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Dephasing and pseudocoherent quantum dynamics in super-Ohmic environments
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Dephasing in quantum systems is typically the result of their interaction with environmental degrees of
freedom. We investigate within a spin-boson model the influence of a super-Ohmic environment on the dynamics
of a quantum two-state system. A super-Ohmic environment thereby models typical bulk phonons which are a
common disturbance for solid state quantum systems as, for example, nitrogen-vacancy centers. By applying
the numerically exact quasiadiabatic path-integral approach we show that for strong system-bath coupling,
pseudocoherent dynamics emerges, i.e., oscillatory dynamics at short times due to slaving of the quantum
system to the bath dynamics. We extend the phase diagram known for sub-Ohmic and Ohmic environments into
the super-Ohmic regime and observe a pronounced nonmonotonous behavior. Super-Ohmic purely dephasing
fluctuations strongly suppress the amplitude of coherent dynamics at very short times with no subsequent further
decay at later times. Nevertheless, they render the dynamics overdamped. The corresponding phase separation
line shows also a nonmonotonous behavior, very similar to the pseudocoherent dynamics.
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I. INTRODUCTION AND MOTIVATION

Dissipation, i.e., dephasing and relaxation, in a quantum
system is a result of its coupling to environmental fluctu-
ations. At strong coupling the dissipative environment may
also lead to fully incoherent dynamics or even complete sup-
pression of the coherent quantum dynamics (localization).
Theoretical studies typically reduce the relevant quantum sys-
tem to a paradigmatic two-state quantum system with the
model Hamiltonian H0 = �σx/2 with tunnel element � and
Pauli matrices σ j (with j = x, y, z), interacting with harmonic
degrees of freedom [1,2] which act as the dissipative environ-
ment. The central characteristic of the environmental fluctua-
tions is their spectral distribution which is typically modeled
as a continuous function of frequency ω, increasing ∝αωs

with spectral exponent s and coupling strength α. It is de-
noted as sub-Ohmic, Ohmic, and super-Ohmic for 0 < s < 1,
s = 1, and s > 1, respectively.

Usually, one addresses relaxational fluctuations which
cause transitions in the two-state system (via a coupling to
σz) and thus relaxation. The corresponding model is termed
the spin-boson model [1,2] and shows in the Ohmic case with
increasing α at α = αo(s = 1) = 1

2 for the expectation value
Pz(t ) = 〈 1

2σz(t )〉 [and likewise for the correlation function
〈σz(t )σz(0)〉] a dynamic transition from coherent oscillatory
behavior to incoherent dynamics. Incoherent dynamics [1,2]
occurs when the oscillatory frequency is renormalized to zero
at a finite system-bath coupling α. The dynamics might be
effectively overdamped (when the damping rate exceeds the
oscillatory frequency) already at lower couplings. When in-
creasing the coupling strength further to α = αc(s = 1) = 1,
the Ohmic spin-boson model exhibits at zero tempera-
ture a quantum phase transition into a localized phase
with a degenerate ground state, i.e., the eigenstates to σz.

A sub-Ohmic environment shows similar behavior [3–9]
depending on the spectral exponent s, but a super-Ohmic
environment exhibits only damped oscillatory behavior [1,2].

Super-Ohmic reservoirs receive fairly little consideration
in theoretical studies since the dynamics turns neither lo-
calized nor incoherent even at strongest coupling except at
high temperatures [10]. Super-Ohmic reservoirs are, however,
fairly common and are, for example, the cause of damping
for all dipolar defects in nonconducting solids, i.e., when
phonons are the main noise source. Prominent examples are
tunneling two-level systems in amorphous systems, glasses
[11,12] and crystals [13], but also nitrogen-vacancy (NV) and
silicon-vacancy (SiV) centers in diamonds [14–16]. In these
cases the spectral exponent is s = 3. Super-Ohmic reservoirs
are also relevant noise sources for charge double quantum dots
[17] and for energy transfer in the Fenna-Matthews-Olson
(FMO) exciton transfer complex [18]. In the latter case a
spectral exponent s = 5 was proposed.

For the sub-Ohmic and the Ohmic bath, recently a partic-
ular dynamic behavior at short times at strongest coupling
was revealed (termed pseudocoherent) initially exhibiting in
Pz(t ) an oscillatory behavior with at least a single minimum
[19]. This oscillatory polarization dynamics results from the
two-state system being slaved to the bath which itself shows
coherent dynamics on a timescale ω−1

c due to a finite upper
cutoff frequency ωc of the environmental fluctuations. On
any other timescale the quantum system shows no oscillatory
(coherent) dynamics at these coupling strengths. In the scaling
limit ωc → ∞ the pseudocoherent oscillatory behavior shifts
to earlier times and finally vanishes. Although relaxational
super-Ohmic fluctuations [1,2] cause neither localization nor
overdamping, we show in this paper numerically (as our first
result) that for strong system-bath coupling, pseudocoherent
dynamics, i.e., oscillatory dynamics at short times due to
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slaving the quantum system to bath dynamics, is present.
We determine the minimal coupling strength αB(s), at which
pseudocoherent dynamics sets in, as a function of the spectral
exponent s of the environmental fluctuations. This extends
the phase diagram of the pseudocoherent dynamics into the
super-Ohmic regime. Surprisingly, αB(s) as a function of s is
nonmonotonic and shows a maximum at s � 2.

In addition, we consider purely dephasing super-Ohmic
fluctuations, i.e., the system-bath coupling operator is ∝σx.
The corresponding model is termed an independent-boson
model [20] and we find that purely dephasing super-Ohmic
fluctuations do not cause an exponential decay of coherence.
Instead, after an initial Gaussian decay [21] for a timescale
ω−1

c , no further dephasing occurs at later times. The dy-
namics remains coherent but this strongly non-Markovian
short-time behavior severely diminishes its amplitude. For
strong system-bath coupling the dynamics is effectively over-
damped and an effective transition coupling strength can
be determined. Mapping out this transition as a function of
s, it shows surprisingly a very similar nonmonotonic be-
havior as the pseudocoherent phase. Finally, we show that
realistic quantum systems, which are exposed to both types
of fluctuations, exhibit an initial fast dephasing due to the
purely dephasing fluctuations. It subsequently saturates, and
is followed by an additional exponentially decay due to the
relaxational fluctuations.

In the following, we present the studied model and shortly
describe the used numerical methods in Sec. II. In Secs. III–V,
results for the pseudocoherent behavior, the Gaussian decay
behavior, and the mixed case are discussed before we con-
clude.

II. MODEL AND NUMERICAL METHOD

The Hamiltonian (h̄ = 1)

H = �

2
σx + (uxσx + uzσz )

∑
k

λkq̂k + HB (1)

describes a quantum two-state system with tunneling element
� which is coupled by λk to the displacements q̂k of the
harmonic environmental fluctuations HB = 1

2

∑
k ( p̂2

k + ω2
k q̂2

k )
with frequency ωk . Herein, the case ux = 0 and uz = 1 re-
flects coupling to relaxational fluctuations (spin-boson model)
whereas the case of purely dephasing fluctuations is given by
uz = 0 and ux = 1 (independent-boson model).

The spectral function of the fluctuations is

G(ω) =
∑

k

λ2
k

2ωk
δ(ω − ωk ) = 2αω1−s

s ωse−ω/ωc , (2)

with spectral exponent s and a maximal environmental fre-
quency (cutoff frequency) ωc. The frequency ωs serves to keep
the coupling strength α dimensionless and we fix ωs = ωc.

We calculate the time-dependent polarization Pz(t ) =
〈 1

2σz〉t , using a factorizing initial preparation of the system
with Pz(0) = 1

2 and the thermal distribution of the bath at zero
temperature. To determine Pz(t ) for relaxational fluctuations
(ux = 0 and uz = 1) we use the numerically exact real-time
quasiadiabatic propagator path integral (QUAPI) [22–25].
Once the bath oscillators have been integrated out, an effective
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FIG. 1. Polarization Pz(t ) vs time for various values of the cou-
pling strength α and a spectral exponent s = 2 for ωc = 10� (solid
lines) and ωc = 20� (dashed lines) at T = 0. The brown lines lines
represent weak-coupling approximations [1] to the α = 0.1 results.
Since they agree very well with the numerical results, the brown lines
are hardly visible. Thus, we added symbols in brown (solid with
circle symbols and dashed with square symbols) which highlights
that brown and red lines are (almost) identical. The arrows indicate
increasing coupling strength.

dynamics of the system arises which is nonlocal in time. To
treat the highly entangled system-bath dynamics, we make
use of the time-evolving matrix product operator (TEMPO)
technique in terms of a numerically highly efficient tensor
network [26]. Purely dephasing fluctuations are analytically
tractable within the independent boson model [20] which was
already successfully employed for the Ohmic case [27–29]
and the sub-Ohmic case [9]. Accordingly, Pz(t ) is determined
exactly in this case.

III. NUMERICAL RESULTS FOR THE SUPER-OHMIC
SPIN-BOSON MODEL

In the following we study the influence of a relaxational
super-Ohmic bath (ux = 0 and uz = 1) at zero temperature
on the dynamics of a quantum two-state system. Figure 1
shows the polarization Pz(t ) versus time for various val-
ues of the coupling strength α and a spectral exponent
s = 2 for ωc = 10� (solid lines) and ωc = 20� (dashed
lines). The polarization exhibits damped oscillations follow-
ing the well-known weak-coupling expression [1] Pz(t ) =
1
2 cos(�efft ) exp(−γefft ). The oscillation frequency is renor-
malized due to the coupling to environmental fluctuations, i.e.,
with increasing coupling strength α the frequency is decreased
[1], following �eff = � exp(−α̃) with α̃ = 4α	(s − 1)
with the gamma function 	(x). Note that the frequency
renormalization is independent of ωc. The observed weak
damping is fully described by the one-phonon rate [1] γeff =
(2π )α�2

eff/ωc (for s = 2 and T = 0) which shows a depen-
dence on ωc (compare solid with dashed lines in Fig. 1). The
brown solid and dashed lines (with circle and square symbols,
respectively) in Fig. 1 are the analytical expectations for the
numerically determined red lines for α = 0.1 and we observe
good agreement between both. Note that we added circle
(square) symbols to the solid (dashed) brown line to point out
the brown lines which are mainly covered by the red ones.
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FIG. 2. Polarization Pz(t ) vs time for various values of the cou-
pling strength α and a spectral exponent s = 2 for ωc = 10� (solid
lines) and ωc = 20� (dashed lines) at T = 0. The graphs show
different time and amplitude regimes. The arrows indicate increasing
coupling strength.

Figure 2 shows the polarization Pz(t ) versus time for the
same parameters as above and also larger coupling strengths.
Focusing on small times we observe at times roughly ω−1

c
the emergence of a minimum in the dynamics [focused on in
Fig. 2(b) with solid lines for ωc = 10� and dashed lines for
ωc = 20�]. This minimum is similar to the pseudocoherent
behavior observed for s � 1 in Ref. [19]. With increasing
coupling, the pseudocoherent minimum shifts towards earlier
times. Since the dynamics is not localized for s > 1, it is
hard to resolve the shallow minimum and thus αB(s). The
accuracy depends on the maximally simulated time tmax. For
1.0 � s � 1.3 we used tmax = 3�−1 and for larger s we used
tmax = �−1. For ωc = 20� we observe qualitatively the same
behavior as for ωc = 10� (compare Fig. 2). The absolute
value of Pz(t ) at the pseudocoherent minimum increases with
ωc. Surprisingly, the transition coupling strength αB does not
change with ωc.

In Fig. 3(a) we show the phase diagram of the super-Ohmic
pseudocoherent behavior. The green stars are the numeri-
cally determined transition coupling strengths αB(s) for the
crossover to pseudocoherent dynamics, i.e., where the min-
imum in the dynamics emerges. The green diamonds are
the corresponding data for s < 1 taken from Ref. [19]. The
phase separation line shows a strong nonmonotonous behavior
with a peak for s � 2. It smoothly connects to the results of
Ref. [19]. Note the difference of a factor 1

2 in the system-bath
coupling in Hamiltonian (1) which results in a factor of 4
difference between our coupling strength and the one given in
Ref. [19]. The magenta line in Fig. 3(a) is a fit with A/[8	(B ·
s − C)] resulting in optimal values A = 5.487, B = 1.026, and
C = 0.5342. The red line (which falls on top of the magenta
line) is a fit with the simplified function A/[8	(s − 1

2 )] result-
ing in A = 5.42. Both fits reasonably describe the peak and
the data for s � 1, i.e., for the super-Ohmic regime. For s � 1
(sub-Ohmic and Ohmic regime) the fit does not describe the
data sufficiently well.
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FIG. 3. (a) The green stars are the numerically determined tran-
sition coupling strength αB(s) for the crossover to pseudocoherent
dynamics in the super-Ohmic relaxational bath. The green diamonds
are the corresponding data for s < 1 taken from Ref. [19]. The red
line is a fit with A/[8	(s − 1

2 )] resulting in A = 5.42 and the ma-
genta line is a fit with A/[8	(B · s − C)] resulting in A = 5.487, B =
1.026, and C = 0.5342. (b) The red solid line reflects the transition
αo(s) to overdamped behavior in the super-Ohmic purely dephasing
bath. Parameters in both panels are ωc = 10� and T = 0.

IV. ANALYTICAL RESULTS FOR THE SUPER-OHMIC
INDEPENDENT-BOSON MODEL

The case of a purely dephasing bath with diagonal coupling
(ux = 1 and uz = 0) can be studied analytically. Employ-
ing the transformation TP = eiψσx with ψ = ∑

k
λk

ω2
k

p̂k results

in HP = T †
P HTP = �σx,P/2 + HB with σx,P = T †

P σxTP = σx.
Thus, the propagator UP = e−iHPt is determined by a di-
rect product of system and bath operators. At the same
time, σz,P = T †

P σzTP = σz cos ψ − σy sin ψ . When measuring
the polarization, we initially displace the system fully, i.e.,
Pz(0) = 1

2 . Thus, 〈σx〉 = 0 and if the bath is allowed to
equilibrate to this situation before the experiment starts,
we can assume a factorized initial condition ρ0,Pz = ρ(t =
0) = 1

2 (1 + σz ) ⊗ ρB,eq with ρB,eq = Z−1
B e−βHB and ZB =

Tr{e−βHB} and β = (kBT )−1 for temperature T . A tedious
calculation then results in the polarization

Pz(t ) = 1

2
cos(�t )e−	T (t ), (3)

with the decay function

	T (t ) = 4
∫ ∞

0
dω

G(ω)

ω2
[1 − cos ωt] coth(βω/2). (4)

Note that no frequency renormalization occurs here and that
the decay function is dominated by high-frequency modes, in
contrast to pure dephasing decay for sub-Ohmic and Ohmic
baths. At zero temperature we find for super-Ohmic fluctua-
tions s > 1,

	0(t, s) = α̃

{
1 − cos [(s − 1) arctan(ωct )]

[1 + (ωct )2](s−1)/2

}
, (5)

with the effective coupling α̃ = 8α	(s − 1) and the gamma
function 	(x).

Initially, at times ωct 	 1 [and (s − 1) � 10], we ob-
serve a spectral diffusion type of Gaussian decay: 	0(t, s) �
α̃ 1

2 (s2 − s + 2)(ωct )2. At later times, ωct � 1, the decay
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function becomes constant, i.e., 	0(t, s) � α̃, and no further
dephasing takes place. Thus, as long as α̃ 	 1, dephasing is
negligible. If α̃ � 1, however, even though 	0(t, s) becomes
constant, dephasing suppresses the response to negligible
values. Thus, although strictly speaking the dynamics is os-
cillatory, the amplitude is vanishingly small and the dynamics
is effectively overdamped, i.e., not a single sizable oscillation
takes place. Defining α̃o ≡ 1 as the transition point, we find

αo(s) = 1

8	(s − 1)
, (6)

which we plot in Fig. 3(b) by the solid red line. We observe
a strongly nonmonotonous behavior with a peak at roughly
s � 2.5. Surprisingly, this peak strongly resembles the ob-
served behavior for the transition to pseudocoherent dynamics
although the peak is slightly shifted and the maximal value is
considerably smaller. Testing this observation we employed
the fit function A/[8	(B · s − C)] with fit parameters A, B,
and C above to fit αB(s) as a function of s resulting in the
magenta line in Fig. 3(a). Fixing B = 1 and C = 0.5 does not
deteriorate the fit and then we obtain A = 5.42 [red line in
Fig. 3(a)]. Note that αo(s) also does not depend on ωc, similar
to our observation for αB(s).

V. EXPERIMENTAL RELEVANCE OF PURELY
DEPHASING FLUCTUATIONS

The influence of relaxational super-Ohmic fluctuations on
the dynamics of a quantum system is readily observable in the
population decay as well as in the form of decoherence. De-
phasing due to super-Ohmic purely dephasing fluctuations is
restricted to times much shorter than typical system times, i.e.,
�−1, as for most solid state systems ω−1

c 	 �−1 holds. The
amplitude of the polarization oscillations is diminished but on
timescales �−1 no further decay occurs. When measuring an
ensemble the overall experimental response is proportional
to the number of systems in the ensemble. This quantity
is typically not precisely accessible and thus the dephasing
cannot be detected. Thus, often theoretical studies, focused
on weak Markovian environments, completely neglect super-
Ohmic purely dephasing. For qubit applications, however,
survival of the coherence of single systems, for example, in
NV centers, after initial preparation is key. Dephasing at any
timescale shorter than a typical time needed to perform a gate
operation on a qubit, which is typically much longer than �−1,
deteriorates qubit applications.

It remains to study whether a system under the influence
of both relaxational and purely dephasing fluctuations, which
seems experimentally the most likely situation, suffers the
dephasing behavior of purely dephasing fluctuations as dis-
cussed above. The Hamiltonian in Eq. (1) with ux = sin φ �=
0 �= uz = cos φ can be transformed to

H = �

2
cos φ σx + �

2
sin φ σz + σz

∑
k

λkq̂k + HB,

i.e., an asymmetric spin-boson model. Figure 4 plots
the polarizations Pz(t ) = 〈 1

2σz〉t and Px(t ) = 〈 1
2σx〉t in

the transformed basis versus time for coupling strength
α = 0.2, a spectral exponent s = 2, ωc = 10�, and
� cos φ = 1 = � sin φ. In this transformed basis both Pz(t )
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FIG. 4. Polarization Pz(t ) and Px (t ) in the asymmetric super-
Ohmic spin-boson model vs time for coupling strength α = 0.2,
a spectral exponent s = 2, and ωc = 10� at T = 0. (a) Pz(t ) and
Px (t ) are displayed at short times t � 0.5�−1. (b) Pz(t ) and Px (t )
are displayed for times t � 10�−1.

and Px(t ) exhibit thermalization and decoherence features.
Pz(t ) shows at short times [Fig. 4(a)], i.e., t � 0.1�−1 = ω−1

c ,
a sharp Gaussian-type decay down to roughly e−α̃ . At
later times [Fig. 4(b)], the oscillation amplitude decays
further but with a much smaller rate which is comparable
to the dephasing rate observed in the symmetric spin-boson
model for similar parameters (see Fig. 1). Thus, indeed
the dynamics in the asymmetric spin-boson model exhibits
dephasing features of both the relaxational and the purely
dephasing fluctuations independently observed above.
Note that standard weak-coupling analytical expressions
[1] for the asymmetric spin-boson model, i.e., Pz(t ) =
(�eff/E )2 cos(Et ) exp(−γefft ) + (�/E )2 exp(−2γefft ) +
(�/E )[1 − exp(−2γefft )] + O(γeff/E ) with E =√

�2
eff + �2, do not include the Gaussian-type decay at

early times since their derivation is based on the assumption
that relevant timescales are much longer than ω−1

c .

VI. CONCLUSIONS

We have investigated the polarization dynamics of a quan-
tum two-state system coupled to a super-Ohmic environment
within a spin-boson model. Super-Ohmic environments are
fairly common in solid state quantum systems as they model
typical bulk phonons. Prominent quantum systems subject to
super-Ohmic environments are NV centers [14–16]. For the
treatment of relaxational environmental fluctuations and the
study of the polarization dynamics we employ the numerical
exact quasiadiabatic path integral approach combined with an
efficient tensor network treatment. Purely dephasing fluctua-
tions alone are treated analytically. The combination of both
again requires numerical treatment.

Super-Ohmic environments cannot turn the dynamics
localized or incoherent. On the timescale of the bare quan-
tum system, however, the dynamics is severely slowed
down since the oscillation frequency of the polarization is
strongly decreased with increasing system-bath coupling. At
strong coupling we observe pseudocoherent dynamics, i.e.,
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oscillatory dynamics at short times due to slaving the quan-
tum system to bath dynamics. We map the minimal coupling
strength αB(s), at which pseudocoherent dynamics occurs,
as a function of the spectral exponent s of the environmen-
tal fluctuations and thus extend the phase diagram of the
pseudocoherent dynamics [19] into the super-Ohmic regime.
Surprisingly, αB(s) as a function of s is nonmonotonic with
a maximum at s � 2. Purely dephasing super-Ohmic fluctu-
ations cause an initial Gaussian decay for a timescale ω−1

c
and then no further dephasing. Nevertheless the coherence
amplitude is severely diminished at strong coupling, render-
ing the dynamics effectively overdamped. The corresponding
phase separation line of coupling versus spectral exponent
exhibits also nonmonotonous behavior, very similar to the
pseudocoherent phase.

Realistic quantum systems are typically exposed to both
types of environmental fluctuations, i.e., purely dephasing and
relaxational ones. We show that the polarization dynamics
then exhibits a fast initial Gaussian decay followed by the
much slower (for the same system-bath coupling) exponential

decay due to the relaxational fluctuations. Hence, neglecting
the non-Markovian Gaussian decay due to the purely de-
phasing fluctuations may not be justified when studying the
coherence of a quantum system as is relevant for quantum
devices. Even at weak system-bath coupling α the inflicted
decay is proportional ∝ exp(−α̃) with α̃ = 8α	(s − 1) and
the gamma function 	(x) and might well be relevant for the
envisioned quantum device. Dynamical decoupling schemes
are also not effective to counter super-Ohmic dephasing since
it is dominantly a result of high-frequency environmental
modes whereas dynamical decoupling counteracts mainly
low-frequency noise.
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