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Multitime quantum communication: Interesting but not counterfactual
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A protocol for transmission of information between two parties introduced by Salih et al. [Phys. Rev. Lett.
110, 170502 (2013)] involves sending quantum amplitude back and forth through a quantum channel in a series
of steps, rather than simply sending a signal in one direction. The authors claimed that their protocol was
“counterfactual” in the sense that while a quantum channel is needed to connect the parties, its actual usage
becomes vanishingly small in the asymptotic limit as the number of steps tends to infinity. Here we show that this
claim is incorrect because it uses probabilistic reasoning that is not valid at intermediate times in the presence
of quantum interference. When ill-defined probabilities are replaced with a well-defined measure of channel
usage, here called “Cost,” equal to the absolute square of the amplitude sent through the channel, the total Cost
does not go to zero in the asymptotic limit of a large number of steps, but is bounded below by a rigorous
inequality. A detailed analysis shows that this bound is satisfied in the protocol of Salih et al. [Phys. Rev. Lett.
110, 170502 (2013)]. The analysis leading to the bound uses the fact that the Gram matrix formed by inner
products of a collection of pure quantum states is additive over Hilbert subspaces and invariant under unitary
time transformations. Its off-diagonal elements, which in general are not positive, play a significant role in the
formal argument as well as providing a somewhat strange way of visualizing the transfer of information.
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I. INTRODUCTION

The motivation for this paper is a scheme for the trans-
mission of quantum information introduced by Salih et al. [1]
and referred to hereafter as SLAZ, the initials of the authors.
One ordinarily thinks of the transmission of information as
sending a signal through a channel from a sender to a receiver.
However, the idea in SLAZ is that information can be sent
from Bob to Alice if the quantum particle used to carry the
information starts off in Alice’s domain and a part of its
quantum amplitude is sent to Bob through a quantum channel.
Bob modifies this is some way before sending (or possibly not
sending) it back to Alice, depending on the signal he wants to
send. Alice then employs what Bob has returned to begin a
second round of sending amplitude to Bob, who again mod-
ifies it before returning it, and so forth. This back-and-forth
motion can continue for a large number of rounds until the
information that Bob is sending has arrived in Alice’s domain,
where she can carry out a measurement or perhaps perform
additional processing. A key feature of protocols of this type
is that all the intermediate steps can be represented by purely
unitary time evolution, with intermediate time measurements,
if any, replaced by unitaries, a process of purification.

The use of amplitude rather than particle in the preceding
paragraph is intentional, because the state of the photon or
other particle is in general a coherent superposition of parts
associated with different spatial locations: Alice’s domain,
Bob’s domain, and the channel connecting them. One gen-
erally thinks of a particle as something with a spatial location,
but in quantum mechanics one cannot simultaneously ascribe
particle and wave properties to the same entity at the same
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time because of wave-particle duality. In Hilbert-space quan-
tum mechanics, physical properties, such as location in space,
are represented by projectors, see Sec. II.5 of [2], and when
a projector representing a wave, think of |ψ〉〈ψ |, does not
commute with a projector specifying a spatial location, ig-
noring this fact can rapidly lead to paradoxes. The double-slit
paradox is an example: When a coherent wave passes through
the slit system one cannot say through which slit the particle
passed.

The term “counterfactual” in the original SLAZ paper has
the following significance. A quantum channel connecting the
communicating parties is essential: This is not a case of mys-
terious nonlocal influences of the sort which are sometimes
invoked to explain quantum violations of Bell inequalities.
However, if the number of steps in an SLAZ protocol is
sufficiently large, the magnitude of the amplitude sent through
the channel in each step can be made very small and vanishes
in the limit as the number of steps tends to infinity.

A similar claim of counterfactuality has been made in
much of the rather substantial literature motivated by the
original SLAZ publication, which contains various modifica-
tions and extensions of the original protocol. There have also
been criticisms of these counterfactual claims and (of course)
replies to criticisms. The Conclusion (Sec. V) of the present
paper contains a few remarks about how its results apply to
some of these publications, but a review, much less a detailed
discussion, lies far outside its scope. The interested reader is
referred to the extensive bibliographies found in [3,4].

The aim of the present paper is to study the use of quantum
channels in protocols of the SLAZ type, in particular the sense
in which this usage is or is not counterfactual. To this end
a technical term, Cost, the absolute square of the amplitude
passing through the channel in a particular step in the pro-
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tocol, is used for reasons discussed in Sec. II, as a useful
substitute for “probability”, which in a quantum context is
often ill-defined. The example of multiple channels in parallel,
which few would want to claim are counterfactual, serves
as an introduction to how information can be sent through
a single channel in a single direction at multiple times, in a
process in which all of the intermediate steps are represented
by unitary maps.

The main mathematical results of this paper are in Sec. III:
Gram matrices and some of their properties are discussed in
Sec. III A, while Sec. III B gives the basic structure of sim-
ple two-way multiple time protocols. Section III C considers
simple schemes for transmitting one classical bit, while the
rigorous lower bound that undermines various counterfactual
claims is the topic of Sec. III D.

The original SLAZ protocol is studied in detail in Sec. IV.
In particular, the total Costs of transmitting a classical bit
λ = 0, in which Bob reflects the amplitude back to Alice, and
for transmitting λ = 1, in which he absorbs rather than returns
it, are evaluated explicitly. It turns out that in the asymp-
totic limit the λ = 1 Cost is minuscule, but that for λ = 0
is enormous, while the product of the two remains finite and
satisfies the rigorous bound in Sec. III D. The mistaken claim
that the SLAZ protocol is counterfactual results from two
errors: a concept of channel use which would be questionable
even for a classical stochastic process and an improper use of
probabilities in a way that violates quantum principles.

Section V has a summary of the main results of this paper,
a few comments on some parts of the literature related to
SLAZ, and some suggestions for future directions of research.
This author believes that protocols of the SLAZ type are quite
interesting, deserve further exploration, and might contribute
to useful ways of studying multipartite and multitime trans-
mission of quantum information, as in quantum networks.
And that such studies would prove more fruitful in the absence
of claims of counterfactuality.

II. ONE-WAY PROTOCOLS

A. Multiple channels in parallel

Think of quantum information as the information carried
by a photon as it passes through a quantum channel, such
as an optical fiber. The information could be encoded in its
polarization. Rather than using a single channel, one could
imagine sending the photon as a superposition state through
a set of N channels in parallel, using a collection of beam
splitters to divide up the initial amplitude among the different
channels, and a corresponding collection to later recombine
them. Let us suppose that the normalized |�〉 that represents
the photon at some intermediate time is a coherent superposi-
tion of amplitudes

|�〉 =
N∑

n=1

cn|φn〉 (1)

associated with the individual channels, labeled by n. Define
the Cost qn associated with the use of channel n and the total

Cost Q for the channel system as

qn := |cn|2, Q :=
N∑

n=1

qn. (2)

If the |φn〉 and |�〉 are normalized, Q is equal to 1, so one
might identify qn with the probability that the photon is in
channel n. But what does that mean? In standard (textbook)
quantum mechanics probability refers to the outcome of a
measurement, but a measurement carried out at an intermedi-
ate time, when the quantum state is a coherent superposition
over various locations, can alter what occurs later, and hence
it is dangerous to associate such a probability with a situation
in which a measurement does not take place.

Another way of viewing this difficulty is to recall that
von Neumann (Sec. III.5 of [2]) identified quantum physical
properties—which in classical physics are associated with
sets of points in the classical phase space—with projectors,
self-adjoint idempotent operators P = P† = P2 on the quan-
tum Hilbert space. For example, in the case of a spin-half
particle the projectors

P = (I − σz )/2, R = (I + σx )/2, (3)

where I is the identity and σz and σx are Pauli operators,
represent the properties Sz = −h̄/2 and Sx = +h̄/2, respec-
tively. In general, if two projectors P and R commute their
product PR = RP represents the property P AND R. However,
if they do not commute, neither PR nor RP is a projector,
and so neither represents a quantum property. In some sense
noncommutation is the very essence of quantum mechanics;
it is what distinguishes it from classical physics. The use of
standard (Kolmogorov) probabilities requires a sample space
of mutually exclusive possibilities, one and only one of which
occurs in a particular run of an experiment. In quantum theory
such a sample space is a collection of mutually orthogonal
projectors that sum to the identity, a projective decomposition
of the identity. For example, R and I − R in (3) in the case of
spin half; see (7) below for the general definition. In quantum
mechanics there are often many possible sample spaces that
one might be interested in, and carelessly combining incom-
patible spaces—some projectors in one do not commute with
projectors in the other—inevitably leads to paradoxes rather
than physical understanding.

In the present context the dyad |�〉〈�| is a projector that
does not commute with any of the projectors |φn〉〈φn| for
which cn is nonzero, and thus it is meaningless to assign
a probability to the latter in a situation where the coherent
superposition |�〉 will later be transformed by the final beam
splitters into the original state that entered the channel sys-
tem. For example, in a double-slit experiment in which the
amplitudes from the two slits combine coherently to produce
interference, it makes no sense to talk about the probability
that the photon previously passed through one slit rather than
the other. The two Costs are well defined: They are simply the
absolute squares of the two amplitudes. However, attempting
to measure which slit the particle passes through in order to
define a probability will destroy the interference pattern.
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B. One channel used multiple times

The possible advantages, if any, of using many channels in
parallel can also be realized by employing a single channel
and sending quantum amplitude through it at a succession of
times; this is what makes protocols of the SLAZ type of some
interest. Let us suppose that information is being sent from
Bob to Alice. One can think of the photon at a particular time
as being in a coherent superposition of amplitudes in three dif-
ferent physical locations: Alice’s domain A, Bob’s domain B,
and the channel C connecting them. The same symbols can be
used for the Hilbert-space projectors associated with these lo-
cations, thus operators which are self-adjoint and idempotent,
A = A† = A2, and mutually orthogonal, AB = BC = AC = 0.
They sum to the identity

A + C + B = I (4)

and hence form a projective decomposition of the identity [see
the general definition in (7) below]. A projective decomposi-
tion of the identity is the quantum counterpart of the sample
space of mutually exclusive possibilities essential for using
standard (Kolmogorov) probability theory in the case of a
quantum system. Note that A, B, and C are subspaces of a
single Hilbert space, not subsystems represented by a tensor
product. If the quantum particle possesses other degrees of
freedom, these projectors are to be understood using the usual
convention as including the identity operator on these addi-
tional degrees of freedom. Thus for a photon, A means that it
is located in Alice’s domain, whatever may be its polarization.

Bob can send a particular type of information λ to Alice by
starting with a normalized reference state |ψ0〉 = B|ψ0〉, the
particle is somewhere in his domain B, and using a unitary
transformation Bλ acting on the subspace B + C to place it in
a state ∣∣ψλ

1

〉 = C
∣∣ψλ

1

〉 = Bλ|ψ0〉 (5)

in the channel, at which point it travels through the channel
to Alice. As the channel has no effect except to transmit the
particle from one end to the other, we simplify the discussion
(here and later) by using the same symbol for the ket that
arrives at Alice’s end. She then applies a unitary A that does
not depend on λ, for she does not know what Bob is sending,
to empty the channel and arrive at a final state∣∣ψλ

2

〉 = A
∣∣ψλ

2

〉 = A
∣∣ψλ

1

〉
, (6)

which she can then measure or subject to further processing.
This single-round transmission process can be carried out

in a number of rounds in which during the nth round Bob
employs a unitary Bλ

n acting on the B + C subspace to map an
amplitude cn|ψ0〉 into C, which is initially empty, and which
travels to Alice, who uses a unitary An acting on A + C to
remove it from the channel, which is then empty and ready
for the next round. One way to visualize this is that Bob has
a domain B of high dimension and at the outset splits up the
initial amplitude |ψ0〉 into pieces placed in different subspaces
of B with the help of a suitable set of beam splitters. At round n
the unitary Bλ

n interchanges the appropriate subspace of B with
the empty C. Alice’s A is also large and her An maps whatever
Bob has sent into an empty subspace reserved for this pur-
pose. When the run is completed Alice can then combine the

amplitudes in these different subspaces into a smaller space,
e.g., using beam splitters, or she can do a similar combination
at the end of each round. Of course Alice’s and Bob’s unitaries
cannot be chosen independently; the two must work together
to design the protocol. What is unknown to Alice is Bob’s
choice of λ for a particular run; this is the information that she
can extract at the end.

Some multiple-time protocols employ measurements by
Alice at intermediate times. In cases such as the original
SLAZ scheme, discussed below in Sec. IV, it is possible to
store the amplitude that could have triggered the measuring
device in an empty subspace in Alice’s domain and put off
the measurement until the protocol is finished. Of course,
amplitudes that correspond to several measurements in suc-
cession can be combined, just as in the case of simultaneous
transmission through several channels in parallel, as discussed
earlier.

III. TWO-WAY PROTOCOLS

A. Gram matrices

Let {Pj} be a projective decomposition of the Hilbert space
identity I ,

I =
∑

j

Pj, Pj = P†
j , PjPk = δ jkPj, (7)

and let {|ψμ〉}, μ = 0, 1, . . ., be a collection of kets on the
same Hilbert space. The Gram matrix

Gμν = 〈ψμ|ψν〉 =
∑

j

Gμν (Pj ) =
∑

j

〈ψμ|Pj |ψν〉 (8)

is additive in that it is a sum over contributions from the dif-
ferent subspaces. In addition, Gμν is invariant (or conserved)
under a unitary operation U that acts on every ket in the
collection {|ψμ〉}. Also, if this unitary acts on only some of
the subspaces, say, P1 and P2, and is the identity operator on
the others, then while both Gμν (P1) and Gμν (P2) may change,
their sum Gμν (P1) + Gμν (P2) remains unchanged. That Gram
matrices are additive and conserved plays an important role in
what follows.

We will refer to the diagonal elements Gμμ(Pj ), which are
non-negative, as weights. As these are rather like probabilities,
their additivity and conservation is not surprising. However,
that the same is true of the nondiagonal elements Gμν (Pj ) with
μ �= ν, hereafter referred to as overlaps, comes as something
of a surprise, especially since |ψμ〉 and |ψν〉 may refer to two
different runs of an experiment, one on Friday and one on
Monday. Nonetheless, overlaps play a key role in the follow-
ing analysis, not only as part of the mathematics but also in
a surprising but useful intuitive way of thinking about what
is going on. The absolute value of an overlap corresponds
to a notion of fidelity in quantum information, but in general
an overlap is a complex number, and the fact that it can be
negative as well as positive is a key element in what follows.

B. Basic two-way protocol

In the following discussion the projective decomposition
of the identity (7) that will concern us is {A,C, B}, where A
means that the photon or other quantum particle is in Alice’s
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domain, B that it is Bob’s domain, and C that it is in the chan-
nel connecting them. At the beginning of a two-way protocol
of the SLAZ type, in which Bob is sending information to
Alice, all of the photon amplitude is in Alice’s domain A. She
initiates the run by sending some amplitude to Bob through
the channel. He then modifies it and returns some or all of
it to Alice, in a manner that depends on the information λ

he wishes to transmit. Alice processes what Bob has returned
and begins the second round by again sending amplitude to
Bob, who again returns it, etc. This can go on for N rounds,
following which Alice makes a measurement to determine the
value of λ.

In further detail: At the beginning of round n, Alice uses a
unitary An1 acting on A + C to map some of the amplitude
in A into an empty channel C. This amplitude then flows
through the channel to Bob, where he empties the channel
into B, does some processing, and then maps some amplitude
back into C. This flows to Alice, who empties C into A using
a unitary An2. We assume that “flow through the channel”
does not change anything, and hence it is convenient not to
think of C as divided into close-to-Alice, close-to-Bob, and
in-between subspaces, but simply imagine that Alice and then
Bob and then Alice are acting on a single C subspace. Alice
uses unitaries that act on A + C and are independent of λ,
while Bob uses unitaries Bλ

n , that depend on the information
λ he wants to transmit, which act on C + B. Both the Alice
and Bob unitaries will in general depend upon the round n,
but Alice’s do not depend upon λ. In addition, we impose the
restriction that Bob’s actions are passive in the sense that the
magnitude of the amplitude he sends back to Alice in round
n cannot be greater than what he has just received. This last
condition clearly differentiates these two-way protocols from
the one-way protocols of Sec. II B.

The requirement that Alice and Bob only employ unitary
operations simplifies the analysis. It is true that various pub-
lished protocols of this type, including the original SLAZ
version to be discussed in Sec. IV, employ nonunitary mea-
surements at intermediate times. In the cases of interest to
us these measurements can be replaced by unitary operations
which allow the measurements to be put off until the end of
the run, in a manner indicated in Sec. II B and employed in the
discussion in Sec. IV.

To quantify the channel usage for these protocols we use
the notions of Cost, equal to the absolute square of the am-
plitude for a single use of the channel, and Total Cost for the
sum of the Costs involved in a single experimental run, as in
Sec. II A [see (2)]. An important issue connected to claims that
these protocols are counterfactual has to do with the difference
between Cost and probability, as will be discussed later for the
SLAZ protocol in Sec. IV (the importance of this has already
been noted in Sec. II A). In particular, we will be interested in
identifying protocols that minimize the overall Cost, as in the
example discussed next.

C. Sending one classical bit

In the simplest SLAZ protocol Bob wants to send a single
classical bit λ = 0 or 1 to Alice. At the start all of the ampli-
tude is in A for both a λ = 0 and a λ = 1 run, so all four of
the initial Gram matrix elements Gμν

0 (A), where μ and ν are

the possible values of λ, are equal to 1. The goal is that after
N rounds the Gram matrix will be

Gμν
N (A) = δμν, (9)

that is to say, the final result for a λ = 0 run is orthogonal
to that for a λ = 1 run, and Alice, by making a measurement
in an appropriate basis, can determine which bit λ Bob sent.
Hence the aim of the protocol is that the overlaps, the diagonal
elements G01(A) and G10(A), relating the two different types
of run, should decrease from 1 to 0, while the diagonal weights
G00(A) and G11(A) remain equal to 1.

At this point it is worth noting that if both weights are
not maintained—for example, if at the end G00(A) = 1 while
G11(A) = G01(A) = 0—Alice can still extract the value of
λ by measuring whether or not the photon is in the state
|ψ0〉. Let us call this, for want of a better term, a partial
protocol, in contrast to a full protocol that results in (9). A
partial protocol can be used for one-way transmission, and the
obvious advantage is that it costs nothing to transmit λ = 1.
A possible disadvantage is that when Alice’s measurement
reveals nothing it could be because of some failure in the
channel or in the measuring device. In the present discussion
we focus on full protocols.

A very simple way to implement such a protocol is that
on the very first step Alice sends the entire amplitude to Bob,
with a Cost of 1 for this use of the channel. Bob then simply
modifies this using the unitary Bλ and sends it back to Alice,
either in one round or several rounds, with Alice sending noth-
ing back. The Cost for using the channel in the Bob-to-Alice
direction is also 1 (see the discussion in Sec. II B). Hence a
total Cost of 2 for the protocol as a whole. Notice that since
there is no restriction on Bλ this rather trivial protocol can
be used to send quantum information. From the perspective
of Cost, two-way protocols of the kind under discussion, in
which initially all of the amplitude is on Alice’s side, are
interesting because a classical bit, λ = 0 or 1, can be sent from
Bob to Alice at a total Cost of 1 rather than 2. And as shown
below in Sec. III D, the product of the Costs for λ = 0 and 1
cannot be less than 1.

To discuss the successive steps in protocols that optimize
the Cost, we need an appropriate notation. We will represent
kets, thought of as column vectors, in the way suggested by
the following example

|ψ〉 = |a; c; b〉 = |a1, a2, a3; c1, c2; b1, b2〉, (10)

where the dimensions of the A, B, and C subspaces are
d (A) = 3, d (B) = 2, and d (C) = 2, so |ψ〉 is an element of a
seven-dimensional Hilbert space. Thus a1, a2, and a3 are com-
plex numbers forming a three-component vector a; similarly
c and b are two-component vectors. If

|ψ̂〉 = |â; ĉ; b̂〉 = |â1, â2, â3; ĉ1, ĉ2; b̂1, b̂2〉 (11)

is another vector in the same space, its inner product with |ψ〉
is given by

〈ψ̂ |ψ〉 =
3∑

j=1

â∗
j a j +

2∑
k=1

ĉ∗
k ck +

2∑
l=1

b̂∗
l bl . (12)

Note that we are dealing with a direct sum of subspaces
A ⊕ B ⊕ C, not a tensor product of subsystems. In much of
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what follows, B is empty or can be ignored, so |a; c〉 will
suffice; this and other minor variants in notation should be
self-explanatory.

Let us start with an extremely simple one-round full proto-
col with d (A) = 2 and d (C) = 1. It consists of the following
steps:

|a1, a2; c〉 = |1, 0; 0〉 → |1/
√

2, 0; 1/
√

2〉
⇒ |1/

√
2, 0; (−1)λ/

√
2〉 → |1/

√
2, (−1)λ/

√
2; 0〉, (13)

where 0 means this amplitude is equal to zero; do not confuse
it with the label 0 for one of the two orthogonal states of
a qubit. Here → indicates the action of a unitary on A + C
carried out by Alice and ⇒ a λ-dependent unitary on C carried
out by Bob. The action by Bob could involve intermediate
steps requiring the B subspace, but its net effect is only to
change the contents of C, so there is no need to include B in
the discussion.

In words: At the outset all of the amplitude is in Alice’s A,
a1 = 1. She maps half (in the sense of the absolute square)
of it into C and sends it to Bob, who either sends it back
unchanged in order λ = 0, or with the opposite phase to send
λ = 1. Alice then empties the channel into the a2 position,
using a unitary on A + C that is independent of λ, as it simply
requires interchanging two subspaces. A final measurement
by Alice determines which of the two orthogonal states is
present in A and thus which bit Bob was sending.

Next consider what is happening to the Gram matrices
Gμν (A) and Gμν (C) during the successive steps. In particular,
the overlap G01(A) is equal to 1 at the outset, and the first step
reduces it to 1/2 by placing +1/2 in C. Bob’s action changes
G01(C) from 1/2 to −1/2, and this negative contribution to the
overlap moves back into A when Alice empties the channel,
leading to the desired G01(A) = 0. On the other hand, whereas
the weight G00(A) is reduced to 1/2 during the first step, Bob’s
action does not change the sign of G00(C), so in the final step
Alice moves this weight back to its initial value of 1, and
similarly for G11(A). Thus the goals of a full protocol have
been achieved.

The Costs of using the channel are easily evaluated: 1/2
for the Alice-to-Bob step and the same for the Bob-to-Alice
step, for a total Cost of Qλ = 1, the same for λ = 0 and 1.
These satisfy the rigorous lower bound worked out below in
Sec. III D, so this protocol is optimal if one uses total Cost as
an appropriate measure of channel usage.

This protocol is easily extended to an equally efficient
version involving N rounds, N any positive integer. Let

ε = 1/2N (14)

and for the first, n = 1, round replace (13) with

|1, 0; 0〉 → |√1 − ε, 0;
√

ε〉
⇒ |√1 − ε, 0; (−1)λ

√
ε〉 → |√1 − ε, (−1)λ

√
ε; 0〉,

(15)

while for round n + 1,

|√1 − nε, (−1)λ
√

nε; 0〉→ |
√

1− (n+ 1)ε, (−1)λ
√

nε;
√

ε〉
⇒ |

√
1 − (n + 1)ε, (−1)λ

√
nε; (−1)λ

√
ε〉

→ |
√

1 − (n + 1)ε, (−1)λ
√

(n + 1)ε; 0〉, (16)

where it is straightforward to show that there exists a λ-
independent unitary for the last step. The final result at the end
of round N is the same as in (13), the case in which N = 1, and
again the total Cost is Q0 = Q1 = 1, independent of λ. One
can also let ε depend on n; thus εn > 0 for round n, subject to
the condition ∑

n

εn = 1/2, (17)

and the Cost is again equal to 1.
There are other protocols with larger Costs which may have

some practical advantage. Thus, rather than a scalar ampli-
tude, Alice might use photon polarization, say, horizontal H ,
which Bob could return as H to send λ = 0 or rotate to vertical
V to send λ = 1. In this case the Costs are Q0 = Q1 = 2, so
twice that for an optimal one-way protocol. However, there
is now no need to maintain a particular phase relation be-
tween what is in Alice’s domain and what is available to Bob
during each round. If polarization is easier to maintain than
phase—one leaves that up to the experts—one could imagine
the added Cost being worthwhile if Alice has a large apparatus
capable of generating single photons, while Bob, off on a
trip to spy on Eve, needs only something easily carried in a
suitcase.

The protocol used in SLAZ, in which Bob returns the
amplitude for λ = 0, but absorbs it or feeds it to a measur-
ing apparatus for λ = 1, looks less promising. Because the
λ = 1 weight only moves from Alice to Bob it is difficult to
have G11(A) = 1 at the end of the protocol. In fact, SLAZ,
discussed in Sec. IV, employs a clever trick (Zeno effect) to
get around this problem, albeit at the cost of a large number
of rounds to keep the probability of failure small and a large
channel usage Cost for one of the bits.

D. Lower bound on Costs

The additivity and conservation properties of the Gram
matrix Gμν introduced in Sec. III A will now be used to obtain
lower bounds on the total Cost of two-way protocols of the
sort exemplified by, but not limited to, the case of one classical
bit discussed above in Sec. III C. Using the |a; c〉 notation of
(10)—the b entry is not needed in the following discussion—
round n of an N-round protocol consists of the following steps
carried out on A + C:

|aμ; 0〉n → |āμ; cμ〉n ⇒ |āμ; ĉμ〉n → |aμ; 0〉n+1. (18)

Here μ labels the bit which Bob is transmitting during this run.
Thus, after Alice uses a unitary An1 on A + C to move some
amplitude |cμ〉n into an initially empty channel, Bob applies a
unitary Bμ

n to C + B, leading to an amplitude |ĉμ〉n—note the
circumflex (hat) added to c—in the channel. If Bob’s action is
passive, as assumed in Sec. III C (and in the later discussion
of SLAZ in Sec. IV), one would have

‖ĉμ‖n � ‖cμ‖n, (19)

but this conditions is actually not needed to obtain the general
results and inequalities given below, which thus apply equally
to one-way multitime transmission. As a final step Alice em-
ploys a unitary An2 on A + C to empty the channel by placing
its amplitude into A. It is important that Alice’s unitaries An1
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and An2, unlike Bob’s Bμ
n , do not depend upon μ, which can

be different in different runs of the experiment.
The change in the Gram matrix associated with A during

round n is given by

Gμν
n+1(A) − Gμν

n (A) = 〈aμ|aν〉n+1 − 〈aμ|aν〉n

= 〈ĉμ|ĉν〉n − 〈cμ|cν〉n, (20)

where 〈aμ|aν〉n is the inner product of |aμ〉n and |aν〉n. The
equality follows from the fact that Gμν (A + C) is invariant
under An1 and An2 and additive: Gμν (A + C) = Gμν (A) +
Gμν (C). To discuss the total change during N rounds,
n = 1, 2, . . . N , it is convenient to define

|Cμ〉 := {|cμ〉1, |cμ〉2, . . . , |cμ〉N },
|Ĉμ〉 := {|ĉμ〉1, |ĉμ〉2, . . . , |ĉμ〉N } (21)

with inner products

〈Cμ|Cν〉 =
N∑

n=1

〈cμ|cν〉n, 〈Ĉμ|Ĉν〉 =
N∑

n=1

〈ĉμ|ĉν〉n. (22)

Summing (20) over N rounds yields the formula


Gμν (A) = Gμν
N (A) − Gμν

0 (A) = 〈Ĉμ|Ĉν〉 − 〈Cμ|Cν〉 (23)

for the total change in the A portion of the Gram matrix during
the full protocol. This quantity is bounded by

|
Gμν (A)| � |〈Ĉμ|Ĉν〉| + |〈Cμ|Cν〉|
� ‖Ĉμ‖ · ‖Ĉν‖ + ‖Cμ‖ · ‖Cν‖ (24)

using the norm 〈Cμ|Cμ〉 = ‖Cμ‖2.
Next define the total Cost Kμ for Alice-to-Bob and K̂μ for

Bob-to-Alice uses of the channel, with Qμ their sum:

Kμ = 〈Cμ|Cμ〉 = ‖Cμ‖2, K̂μ = 〈Cμ|Cμ〉 = ‖Ĉμ‖2,

Qμ = Kμ + K̂μ. (25)

Combining (24) and (25) gives

|
Gμν (A)| �
√

KμKν +
√

K̂μK̂ν �
√

QμQν . (26)

This yields an upper bound


Gμμ(A) � Qμ (27)

for a non-negative diagonal weight, and for the off-diagonal
overlap

|
Gμν (A)| �
√

QμQν . (28)

In the particular case of the one-bit two-way protocol
(Sec. III C), the aim is to reduce G01(A) from its initial value
of 1 to 0 after N rounds. Setting μ = 0 and ν = 1 in (28),
we see that to achieve this result it is necessarily the case that
the Costs Q0 and Q1 for sending bits λ = 0 and λ = 1 must
satisfy the condition

Q0Q1 � 1. (29)

This is satisfied as an equality with Q0 = Q1 = 1 for the spe-
cific protocols discussed in Sec. III C, which shows that they
are optimal if total Cost is used as a measure. For more general
protocols there is no reason to expect that the two Costs will
be equal, and in that case if, say, the Cost for λ = 1 is made

very small, that for λ = 0 must be very large. This is in fact
the case for the original SLAZ protocol, as discussed below
in Sec. IV, which thus provides an interesting illustration of
such a tradeoff.

IV. THE SLAZ PROTOCOL

A. Description of the protocol

The original SLAZ protocol differs from the simpler sit-
uation discussed in Sec. III C in two respects. First, it has a
hierarchical structure: There are a large number M of outer
rounds or cycles, each of which consists of a large number N
of inner rounds or cycles, and the protocol will succeed with
high probability provided

1 � M � N. (30)

Second, while Bob sends a bit λ = 0 by reflecting the ampli-
tude sent by Alice back into the channel, for λ = 1 he simply
empties the channel, which can be described as a unitary
operation in which the C amplitude is placed in Bob’s sub-
space B. In addition, the original SLAZ protocol and some of
its modifications involve measurements at intermediate times,
and these will be replaced in the discussion below by unitary
operations in the manner suggested at the end of Sec. II B.

We use a notation

|ψ〉 = |a1, a2, a3, a4; c; b〉 (31)

of the form introduced in (10), where the a j are scalar am-
plitudes in Alice’s domain A = A1 + A2 + A3 + A4, c is the
amplitude in the channel C, and b is in Bob’s domain B.
Here capital letters are used to denote subspaces and the
corresponding projectors, while lowercase letters indicate (in
general complex) scalar amplitudes. While A4 and B are one
dimensional, one can also make these larger spaces for reasons
that will appear during the discussion. An abbreviated nota-
tion is often convenient: |a2, a3〉 in the case of a unitary acting
on A2 + A3 while all the other amplitudes remain unchanged.

Central to the discussion are unitary operators that repre-
sent a rotation by an angle θ on a two-dimensional space:

R(θ )|α, β〉 = |α cos θ − β sin θ, α sin θ + β cos θ〉. (32)

In particular, RM and RN , defined in terms of small angles,
play a central role:

RM := R(θM ), θM := π/(2M ); RN := R(θN ),

θN := π/(2N ). (33)

Note in particular that

(RM )M = (RN )N = R(π/2); R(π/2)|α, β〉 = | − β, α〉.
(34)

In view of the fact that θN is a small angle, the following
approximations turn out to be useful

cos θN ≈ exp
[ − θ2

N/2
] = exp[−π2/(8N2)]≈ 1− π2/(8N2),

(cos θN )N ≈ exp[−π2/(8N )] ≈ 1 − π2/(8N ) ≈ 1, (35)

and similarly if N is replaced by M.
These approximations are useful for understanding the

overall structure of the protocol, which is the following. At
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the beginning of outer round m, 1 � m � M, RM is applied to
A1 + A2 to yield

|a1, a2〉λ = RM |ā1, ā2〉λ, (36)

where ā1 and ā2 are the values of these amplitudes at the
end of the previous outer round. In general they depend upon
which bit λ = 0 or 1 is being transmitted, whence the su-
perscript label, even though Alice’s operations do not depend
upon λ. The very first outer round m = 1 begins by applying
(36) to the starting state (31) with a1 = 1 and all the other
amplitudes equal to zero.

The initial step (36) of outer round m is followed by
a sequence of N inner rounds, each involving the fol-
lowing steps, here displayed using the type of notation
employed in Sec. III C, but now with reference to the subspace
A2 + A3 + C,

|a2, a3; c = 0〉 → |a′
2, a′

3; c = 0〉 → |a′
2, 0; a′

3〉
⇒ |a′

2, 0; (1 − λ)a′
3〉 → |a′

2, (1 − λ)a′
3; 0〉, (37)

where

|a′
2, a′

3〉 = RN |a2, a3〉. (38)

In words, Alice applies the unitary rotation RN (33) to A2 + A3

and then maps A3 into the empty channel. Next comes Bob’s

action, indicated by ⇒, to either reflect the amplitude a′
3 back

into C if he is sending λ = 0 or shift it into his domain B,
leaving the channel empty if sending λ = 1. Alice, who does
not know the value of λ, maps whatever is in the channel back
into A3 by a unitary that simply exchanges the contents of A3

and C and then begins the next inner round. The result of N
inner rounds in succession is

|a2, a3〉 →
{|0, a2〉 for λ = 0
|(cos θN )N a2, 0〉 ≈ |a2, 0〉 for λ = 1,

(39)

where the λ = 1 approximation is justified when N is very
large [see (35)].

Following the N inner rounds Alice completes this outer
round by applying a unitary to A3 + A4 that empties the con-
tents of A3 into A4. For λ = 1, a3 = 0 (39), so this emptying
step is trivial, while for λ = 0 it is nontrivial and plays a
significant role in understanding the true Costs of the protocol.
In the original SLAZ protocol this emptying step is replaced
by a measurement, but instead of a measurement one can
just as well let the amplitudes accumulate in A4, which is
the perspective used here. At the end of the protocol after
completing M outer rounds the final result is

λ = 0 : |a1 = 1 − r1, a2 = 0, a3 = 0, a4 = r4, c = 0, b = 0〉,
λ = 1 : |a1 = s1, a2 = 1 − s2, a3 = 0, a4 = 0, c = 0, b = sb〉, (40)

where the quantities denoted by r j and sk are small correc-
tions, of order 1/M or M/N . If these are ignored, all the
amplitude is in A1 for λ = 0 or A2 for λ = 1, and a simple
measurement allows Alice to determine which bit Bob sent.

B. Calculation of Costs and overlap

It is fairly straightforward to work out the Costs for the
SLAZ protocol using approximations justified by 1 � M �
N , and the results are summarized in Sec. IV C below. We
begin with the case λ = 1. If one ignores small quantities, the
nonzero components of |ψ〉m at the beginning and at the end
of outer round m are

a1 = cos(mθM ), a2 = sin(mθM ), (41)

and since MθM = π/2, at the end of outer round M the result
is the λ = 1 line in (40).

The probability that the photon arrives in B during outer
round m—the probability that Bob will detect it if he uses a
measuring device—is the sum of the absolute squares of the
amplitudes in the channel C in the N inner rounds, as this is
an incoherent process:

N[sin(mθM )]2[sin(θN )]2 ≈ (π2/4)[sin(mθM )]2/N. (42)

Summing over m gives the total probability

K1 = Q1 = (π2/8)(M/N ) (43)

that the photon will end up in Bob’s domain by the end of the
protocol, which is the same as the total Cost for λ = 1.

In the case λ = 0, any amplitude placed by Alice in C is
immediately returned by Bob and at the end of each outer
round is emptied into a4, so at the end of outer round m the
state is

|ψ〉m = |a1 = (cos θM )m, a2 = 0, a3 = 0, a4, c = 0, b = 0〉.
(44)

For m = M this is (40) with r1 = π2/(8M ). Thus at the end
of the protocol a2, a3, c, and b are strictly zero. The Cost
associated with inner round n—note that the channel is used
twice—is

2[(sin θM ) sin(nπ/2N )]2 (45)

Summing over n gives a total of (π2/4)(N/M2) for each outer
round and hence for M outer rounds a total Cost of

Q0 = (π2/4)(N/M ). (46)

To compute the total change in overlap 
G01(A), note that
since for λ = 1 Bob does not return an amplitude; only the
〈Cμ|Cν〉 term in (23) contributes. The contribution for inner
round n of outer round m is the product of the factors

[sin θM sin(nθN )] × [sin(mθM ) sin θN ] (47)

corresponding to λ = 0 and 1. Summing them yields

(sin θM sin θN )
M,N∑
m,n

sin(mθM ) sin(nθN )

= (π2/4MN )(4MN/π2) = 1, (48)
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and hence


G01(A) = −1, (49)

as expected.

C. Discussion of Costs and probabilities

Let us summarize the results of Sec. IV B. The total Costs
Q0 and Q1 for λ = 0 and 1 are

Q0 = (π2/4)(N/M ), Q1 = (π2/8)(M/N ),

Q0Q1 ≈ 3.044, Q0/Q1 = 2N2/M2. (50)

Given that M � N , Q1 is minuscule, Q0 is enormous, with
their product is of order 1 and satisfies the rigorous bound
(29). The case λ = 1 is the easiest to understand. Since Bob
does not return the amplitude put into the channel by Alice,
the Bob-to-Alice Cost K̂1 is zero. The Alice-to-Bob Cost is
|sb|2 in (40), i.e., the probability that at the very end the photon
is in Bob’s domain. The physical reason for this is that the
process by which the amplitude gets there is incoherent (no
quantum interference) since no amplitude goes back through
the channel. Bob could either accumulate these amplitudes
until the end of the protocol and then measure to see if the
photon is in B or carry out a measurement at the end of each
inner round; in either case the probability of his detecting the
photon is |sb|2 in (40). The situation is analogous to the use
of intermediate time measurements in a one-way protocol as
discussed at the end of Sec. II B.

The enormous Cost Q0 for λ = 0 comes about because Bob
repeatedly returns the amplitude sent by Alice in a coherent
process. While the amplitude bouncing back and forth through
the channel is relatively small, of order 1/M, multiplying its
absolute square by 2N , the number of times this amplitude is
in the channel during each outer round, leads to a Cost of order
N/M2 for each outer round and hence a total of order N/M for
the complete process.

Clearly, the large value of Q0 means the claim that the
protocol is counterfactual cannot be maintained if Cost is used
as a criterion for channel use, so it is worth discussing how the
authors of SLAZ reached a different conclusion. In essence,
their reasoning was based on the small value of the amplitude
in A3 at the end of an outer round just before it is transferred
to A4, as per the discussion in Sec. IV A. The absolute square
of this amplitude is the probability that the corresponding
detector D3 in Fig. 2(b) in the SLAZ paper will be triggered.
This amplitude was earlier oscillating back and forth inside
the subspace with projector S = A2 + A3 + C, and hence it is
reasonable to assume that if this detector triggers, the photon
was earlier in S during all N inner rounds making up this
particular outer round.1 As this probability is of order 1/M2,
the probability that one of the D3 detectors triggers during the
M outer rounds that make up a given run is of order 1/M and
hence small.

There are two serious objections to using this small prob-
ability to justify the claim that the protocol is counterfactual:

1This assumption can be justified using the Consistent Histories
approach; see the discussion of measurements in [5,6].

one classical and the other quantum. Let us start with the for-
mer. During a particular outer round the photon amplitude in a
λ = 0 run rattles back and forth inside S a total of N times, and
in particular it is in C a total of 2N times. Consider a stochastic
classical protocol for transmitting information in which most
of the time Alice and Bob exchange no information at all.
However, with a small probability ε Alice sends a little white
ball into the channel leading to Bob, who colors it green or red
and sends it back to Alice to convey one bit of information.
She records the color, paints the ball white, and returns it to
Bob who again colors it to send a second bit, and so forth, for a
total of N rounds. The average rate of transmitting information
is Nε bits, and one cannot simply throw away the factor of N
and claim that this protocol is in some sense counterfactual.

The quantum difficulty has to do with what can be inferred
from the probability that the photon was in S = A2 + A3 + C
during the inner rounds that make up a particular outer round.
One may be tempted to use classical reasoning and assume
that the probabilities of being in each of the mutually exclu-
sive regions A2, A3, and C that combine to make up S are well
defined and sum to the probability of being in S. However, in
the presence of quantum interference this sort of reasoning is
invalid and leads to paradoxes. (See the discussion of parallel
channels in Sec. II A.)

V. CONCLUSION

The original SLAZ proposal has motivated a large number
of papers (see the extensive bibliographies in [3,4]). Merely
trying to summarize them, much less provide a detailed re-
view, lies outside the scope of the present paper. Broadly
speaking, this literature consists of modifications, extensions,
or improvements of the original SLAZ scheme, along with
criticisms of the claim that these protocols are counterfactual
and replies to such criticisms. It is hoped that the following
rather brief comments will provide some orientation.

Significant extensions of the original SLAZ scheme
by the last three members of the original collaboration include
the use of a phase change rather than absorption to transmit the
λ = 1 bit [7], a scheme to transmit quantum states by multiple
iterations of the original SLAZ scheme [8], and using many
photons in place of a single photon to transmit a classical bit
[4]. These and others are certainly interesting ideas from the
perspective of transmitting quantum information and worth
further exploration.

On the other hand, in these and all other extensions or
modifications of SLAZ this author has examined, the claim
that the protocol is counterfactual, in the sense that the total
use of a quantum channel is negligible in the asymptotic limit,
is subject to the same objections discussed in Sec. IV C: An
incorrect use of probabilistic reasoning in a situation where
quantum interference means probabilities cannot be defined
and where even in a classical situation Cost would be better
than probability as a measure of channel usage. The total Cost
remains finite in the asymptotic limit of a very large number
of steps, which means that counterfactual claims should be
dropped. Doing so will aid, not hinder, the serious study of
these interesting quantum schemes for transmitting informa-
tion.

062219-8



MULTITIME QUANTUM COMMUNICATION: INTERESTING … PHYSICAL REVIEW A 107, 062219 (2023)

Shortly after the original SLAZ publication, Vaidman pub-
lished a Comment [9] claiming that in the λ = 0 case in which
Bob reflects the amplitude rather than absorbing it, the photon
which was later (with high probability) detected by Alice must
at an earlier time have been in the channel C. In their Reply
[10] the SLAZ authors pointed out this way of reasoning about
events at an intermediate time in the presence of quantum
interference was invalid and leads to paradoxes, a position
supported by the analysis in Sec. IV B above. However, they
then repeated their original counterfactual claim which itself
is based on a defective understanding of probabilities about
probabilities at an intermediate time. A later and much more
extended criticism of counterfactuality claims by Vaidman
[11] suffers from the same difficulty as his earlier Comment.

Some years later Aharonov and Vaidman [12] claimed
to have found a scheme of the general SLAZ type
which is genuinely counterfactual. However, when measure-
ments or absorption of a photon at intermediate times are
replaced by unitary processes—mapping amplitude into an
empty subspace reserved for this purpose, as discussed in
Sec. IV A—the inequality in Sec. III D applies to this case
and undermines the counterfactual claim. The fundamental
difficulty with such claims is that the Hilbert-space projector
which identifies the position of a particle at some intermediate
time does not commute with the one representing the quantum
state evolving unitarily in time.

The most significant contributions of the present paper to
the analysis of SLAZ-type protocols is the use of Cost as a
measure of channel usage and the use of Gram matrices for
discussing information transfer at intermediate times in the
presence of quantum interference. In particular, the fact that
these Gram matrices are additive over subspaces and invariant
(conserved) under unitary time transformations plays a key
part in the discussion in Sec. III. A rather surprising feature
is the role of off-diagonal elements, overlaps, as a type of
information measure which, unlike most such measures, is
not in general positive. That it can be negative plays a very
significant part in understanding its intuitive role in informa-
tion transfer. That its total change on Alice’s side must be −1
during the course of a successful protocol is confirmed for the
SLAZ protocol in Sec. IV B.

This use of Gram matrices requires that the intermediate
time steps be unitary. In the case of SLAZ, measurements
at intermediate times can be eliminated by mapping photon
amplitude into empty subspaces, and this can be achieved
in certain other cases, e.g., the Aharonov and Vaidman

protocol [12]. However, it is less clear whether something
similar could be done in a case in which, for example, Al-
ice uses measurements at intermediate times to change later
steps in the protocol in hopes of reducing the total Cost.
This author believes that such an improvement is impossi-
ble, because measurements themselves are quantum processes
whose description simply requires a large enough Hilbert
space in Alice’s domain [13]. However, this has not yet been
demonstrated.

What is special about classical information? Sending an
arbitrary one-qubit quantum state from Alice to Bob using the
two-way protocol of Sec. III C could be done with a Cost of 2,
which is to say twice that of simply using a one-way protocol
from Bob to Alice. That this is the minimum seems likely, but
has not been demonstrated. What about a two-way protocol
with all the amplitude starting on Alice’s side, with the aim of
a perfect transmission of each of two specified nonorthogonal
states from Bob to Alice – what would be the minimum total
Cost?

An interesting feature of the original SLAZ protocol is the
enormous ratio 2N2/M2 [see (50)] of the Costs to transmit
λ = 0 and 1, in contrast to the relatively simple protocols
discussed in Sec. III C for which the ratio is 1. Because the
success of SLAZ depends upon N being much larger than
M, this large ratio presumably has something to do with
Bob’s not sending anything back through the channel when
λ = 1. Might there be some interesting physical principles,
in addition to the Zeno effect, hiding here and waiting to be
explored?

In conclusion, it is hoped that the thinking and tools em-
ployed in this paper will be useful for studying other problems
of quantum information at intermediate times in situations
where the careless use of ill-defined probabilities generates
paradoxes rather than physical understanding. In particular,
information transfer among three or more parties, of current
interest in the study of quantum networks, might benefit from
the sort of analysis used here.
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