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Hilbert space fragmentation is a novel type of ergodicity breaking in closed quantum systems. Recently, an
algebraic approach was utilized to provide a definition of Hilbert space fragmentation characterizing families
of Hamiltonian systems based on their (generalized) symmetries. In this paper we reveal a simple connection
between the aforementioned classification of physical systems and their coherence generation properties, quan-
tified by the coherence generating power (CGP). The maximum CGP (in the basis associated with the algebra
of each family of Hamiltonians) is exactly related to the number of independent Krylov subspaces K , which is
precisely the characteristic used in the classification of the system. In order to gain further insight, we numerically
simulate paradigmatic models with both ordinary symmetries and Hilbert space fragmentation, comparing the
behavior of the CGP in each case with the system dimension. More generally, allowing the time evolution to be
any unitary channel in a specified algebra, we show analytically that the scaling of the Haar averaged value of
the CGP depends only on K . These results illustrate the intuitive relationship between coherence generation and
symmetry algebras.
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I. INTRODUCTION

Nonequilibrium quantum dynamics of closed systems has
been an extensively studied issue in recent years. Generic
isolated quantum systems are expected to thermalize in the
thermodynamic limit, in the sense that for any small subsys-
tem the rest of the system acts as a bath so that the expectation
value of local observables coincides with that derived by
statistical-mechanical ensembles [1,2]. A central role in the
understanding of this phenomenon is played by the so-called
eigenstate thermalization hypothesis (ETH) [3–5], according
to which, under certain conditions, the energy eigenstates
are conjectured to be thermal, i.e., the expectation values of
observables with local support over the energy eigenstates
coincide with those of a thermal ensemble with temperature
related to the energy [6].

While the ETH is expected to hold for generic systems
[5,7–15], several ETH-violating classes of models are known.
Integrable systems and many-body localized (MBL) systems
are the two prime examples, where an extensive number of
conserved quantities prevent the system from thermalizing.
The conserved quantities are a result of symmetries readily
encoded in the Hamiltonian (in the integrable systems) or
from emergent symmetries created by strong disorder (in the
MBL case). More novel types of disorder-free ergodicity-
breaking models were recently observed and studied, dubbed
quantum many-body scars (QMBS) [16–40] and Hilbert space
fragmentation [29,41–53]. The QMBS correspond to a weak
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violation of the ETH, in which only a small set of eigenstates
in the bulk of the spectrum are nonthermal. The emergence
of scar dynamics has been linked with the existence of dy-
namical symmetries [38,54–56], which allow the formation of
towers of scar eigenstates inside an invariant subspace. Hilbert
space fragmentation corresponds to the broader phenomenon
of “shattering” of the Hilbert space in exponentially many
dynamically disconnected subspaces (referred to as Krylov
subspaces) with no obvious associated conserved quantities.
In addition to weak violation, such systems can exhibit a
strong violation of the ETH, where a nonzero measure subset
of all the eigenstates is nonthermal.

Recently, an algebraic framework was utilized to analyze
the phenomenon of Hilbert space fragmentation for families
of Hamiltonians [53], establishing the role of nonconventional
symmetries. Such an approach reveals the central role of
the symmetry algebra in the classification of the system and
is applicable to conventional models as well [57]. Another
inherent advantage is that the properties exhibited by the
families of Hamiltonians are free from fine-tuning. In general,
systems exhibiting novel ergodic behavior (such as QMBS
and Hilbert space fragmentation) belong to special classes
of Hamiltonians [53] that are of great interest in attempts to
fully describe the behavior of nonequilibrium closed quantum
systems [20,22,42,58–60].

The ergodic properties of a system are correlated with
information-theoretic signatures, such as eigenstate entangle-
ment [61–63] and information scrambling [18,64,65]. In this
paper we establish a connection between the classification
framework introduced in [53] and coherence, quantified by the
coherence generating power (CGP) [66–69]. The CGP bound
established in this paper becomes particularly relevant for
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the aforementioned special classes of Hamiltonians exhibiting
Hilbert space fragmentation.

This paper is structured as follows. In Sec. II B we present
an analytical upper bound of the CGP of families of Hamilto-
nian evolutions, with respect to a basis induced by the algebra
of each family; this bound is fully described by the afore-
mentioned classification of the families of Hamiltonians. We
also provide numerical results of systems with both ordinary
symmetries and Hilbert space fragmentation and compare
the behavior of the CGP as we increase the system size. In
Sec. III we allow the evolution to be any unitary channel in
a prescribed algebra and show that the Haar average value
of the CGP is typical and its scaling with the system size is
fully described by the classification of unitary evolutions in
the algebra. In Sec. IV we conclude with a brief discussion
of the results. The detailed proofs of the analytical results are
included in the Appendix.

II. COHERENCE GENERATING POWER FOR
CLASSES OF MODELS

A. Preliminaries

Let H ∼= Cd be a finite d-dimensional Hilbert space and
denote the space of linear operators acting on it by L(H).
The key mathematical structures of interest are ∗-closed unital
algebras of observables A, alongside their commutants,

A′ = {Y ∈ L(H)|[X,Y ] = 0 ∀ X ∈ A}.
Due to the double commutant theorem, these algebras always
come in pairs, so as (A′)′ = A [70].

Letting Z (A) := A ∩ A′ denote the center of A with
dZ := dim Z (A), a fundamental structure theorem for C∗ al-
gebras implies a decomposition of the Hilbert space of the
form [70]

H ∼=
dZ⊕
J=1

CnJ ⊗ CdJ ,

A ∼=
dZ⊕
J=1

1nJ ⊗ L(CdJ ),

A′ ∼=
dZ⊕

J=1

L(CnJ ) ⊗ 1dJ . (1)

Due to the above decomposition,

dim H ≡ d =
dZ∑
J=1

nJdJ ,

dim A =
dZ∑
J=1

d2
J =: d (A),

dim A′ =
dZ∑
J=1

n2
J =: d (A′).

In general, the algebra A′ is non-Abelian and we will de-
note by M ⊂ A′ the (possibly not unique) maximal Abelian
subalgebra of the commutant with dimension K := dim
M = ∑dZ

J=1 nJ . Note that K is exactly the number of linearly

TABLE I. Classification of families of Hamiltonians of the form
(3) based on the scaling of the dimension K of the maximally Abelian
subalgebra of the commutant A′ with system size L in one dimension
[53].

log K Class representative

∼O(1) Discrete global symmetry
∼ log L Continuous global symmetry
∼L Fragmentation

independent common invariant subspaces of all operators
in A.

Given a basis B = {|i〉}d
i=1 of H, one can always express

a pure state as a linear superposition of the states |i〉. This
fact is experimentally materialized as what is called quantum
coherence [71]. In general, one defines B-incoherent states ρ

(ρ � 0 and Trρ = 1) as states diagonal in B (coherent states
are all states that are not incoherent). Given a unitary operator
U ∈ L(H), a measure of its CGP with respect to the basis B
is given by [67]

CB(U ) = 1 − 1

d

d∑
i, j=1

|〈i|U | j〉|4. (2)

Note that the above quantity coincides with a measure of
information scrambling of B-diagonal (incoherent) degrees of
freedom [72,73], which aligns with its ability to quantify the
deviation of incoherent states from the incoherent space under
evolution with U .

Reference [53] introduced an algebra-based classification
of multisite Hamiltonian models. Given an algebra A that can
be generated by local operators h j , one considers the family
of Hamiltonians

H =
∑

j

J jh j, (3)

where Jj are arbitrary coupling constants. Then the symme-
tries of the system are characterized by the scaling of K with
the system size. For example, for one-dimensional systems
of size L, if log K ∼ L, then the family of Hamiltonians in
Eq. (3) possesses an exponentially large number of dynami-
cally disconnected subspaces, which serves as the definition
of Hilbert space fragmentation (see Table I). The models
exhibiting Hilbert space fragmentation were shown to exhibit
nonlocal conserved quantities, dubbed statistically localized
integrals of motion [44,53].

B. Coherence generating power bound

We consider an algebra A = 〈h j〉 and families of Hamil-
tonians of the form (3). Clearly, H ∈ A and due to Eq. (1),

U := exp(−itH ) =
dZ⊕
J=1

1nJ ⊗ UJ . (4)

We also consider a basis BA = {|φJ〉 ⊗ |ψJ〉|J =
1, . . . , dZ ; φJ = 1, . . . , nJ ; ψJ = 1, . . . , dJ}, where |φJ〉
and |ψJ〉 span CnJ and CdJ of the decomposition (1). We can
then show the following proposition.
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Proposition 1. (a) The CGP of U = exp(−itH ) ∈ A in a
basis BA induced by the algebra decomposition is

CBA (U ) = 1 − 1

d

∑
J,ψJ ,ψ

′
J

nJ

∣∣〈ψJ |UJ |ψ ′
J

〉∣∣4

=: 1 − 1

d
fBA (U ). (5)

(b) The maximum value of the CGP is

max
U∈A

CBA (U ) = 1 − 1

d
K (6)

and is achieved when |〈ψJ |UJ |ψ ′
J〉| = d−1/2

J for all J .
We note that if U is any unitary operator in L(H), then

the maximum CGP is Cmax = 1 − 1
d [67,72,73]. The dif-

ference in the bound of Eq. (6) is an extra factor of K ,
which is exactly the number of independent common in-
variant subspaces for all evolutions generated by the family
of Hamiltonians in Eq. (3). The scaling of K with the sys-
tem dimension provides a classification of this family (see,
e.g., Table I); thus from Eq. (6) the scaling of the max-

imum CGP of the entire family of Hamiltonians is also
dependent solely on this classification as well. This observa-
tion constitutes an exact analytical implementation of the in-
tuitive connection between (generalized) system symmetries
and coherence generation. Note that the Hilbert space decom-
position (1) is a basic element for the protection of quantum
coherence in information processes, e.g., by decoherence-free
subspaces and subsystems [74–77]. There the algebra A is
generated by the system operators of the interaction Hamilto-
nian and K is simply the total dimension of decoherence-free
subsystems CnJ .

C. Quantum spin-chain models

Note that the result in Proposition 1 only depends on the
fact that U ∈ A and not on the fact that U is generated by a
Hamiltonian of the form (3). As so, if we choose randomly a
Hamiltonian from Eq. (3), the resulting evolution need not be
typical. In order to evaluate the behavior of the CGP in such
a case, we numerically simulate the evolution of spin-chain
models in one dimension with L sites:

(i) the spin- 1
2 XXZ model with an on-site magnetic field,

HXXZ =
∑

j

[
J⊥

j

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

) + Jz
j σ

z
j σ

z
j+1 + h jσ

z
j

]
,

(ii) the spin-1 Temperley-Lieb (TL) model, and

HTL =
∑

j

J je j, j+1,

where e j,k = 3(|ψsing〉〈ψsing|) j,k and |ψsing〉 j,k = 1√
3

∑
α∈{0,1,2} |αα〉 j,k ,

(iii) the fermionic t-Jz model

Ht−Jz =
∑

j

⎛
⎝−t j, j+1

∑
σ∈{↑,↓}

(
c̃ j,σ c̃†

j+1,σ + H.c.
) + Jz

j, j+1Sz
jS

z
j+1 + h jS

z
j + g j

(
Sz

j

)2

⎞
⎠, (7)

where Sz
j := c̃†

j,↑c̃ j,↑ − c̃†
j,↓c̃ j,↓ and c̃ j,σ := c j,σ (1 −

c†
j,−σ c j,−σ ). Here σα

j , α ∈ x, y, z denote the Pauli matrices.
The XXZ model has shown to be integrable by the Bethe
ansatz [78] and possesses a conventional U(1) symmetry
with the associated conserved quantity σ z

tot = ∑
j σ

z
j . The

sectors of Eq. (1) are labeled by this conserved quantity
(J = L/2 − σ z

tot = 0, . . . , L) and the dimensions of the
irreducible representations of A and A′ are dJ = (L

J

)
and nJ = 1, respectively [53]. For a given J there is one
common Krylov subspace (since nJ = 1) which is spanned
by the z-basis product states with σ z

tot = L/2 − J . Note that
KXXZ = L + 1, which scales linearly with the system size.

The TL model is an example of Hilbert space fragmen-
tation. The dynamically disconnected Krylov subspaces are
understood by the use of a basis of dots and noncrossing
dimers [53,79,80]. Each basis state consists of a pattern
of dimers that connect two sites and represent the state
|ψsing〉 j,k . The rest of the sites (that are not connected to
either end of a dimer) make up the dots and the state
|ψdots〉 is chosen such that it is annihilated by all projec-
tors |ψdim〉m,m+1〈ψdim|m,m+1 (where m labels all dots while

excluding the dimers). The algebra formed by the L − 1 gen-
erators e j, j+1 is the Temperley-Lieb algebra TLL(q), where
q + q−1 = 3 (which is the number of local degrees of free-
dom in a spin-1 model) [53]. It has been shown that, for
even L, the sectors of the decomposition (1) are labeled by
J = 0, . . . , L/2 with corresponding dimensions

nJ = [2J + 1]q, dJ =
(

L

L/2 + J

)
−

(
L

L/2 + J + 1

)
,

where [n]q := (qn − q−n)/(q − q−1) is a q-deformed integer

[79]. It is then straightforward to show that K = q−L (qL+2−1)2

(q2−1)2 ,
which scales exponentially with the system size.

The t-Jz model also falls into the category of Hilbert space
fragmentation. The Hamiltonian acts effectively in the Hilbert
space with no double occupancy and it has been shown that all
operators in the commutant algebra are diagonal in the product
state basis [53]. The sectors are characterized by the pattern of
spins up and down, which remains invariant under the action
of the Hamiltonian [44]. For open boundary conditions there
are 2L+1 − 1 such sectors (all with nJ = 1), so K = 2L+1 − 1,
which scales exponentially with L [53].
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FIG. 1. Log-log plots of the long-time average of fBA (U ) = 1 − CBA (U ) (connected dotted lines) in comparison to the bound K (solid

lines) for (a) the t-Jz model, where fBt−Jz
(Ut )

t ∼ d0.83 scales exponentially with the system size and the bound set by the number of independent

Krylov subspaces scales as d log3 2; (b) the TL model, where fBTL (Ut )
t ∼ d0.95 scales exponentially with the system size and the scaling is

very close to that set by the bound d log3 q (see Sec. 4 of the Appendix), log3 q � 0.88, which can be understood in terms of the existence
of Krylov-restricted thermalization in some of the large fragments of the TL model [47]; and (c) the XXZ model, where the behavior of
fBXXZ (Ut )

t
greatly deviates from the bound with the system size. Integrable systems (even with a random choice of couplings) are not expected

to showcase generic properties, even after resolving for symmetries.

We simulate the exact dynamics for the above systems
and for different system sizes with the coupling constants
randomly drawn from [0,1] (each time we increase the system
size we add one more set of randomly chosen couplings to the
previously drawn ones). The choice of the coupling constants
sets the energy scale of the Hamiltonians and in turn the
timescale of the dynamics. For each model we construct the
relevant bases described above and compute the long-time
average of the CGP of the unitary evolution. In Figs. 1(a) and
1(b) we observe that for the fragmented models the long-time
average of the quantity fBA (U ) [related to the CGP via
Eq. (5)] has a similar behavior with the number of Krylov
subspaces K . Specifically, we find that (see also Sec. 4 of the
Appendix)

fBt-Jz
(Ut )

t ∼ d0.83
(
compared to Kt-Jz ∼ d log3 2

)
,

fBTL (Ut )
t ∼ d0.95

[
compared to KTL ∼ d log3 q,

q = (3 +
√

5)/2 � 2.62
]
.

Fragmented systems can be further characterized into strongly
or weakly fragmented depending on the size maxJ dJ of the
biggest Krylov subspace; specifically for strongly (weakly)

fragmented systems, maxJ dJ/d → 0 (maxJ dJ/d → 1) as
d → ∞ [42,53]. When the size of the fragments is large
enough (in the thermodynamic limit) and the Hamiltonian is
nonintegrable in these fragments, signatures of thermalization
within the fragment can be observed, a phenomenon referred
to as Krylov-restricted thermalization [47]. In fact, the TL
model has been shown to exhibit thermalization in some of its
exponentially large Krylov subspaces [47], which implies that
the behavior of the CGP is expected to be closer to that of a
generic model (see also Sec. III). In contrast to the fragmented
models, the behavior of the CGP of the integrable XXZ model
with the system dimension is far away from the bound (6)
[Fig. 1(c)]. This aligns with the expectation that integrable
models do not showcase features of generic evolutions, even
after resolving for the symmetries. Figure 2 emphasizes the
vastly different CGP behaviors of the different classes of
models simulated; for finite dimensions the bound (6) forces
the CGP of the fragmented models to remain much lower than
that of the integrable model. This shows that despite the fact
that fragmented models are in general nonintegrable, emer-
gent generalized symmetries from kinetic constraints lead to a
milder mixing of different parts of the Hilbert space, with pos-
sible physical importance for information processing tasks,
e.g., protection of information via decoherence-free subspaces
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FIG. 2. Comparison of the scaling of the CGP for the XXZ , t-Jz,
and TL models. We observe that for finite dimensions, the CGP of
fragmented models is heavily constrained by the bound set in Eq. (6),
leading to less mixing of different parts of the Hilbert space under
evolution.

[74,76,81] or utilization of (dynamical) localization for quan-
tum memory implementations [46,82].

III. HAAR AVERAGED COHERENCE GENERATING
POWER AND SYSTEM-SIZE SCALING

We will now consider the case where U ∈ A can be any
unitary in the algebra. It is straightforward to notice that
Proposition 1 continues to hold, since Eq. (4) holds for all
unitaries in the algebra. A natural question we wish to inves-
tigate is, given an algebra A, what the typical value of the
CGP is and how it is related to the number of independent
Krylov subspaces K . To do so, we average CBA (U ) over the
Haar measure of the subgroup of unitaries U ∈ A.

Proposition 2. Given an algebra A, the Haar average of the
CGP over the unitaries in the algebra is

CBA (U )
U∈A

:= EU∈A
[
CBA (U )

] = 1 − 1

d

∑
J

2dJ

dJ + 1
nJ .

(8)

Equation (8) provides an analytical expression for the Haar
average value of the CGP in terms of the dimensions nJ and
dJ related to the decomposition (1). Since 1 � dJ � d ∀ J we
can (loosely) bound the typical value as

1 − 2

d + 1
K � CBA (U )

U∈A � 1 − 1

d
K. (9)

This shows that the scaling of the average value with the
system dimension depends exactly on the classification of
the model in terms of the scaling of K with the system size
(Sec. II A). As seen in Proposition 4 of [67], Levy’s lemma
implies that the Haar average is expected to be typical in-
side sufficiently large Krylov subspaces (see Sec. 3 of the
Appendix). This aligns with the observation that the weakly
fragmented TL model seems to have close to maximal CGP,
as in that case there is a dominant Krylov subspace such that
maxJ

dJ
d → 1 in the thermodynamic limit.

Note that, due to the double commutant theorem, A is
completely determined by the commutant A′, which repre-
sents the set of symmetries imposed on the evolution. As
so, the selection of a random unitary in A corresponds to a

random unitary channel constrained by physically motivated
symmetries.

IV. CONCLUSION

In this paper we revealed a connection between a clas-
sification of families of Hamiltonian evolutions and their
coherence generating power with respect to a basis induced
by the family. Specifically, the families of Hamiltonians were
previously classified based on the scaling of the number K
of independent dynamically disconnected subspaces (called
Krylov subspaces) with the system size [53]. Each family of
Hamiltonians is defined with respect to an algebra A gener-
ated by local terms that are used to compose the Hamiltonians.
The generalized symmetries of the system are captured
by the commutant algebra A′ and K coincides with the
dimension of the maximally Abelian subalgebra of A′. The
Krylov subspaces are described by an algebra-induced Hilbert
space decomposition, which also specifies a relevant basis.
Our main result was then the demonstration that the maximum
CGP (with respect to this relevant basis) of such a family of
Hamiltonians is exactly related to K ; hence its scaling with the
system dimension is precisely dependent on the classification
of the system. This gives an exact quantitative implementation
of the intuitive connection between (generalized) symmetries
and coherence generation. A principal example is the situation
of Hilbert space fragmentation, in which case K scales expo-
nentially with the system size, leading to a substantially lower
upper bound for the CGP in finite dimensions.

In order to further investigate the above observations, we
numerically simulated different families of one-dimensional
spin-chain models and computed long-time averages of their
CGP with respect to the basis induced by the algebra of each
family. We observed that for the fragmented systems and the
fermionic t-Jz and spin-1 Temperley-Lieb models, the CGP
follows closely the exponential behavior of the bound induced
by the exponential number of Krylov subspaces. The partic-
ularly significant agreement in the TL case was connected
with the previously observed Krylov restricted thermalization
in some of its large Krylov subspaces in the thermodynamic
limit. In contrast, in the case of the integrable spin- 1

2 XXZ
model, the CGP greatly deviates from the bound set by the lin-
ear number of Krylov subspaces. Naturally, the above picture
ties into the fact that the maximum (or close to the maximum)
CGP is expected from systems that exhibit generic features
inside sufficiently large Krylov subspaces.

The above observation was made precise by allowing the
unitary evolution to be generated by any unitary in A and
performing the Haar average of the CGP over all unitaries
in A. We showed that the scaling of this average value with
the system size depends exactly on the classification of the
model in terms of the system size scaling of K . In addition,
Levy’s lemma ensures that the Haar average will be typical
for sufficiently large Krylov subspaces.

A natural question one may ask is if there are more
information-theoretic quantities that can be linked (in an exact
fashion) with the classification of models induced by their
symmetry algebra. Moreover, it would be interesting to further
investigate the conditions under which families of models
exhibit CGP close to the bound, as well as derive explicit
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connections with their ergodic and integrability properties
inside the various Krylov subspaces.
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APPENDIX

1. Proof of Proposition 1

(a) Using Eq. (4) in Eq. (2) for the basis BA = {|φJ〉 ⊗ |ψJ〉|J = 1, . . . , dZ ; φJ = 1, . . . , nJ ; ψJ = 1, . . . , dJ} we get

CBA (U ) = 1 − 1

d

∑
φJ ,φ

′
J′

∑
J,J ′

∑
ψJ ,ψ

′
J′

|〈φJ | ⊗ 〈ψJ | ⊕J̃ 1nJ̃
⊗ UJ̃ |φ′

J ′ 〉 ⊗ |ψ ′
J ′ 〉|4

= 1 − 1

d

∑
φJ ,φ

′
J′

∑
J,J ′

∑
ψJ ,ψ

′
J′

δJJ̃δJ ′ J̃δφJφ
′
J′ |〈ψJ |UJ̃ |ψ ′

J ′ 〉|4

= 1 − 1

d

∑
J,φJ ,ψJ ,ψ

′
J

|〈ψJ |UJ |ψ ′
J〉|4

= 1 − 1

d

∑
J,ψJ ,ψ

′
J

nJ |〈ψJ |UJ |ψ ′
J〉|4. (A1)

(b) Let X ∈ L(CdJ ). Then, since ‖X − TrX
dJ

1dJ ‖2
2 � 0, we have

‖X‖2
2 � |TrX |2

dJ
∀ X ∈ L(CdJ ). (A2)

Using the above identity for X = ∑
ψJ

|〈ψJ |UJ |ψ ′
J〉|2|ψJ〉〈ψJ |, we get

∑
ψJ

|〈ψJ |UJ |ψ ′
J〉|4 �

∑
ψJ

|〈ψJ |UJ |ψ ′
J〉|2

dJ
= 1

dJ
. (A3)

Using Eq. (A3) in Eq. (A1), we get

CBA (U ) � 1 − 1

d

∑
J,ψ ′

J

nJ
1

dJ
= 1 − 1

d

∑
J

dJ
nJ

dJ
= 1 − 1

d

∑
J

nJ = 1 − 1

d
K (A4)

and clearly the maximum is achieved when |〈ψJ |UJ |ψ ′
J〉| = d−1/2

J ∀ J , i.e., when UJ is mutually unbiased with respect to the
basis {|ψJ〉} of CdJ .

2. Proof of Proposition 2

Due to Eq. (4), taking the Haar average over all U ∈ A corresponds to taking the Haar average over the unitaries in the
subsystems CdJ . Defining �ψJ = |ψJ〉〈ψJ |, we can rewrite Eq. (5) as

CBA (U ) = 1 − 1

d

∑
J,ψJ ,ψ

′
J

nJ
[
Tr

(
�ψJUJ�ψ ′

J
U †

J

)]2

= 1 − 1

d

∑
J,ψJ ,ψ

′
J

nJTr
[(

�ψJUJ�ψ ′
J
U †

J ⊗ �ψJUJ�ψ ′
J
U †

J

)]

= 1 − 1

d

∑
J,ψJ ,ψ

′
J

nJTr
(
�⊗2

ψJ
U ⊗2

J �⊗2
ψ ′

J
U †

J
⊗2)

. (A5)

By Schur-Weyl duality the commutant of the algebra MJ generated by {M⊗2
J |MJ ∈ L(CdJ )} is M′

J = CS2, where S2 = {1, S}
is the symmetric group over the copies in CdJ ⊗ CdJ [83]. Since we can always find a unitary basis of L(CdJ ), it follows that
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MJ is equivalently generated by {U ⊗2
J |UJ ∈ L(CdJ ),UJU †

J = 1dJ }. Also, note that PM′
J
[•] := U ⊗2

J [•]U †
J

⊗2
UJ

is an orthogonal
projector on M′

J [84]. So we can express PM′
J

in terms of the orthonormal basis { 1+S√
2dJ (dJ+1)

, 1−S√
2dJ (dJ−1)

} of CS2:

PM′
J
[•] = U ⊗2

J [•]U †
J

⊗2
UJ

=
∑
η=±1

1 + ηS

2dJ (dJ + η)
〈1 + ηS, •〉. (A6)

Taking the Haar average over the unitaries in CdJ in Eq. (A5) and using Eq. (A6), we get

CBA (U )
U∈A = 1 − 1

d

∑
J,ψJ ,ψ

′
J

nJTr

⎛
⎝�⊗2

ψJ

∑
η=±1

1 + ηS

2dJ (dJ + η)

〈
1 + ηS,�ψ ′

J

〉⎞⎠

= 1 − 1

d

∑
J,ψJ ,ψ

′
J

nJTr

(
�⊗2

ψJ

1 + S

dJ (dJ + 1)

)

= 1 − 1

d

∑
J,ψJ ,ψ

′
J

nJ
2

dJ (dJ + 1)

= 1 − 1

d

∑
J

2dJ

dJ + 1
nJ . (A7)

3. Typicality inside sufficiently large Krylov subspaces

This follows from Proposition 4 of [67]. The key ingredient is Levy’s lemma for Haar distributed unitaries in CdJ . The
operator norms used are the Schatten k-norms [85] defined as ‖X‖k := (

∑
i sk

i )1/k , where {si}i are the singular values of X . For
k → ∞, ‖X‖∞ = maxi{si} is the usual operator norm.

Lemma 1 (Levy’s lemma). If X : U (dJ ) �→ R is a Lipschitz continuous function of constant λ, i.e., |X (UJ ) − X (VJ )| �
λ‖X (UJ ) − X (VJ )‖2, then

Pr
[∣∣∣X (UJ ) − X (UJ )

UJ∈CdJ
∣∣∣ � ε

]
� e−dJ /ε

24λ2
. (A8)

We will also need to known norm inequalities such as

|Tr(AB)| � ‖A‖1‖B‖∞ (A9)

and, if T is a positive trace-preserving map,

‖T (X )‖1 � ‖X‖1, (A10)

1
2‖|ψ〉〈ψ | − |φ〉 〈φ|‖1 � ‖|ψ〉 − |φ〉‖ � 2. (A11)

Choose U = ⊕J1nJ ⊗ UJ and V = ⊕J1nJ ⊗ VJ ∈ A. Note that using the swap trick Tr(AB) = Tr(SA ⊗ B), we can rewrite

CBA (U ) = 1 − 1

d

∑
J

nJ

∑
ψJ ,ψ

′
J

|〈ψJ |UJ |ψ ′
J〉|4 = 1 − 1

d

∑
J

nJ

∑
ψ ′

J

Tr
{
SJ

[
DJUJ

(
�ψ ′

J

)]⊗2}
, (A12)

where DJ (•) = ∑
ψJ

�ψJ • �ψJ , UJ (•) = UJ • U †
J , and SJ is the swap in CdJ ⊗ CdJ . Now let X (UJ ) =

1
dJ

∑
ψ ′

J
Tr[SJD⊗2

J U⊗2
J (�⊗2

ψ ′
J

)]. We then have

|X (UJ ) − X (VJ )| = 1

dJ

∣∣∣∣∣∣
∑
ψ ′

J

Tr
[
SJD⊗2

J

(
U⊗2

J − V⊗2
J

)(
�⊗2

ψ ′
J

)]∣∣∣∣∣∣ � 1

dJ

∑
ψ ′

J

∣∣∣Tr
[
SJD⊗2

J

(
U⊗2

J − V⊗2
J

)(
�⊗2

ψ ′
J

)]∣∣∣

� 1

dJ

∑
ψ ′

J

‖S‖∞
∥∥∥D⊗2

J

(
U⊗2

J − V⊗2
J

)(
�⊗2

ψ ′
J

)∥∥∥
1

� 1

dJ

∑
ψ ′

J

∥∥∥U⊗2
J

(
�⊗2

ψ ′
J

)
− V⊗2

J

(
�⊗2

ψ ′
J

)∥∥∥

� 1

dJ

∑
ψ ′

J

2
∥∥U ⊗2

J |ψ ′
J〉⊗2 − V ⊗2

J |ψ ′
J〉⊗2

∥∥ � 1

dJ

∑
ψ ′

J

2
∥∥U ⊗2

J − V ⊗2
J

∥∥
∞ = 2

∥∥U ⊗2
J − V ⊗2

J

∥∥
∞

= 2
∥∥1 − U †

J
⊗2

V ⊗2
J

∥∥
∞, (A13)
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where to go from line 1 to line 2 we used triangle inequality, from line 2 to line 3 Eq. (A9) with A = D⊗2
J (U⊗2

J − V⊗2
J )(�⊗2

ψ ′
J

),
B = S, from line 3 to line 4 the fact that ‖S‖∞ = 1 and Eq. (A10) with T = DJ , from line 4 to line 5 Eq. (A11) with |ψ〉 =
U ⊗2

J |ψ ′
J〉⊗2 and |φ〉 = V ⊗2

J |ψ ′
J〉⊗2, and in line 5 the definition of the operator norm. Let us define M := 1dJ − U †

J VJ . Then

|X (UJ ) − X (VJ )| � 2‖1 − (1 + M ⊗ M − 1dJ ⊗ M − M ⊗ 1dJ )‖∞

� 2
(
2‖M‖∞ + ‖M‖2

∞
)

� 8‖M‖∞ = 8‖UJ − VJ‖∞ � 8‖UJ − VJ‖2, (A14)

where we used that ‖M‖∞ � 2. So X : U (CdJ ) �→ R is Lipschitz continuous with constant λ = 8 and the result follows from
Lemma 1.

4. System dimension scalings

The scaling of fBt-Jz
(Ut )

t
and fBTL (Ut )

t
in Sec. II C is found by finding the best exponential-law [ f (x) = AxB] fit of the

numerical data. Specifically, we find fBt-Jz
(Ut )

t ∼ dλ with λ = 0.8340 ± 0.0023 and a root mean square error is 2.989 and

fBTL (Ut )
t ∼ dλ with λ = 0.9468 ± 0.0016 and a root mean square error of 2.192.

The scalings of Kt-Jz and KTL follow directly from the expressions Kt-Jz = 2L+1 − 1 and KTL = q−L (qL+2−1)2

(q2−1)2 , where in both
cases L = log3 d . Explicitly,

Kt-Jz = 2L+1 − 1 = 2log3 d+1 − 1 ∼ 2log3 d = d log3 2,

KTL = q−L(qL+2 − 1)2

(q2 − 1)2
∼ qL = qlog3 d = d log3 q.
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