI. From the numerical results as well as asymp-
totic analyses, we see that in the weak signal limit phase noise
essentially does not change the error exponent, compared to
the case without phase noise [4,27].

C. Upper and lower bounds

Finally, we provide additional comparison of the QI per-
formance with upper and lower bounds. We obtain the upper
bound from the asymptotically tight QCB [21,24] and the
lower bound from the Nair-Gu (NG) bound [23].

Given any two quantum states ρ̂0 and ρ̂1, the QCB
PQCB(ρ̂0, ρ̂1) = (1/2)infs∈[0,1]Qs, where Qs = Tr(ρ̂s

0ρ̂
1−s
1 ), is

an asymptotically tight upper bound for the Helstrom limit
PH[ρ̂0, ρ̂1]. Therefore, for the uniform phase and known re-
flectivity model, we can apply the QCB on the Helstrom
limit PH[ρ̂0,NS , ρ̂I,κ (σκ

√
yκ )] in Eq. (27) to obtain the upper

bound:

PC�D � PQCB,U ≡ infs∈[0,1]Tr
[
ρ̂s

0,NS
ρ̂1−s

I,κ (σκ

√
2M )

]
2

. (35)

Here both ρ̂0,NS and ρ̂I,κ are diagonal in the number state basis
and therefore can be efficiently evaluated.

Nair and Gu derived a lower bound PNG on the error proba-
bility of QI [23] target detection assisted by an arbitrary form
of entanglement. As this is the lower bound in the ideal case,
it also holds as a lower bound in the presence of additional
noise. Considering M probes with mean photon number NS,
we then have

PC�D � PNG = 1
4 e−βMNS , (36)

where β = − ln[1 − κ/(NE (1 − κ ) + 1)].
We plot the upper bound PQCB,U (blue dashed) and lower

bound PNG (green solid) in Fig. 3(a). Meanwhile, we also
plot the QCB error exponent rQCB ≡ limM→∞ − ln PQCB,U/M
and r̃QCB ≡ − ln PQCB,U/M in Figs. 3(b) and 3(c). In-
deed, we see that QCB verifies our previous asymptotic
evaluations.

V. PERFORMANCE FOR THE RAYLEIGH-FADING
MODEL

With the performance degradation from phase noise well
understood, now we consider Rayleigh-fading targets, where
the target has a Rayleigh-distributed reflectivity besides a
uniform random phase [26,34–37], i.e.,

PK (κ ) = e−κ/κ̄/κ̄, (37)
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with κ̄ being the average reflectivity of the target (see Ap-
pendix E). Note the above distribution is up to a cutoff so that
κ ∈ [0, 1].

As Eqs. (17) and (19) are now difficult to calculate numeri-
cally, to understand the QI performance for Rayleigh-fading
targets, we consider lower bounds and achievable perfor-
mance (upper bounds).

A. Lower bound

Applying concavity of the Helstrom limit (see Lemma 1 in
Ref. [26]) to Eqs. (17) and (19), a low bound of the perfor-
mance PE,LB can be obtained:

PC�D � PE,LB

≡
∫

d2MxdκPK,X (κ, x)PH[ρ̂0,NS , ρ̂I,κ (x)]

=
∫

dκdyκ

1

κ̄
e−κ/κ̄P(2M )

χ2 (yκ )PH[ρ̂0,NS , ρ̂I,κ (σκ

√
yκ )]

≈
∫

dκ
1

κ̄
e−κ/κ̄PH[ρ̂0,NS , ρ̂I,κ (

√
2Mσκ )]. (38)

In the last step, we have taken the approximation at the M � 1
limit, similar to Eq. (27). Now Eq. (38) can be evaluated via
an approach similar to Eq. (23).

B. Achievable performance

We then explore an achievable performance of the C�D
conversion module for the Rayleigh-fading model. Upon the
heterodyne measurement results on the return x, we perform
direct photon counting on the idler output in state ρ̂I(x) from
the conversion module, then finish with a threshold deci-
sion strategy at a fixed threshold independent of x. With the
decision threshold optimized, the error probability can be
expressed as

PC�D = PH

[
ρ̂0,NS ,

∫
d2MxPX (x)ρ̂I(x)

]

= PH

[
ρ̂0,NS ,

∫
dκdyκ

1

κ̄
e−κ/κ̄P(2M )

χ2 (yκ )ρ̂I,κ (σκ

√
yκ )

]

≈ PH

[
ρ̂0,NS ,

∫
dκ

1

κ̄
e−κ/κ̄ ρ̂I,κ (

√
2Mσκ )

]
, (39)

where in the last step the measurement result yκ � 2M at the
large-M limit.

Figure 5 plots the achievable performance PC�D (red solid),

the lower bound PE,LB (purple dashed), and the optimum CI’s
error probability (black solid, see Appendix B) versus the
number of modes. We see that the quantum advantage over CI
persists for the Rayleigh-fading model, although it is further
reduced when compared with the random-phase model. The
plot also shows that our results agree with the QI detection for
the Rayleigh-fading targets with the sum-frequency genera-
tion (SFG) reception PSFG [26] (blue dashed), where the error
probability decays with the number of modes in a polynomial
fashion. Indeed, we find the achievable result PC�D of the

conversion module agrees fairly well with PSFG. While the
SFG results require an approximate solution of a complex

FIG. 5. The error performance for the Rayleigh-fading model.
The parameters are NS = 0.001, NE = 20, and κ̄ = 0.01. Shown is
a comparison of the achievable error performance given by Eq. (39)
(red), the lower bound given by Eq. (38) (purple, dashed), the opti-
mum error probability for CI (black), and the error performance of
SFG receiver (blue, dotted).

quantum nonlinear optical process, the conversion module’s
achievable performance is almost exact, and requires little
effort in calculations.

VI. CONCLUSIONS

We study the entanglement-assisted target detection perfor-
mance of the recently proposed correlation-to-displacement
conversion module, in the more practical scenario of random-
phase noise and reflectivity fluctuation. The results show, in
the scenario of only random-phase noise, this module still
affords 6-dB error exponent advantage over the optimum clas-
sical illumination when the signal brightness is small. When
considering the Rayleigh reflection, the advantage is much
smaller, although it is nonzero.
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APPENDIX A: PROOF OF THE DIAGONAL DENSITY
MATRIX OF ρ̂I UNDER UNIFORM PHASE ROTATION

Phase rotation â → e−iθ â on mode â is described by the
unitary R̂(θ ) = exp[−iθ â†â]. Under a uniform random phase,
any single-mode input state becomes number-state diagonal,
because

〈m|
∫

dθ R̂(θ )ρ̂R̂†(θ )|n〉 =
∫

dθ e−iθ (m−n)〈m|ρ̂|n〉

∝ δmn〈n|ρ̂|n〉, (A1)

where we utilized the fact that R̂(θ ) |n〉 = e−inθ |n〉.
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FIG. 6. Comparison of the error performances for CI evaluated
by Eq. (B1) (solid) and Eq. (B3) (dotted), respectively. PCI,U and P̃CI,U

are for the random-phase model. PCI,R and P̃CI,R are for the Rayleigh-
fading model.

In the case of a displaced thermal state, we have [32]

〈m| ρ̂I,κ (x) |n〉

=
∫

dθ
1

2π
〈m| ρ̂μκ xeiθ ,Eκ

|n〉

= δm,nEn

(1 + E )1+n
e−|μκ x|2/E

1F̃1

[
n + 1, 1,

|μκx|2
E (1 + E )

]
. (A2)

APPENDIX B: OPTIMUM PERFORMANCE LIMIT
OF CLASSICAL ILLUMINATION

For comparison, the Helstrom limit of CI is calculated
with a coherent-state transmitter. If κ and θ are fixed, the
return mode is in a displaced thermal state ρ̂√

κNS,(1−κ )NE
.

When κ and θ are random variables, the output state is then∫
dθdκP�(θ )PK (κ )ρ̂√

κNS,(1−κ )NE
. Therefore, the performance

limit is

PCI = 1

2

(
1 −

∑
n:γn,CI>0

γn,CI

)
, (B1)

where the summation
∑

includes all the positive values of

γn,CI = Nn
E

(1 + NE )n+1
−

∫
dκPK (κ )

E ′n

(1 + E ′)1+n

× e−MκNS/E ′
1F̃1

[
n + 1, 1,

MκNS

E ′(1 + E ′)

]
. (B2)

Here E ′ = (1 − κ )NE .
To double check the result, we calculate the performance

limit with another method [26]

PCI = minPCI
F

[
PCI

F /2 + (
1 − PCI

D

)/
2
]

(B3)

and compare the results. Here the conditional false-alarm
probability PCI

F denotes the chance that the target presence
is declared when no target is present, and the conditional
detection probability PCI

D denotes the chance that the target
presence is declared when a target is present. The relation
between PCI

F and PCI
D is referred to as the receiver operat-

ing characteristic (ROC). The ROC for the CI detection of

FIG. 7. Comparison of the exact (red) and approximated (black,
dotted) performance limit for the random-phase model in the large-M
limit.

the uniform-phase and known-reflectivity targets is PCI
D =

Q(
√

2κMNS/E ′,
√

−2lnPCI
F ), where Q(a, b) is Marcum’s Q

function. The CI ROC for the Rayleigh-fading targets is
PCI

D = (PCI
F )1/(1+Mκ̄NS/E ′ ) [38]. Figure 6 shows that the results

calculated with the two methods are consistent.

APPENDIX C: LARGE-M APPROXIMATION

Figure 7 shows the exact result of Eq. (23) and approxi-
mated performance limits of Eq. (28) for M in the range of
106 to 6 × 107. The maximal deviation for the data we have
is 0.25%, which happens when M = 106. This approximation
is also used in the calculation of the QCB performance for
the random-phase model and the error performance for the
Rayleigh-fading model under the condition of large M.

APPENDIX D: ASYMPTOTE OF THE ERROR
PROBABILITY FOR THE RANDOM-PHASE MODEL

Consider the scenario of uniformly distributed phase shift
and a fixed known reflectivity. In the asymptotic limit of low
brightness NS � 1 and low reflectivity κ � 1, the optimal
decision threshold N is determined by solving

NN
S

(1 + NS)N+1
= e−2ξκ M (2ξκM )N/N!, (D1)

which leads to the solution

N ≈ −W −1
−1

[
−NS

(
1

1 + NS

)1+1/N (2πN )1/N

e

]
2ξκM. (D2)

In the derivation above, we have used Stirling’s approximation
N! ≈ √

2πN (N/e)N . When N � 1 and NS � 1, Eq. (31) is
obtained by further approximation. Substituting Eq. (31) into
Eq. (30), an asymptote of PC�D is obtained:

PASY
C�D ≈ 1

2
e−2ξκ M (2ξκM )N/N!

≈ 1

2
e−2ξκ M (2ξκM )N

√
2πN (N/e)N

≈ 1

2
e−2ξκ M (2ξκM )2ξκ M/ε

√
4πξκM/ε(2ξκM/εe)2ξκ M/ε

. (D3)

062405-7



XIN CHEN AND QUNTAO ZHUANG PHYSICAL REVIEW A 107, 062405 (2023)

The approximation in the first line holds because 2ξκM/N�1.
The finite-M error exponent

r̃ASY
C�D(M ) = − 1

M
lnPASY

C�D

≈ 1

M

[(
1 − lneε

ε

)
2ξκM+1

2
ln2ξκM+ln2

√
2π/ε

]
.

(D4)

APPENDIX E: RAYLEIGH DISTRIBUTION

For non-negative-valued random variable z = φ(κ ) = √
κ ,

the probability density function (PDF) of the Rayleigh distri-
bution is P√

K (z) = 2ze−z2/κ̄/κ̄ [26,39]. As φ(κ ) is a strictly
monotonic, differentiable function, the PDF of κ can be
obtained by using the change-of-variable technique (see The-
orem 7.1 in Ref. [40]):

PK (κ ) = P√
K (φ(κ )) × |φ′(κ )| = e−κ/κ̄/κ̄. (E1)
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