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Particle-number threshold for non-Abelian geometric phases
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When a quantum state traverses a path, while being under the influence of a gauge potential, it acquires a
geometric phase that is often more than just a scalar quantity. The variety of unitary transformations that can be
realized by this form of parallel transport depends crucially on the number of particles involved in the evolution.
Here, we introduce a particle-number threshold (PNT) that assesses a system’s capabilities to perform purely
geometric manipulations of quantum states. This threshold gives the minimal number of particles necessary to
fully exploit a system’s potential to generate non-Abelian geometric phases. Therefore, the PNT might be useful
for evaluating the resource demands of a holonomic quantum computer. We benchmark our findings on bosonic
systems relevant to linear and nonlinear quantum optics.
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I. INTRODUCTION

The evolution of a quantum state, in the presence of
some potential, is completely determined by Schrödinger’s
equation, which incorporates aspects such as the system’s
spectrum, or the overall evolution time. If the system un-
dergoes slow (adiabatic) changes, the evolving state remains
unaffected by these dynamical contributions (i.e., the dynam-
ical phase factors out). Instead, its wave function acquires a
phase factor that depends only on the geometry of the path
the quantum state has traversed. This was first noticed by
Berry [1], who pointed out that, unlike dynamical phases,
a geometric phase cannot be removed by a rescaling of the
energy (gauge transformation). A famous example of this is
the Aharonov-Bohm effect [2], in which the wave function
of an electron traveling around a solenoidal magnetic field
picks up a phase proportional to the magnetic flux through the
surface enclosed by the trajectory of the electron. Pancharat-
nam studied the phenomenon in the context of classical optics
[3], where it manifests itself in states of polarization. It was
pointed out by Simon [4] that this purely geometric signature
of a quantum evolution has to be attributed to parallel trans-
port of the state vector along a path in a (projective) Hilbert
space.

If a quantum system supports a d-fold degenerate sub-
space H0 with eigenstates |ψa〉 (a = 1, . . . , d), an initially
prepared wave packet generically evolves into a superposition
of the |ψa〉 when undergoing adiabatic changes, that is without
population transfer to states of different energy [5]. Wilczek
and Zee [6] associated such degeneracy of the spectrum with
the possibility of emerging non-Abelian (i.e., noncommuting)
gauge potentials. In this case, the state after a time period T
not only acquires a (scalar) geometric phase but also differs
from the initial one by a unitary d × d matrix.

*stefan.scheel@uni-rostock.de

If the Hamiltonian of the system is expressed through a
set of physically accessible parameters {κμ}M

μ=1 that change
cyclically, i.e., κμ(0) = κμ(T ), the time evolution is associ-
ated with a closed path γ in the M-dimensional parameter
space M . The time evolution then takes the form of a quantum
holonomy (non-Abelian geometric phase) [6]

UA(γ ) = P̂exp
( ∮

γ

A
)
, (1)

where A = ∑M
μ=1 Aμdκμ is the adiabatic connection (non-

Abelian gauge potential). Depending on the physical platform,
{κμ}M

μ=1 might include external driving fields, subsystem cou-
plings, or hopping probabilities between different states. Due
to the generally noncommuting nature of the connection, i.e.,
[Aμ, Aν] �= 0, the integration in Eq. (1) has to be performed
with respect to the path ordering P̂. The matrix-valued com-
ponents of A can be directly calculated from the eigenstates of
the system, i.e.,

(Aμ)ab = 〈ψb| ∂μ |ψa〉 , ∂μ = ∂/∂κμ. (2)

By traversing different loops in M one can potentially access
a variety of different unitaries UA(γ ). The set of all such
transformations spans the holonomy group Hol(A). It is a
subset of the unitary group U(d ). In addition to their frequent
occurrence in lattice-gauge theory [7] and loop-quantum grav-
ity [8], holonomy groups turn out to be a crucial ingredient for
geometric [9,10] and topological [11] quantum computation,
in which they constitute the fundamental gate set from which
quantum algorithms are to be implemented.

The question of how many different unitaries can be har-
nessed by driving loops through M is therefore closely related
to computational universality [12], which holds if Hol(A) =
U(d ). This requires not only a d-fold-degenerate subspace
but a large parameter space as well [9]. More recently, it was
observed that the number of particles prepared in the subspace
H0 might drastically alter the form of the holonomy UA(γ )
[13–15]. This is because the corresponding eigenstates |ψa〉
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FIG. 1. Graph representation of (bilinear) Hamiltonians, in
which particle number exchange between the modes (vertices) is
modeled by a connecting edge. (a) Schematic representation of
three planarly arranged bosonic modes experiencing complex next-
neighbor coupling κ±. (b) Term scheme of the bosonic tripod
structure in which the mode c exclusively couples to the outer modes
μ = ±, 0 via κμ. (c) A four-mode fully connected graph, where each
side can experience a different coupling κμ. (d) Triangular graph of
modes with coupling κμ, μ = ±, 0.

can differ in their particle number. In this work, quantum
holonomies are studied in relation to the number of particles
involved in the evolution. In the following, this issue is moti-
vated through an illustrative example.

A. � scheme of bosonic modes

Consider a chain of three bosonic modes [Fig. 1(a)]. The
outer modes â± experience complex next-neighbor couplings
κ± to the central mode âc. The Hamiltonian of the system
reads

Ĥ = κ+â+â†
c + κ−âcâ†

− + H.c. (3)

Here, â†
k and âk denote the bosonic creation and annihilation

operators, respectively, and H.c. stands for the Hermitian
conjugate. The Hamiltonian (3) is the bosonic counterpart
of an atomic three-level system in the � configuration [16].
Such systems are of practical interest because they describe
linear-optical multiport systems [17] and can be designed, for
instance, in terms of integrated photonic waveguides [18,19].

Suppose a single photon is injected into one of the
outer modes of the optical setup, with couplings κ±(t )
varying slowly compared to the minimal energy gap√

|κ+|2 + |κ−|2 > 0 (level crossing neglected). In the adi-
abatic limit, the photon remains in the zero-eigenvalue
eigenstate (also known as the dark state)

|D〉 = sin θ |1+〉 − cos θeiϕ |1−〉 ,

where tan θ = |κ−|/|κ+|, ϕ = arg(κ+) − arg(κ−), and |1±〉 =
â†

± |0〉, with |0〉 denoting the three-mode vacuum. Here, the
connection Aϕ = i cos2 θ is Abelian (while Aθ = 0). After
traversing a closed path γ in the (θ, ϕ) plane, the output state
|
(T )〉 = eiφ(γ ) |
(0)〉 picks up a geometric phase

φ(γ ) =
∫∫

D
sin(2θ )dϕdθ, (4)

which depends on the area D enclosed by the loop γ .

Interestingly, injecting a second (indistinguishable) photon
into the setup leads to the two dark states

|D1〉 = sin2 θ |2+〉 −
√

2 sin θ cos θeiϕ |1+1−〉
+ cos2 θe2iϕ |2−〉 ,

|D2〉 = 1√
2

(sin2 θ |2−〉 + cos2 θe−2iϕ |2+〉 − |2c〉)

+ 2 sin θ cos θe−iϕ |1+1−〉 .

Consequently, Aϕ is now a matrix-valued quantity. Naively,
one might expect that this enables the generation of non-
Abelian holonomies. However, a direct evaluation of Eq. (1)
leads to

UA(γ ) =
[

e2iφ(γ ) 0
0 e−2iφ(γ )

]
. (5)

It is immediately clear from Eq. (5) that the transformations
UA(γ ) and UA(γ ′), induced by two arbitrary loops γ and γ ′
in M , always commute. Hence, even though degeneracy of
the system would allow for the generation of non-Abelian
transformations, the actual holonomy group is still Abelian.
This phenomenon remains present when subjecting even more
photons to the system [20]; that is, while degeneracy scales up,
the resulting holonomies are always commuting.

The phenomenon that a system’s degeneracy increases
under the exposure to multiple photons is by no means a
property unique to the Hamiltonian (3). Adding an additional
mode to the � scheme leads to a tripod structure [Fig. 1(b)]
that allows for any U(2) transformation between its single-
photon dark states [21–23]. Considering two photons, the dark
subspace becomes four-dimensional. However, as noticed in
Refs. [14,24], not all elements of the group U(4) can be
designed in that way (one of the eigenstates decouples). Only
recently were these two-particle dynamics verified experimen-
tally [15].

B. Aim of the article

This simple introductory example hints at a more general
question. What is the number of particles N injected into a
given setup in order to generate the most versatile set of quan-
tum holonomies? After reviewing properties of the holonomy
group in Sec. II, we address this issue by introducing the
particle-number threshold (PNT) in Sec. III. The PNT of a
quantum system gives the minimal number of particles nec-
essary to fully exploit the system’s potential for designing
non-Abelian holonomies. We discuss the basic properties of
PNTs and present a number of different examples relevant to
linear and nonlinear quantum optics. Finally, Sec. IV is re-
served for a summary of the article as well as some concluding
remarks.

II. CURVATURE AND UNIVERSALITY

If the composition of loops in M allows for the generation
of any unitary on the lth eigenspace Hl of a Hamiltonian Ĥ ,
the connection Al is said to be irreducible, and the holonomy
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group

Hol(Al ) = {UAl (γ ) | γ (0) = γ (T )}
coincides with U(dl ). If the eigenspace additionally possesses
a multipartite structure (dl = 2k), then Hl may be viewed as
a k-qubit quantum code [25,26] in which universal manipu-
lation of quantum information is possible in terms of only
holonomic gates UAl (γ ).

A convenient measure of how close the group Hol(Al )
comes to span the entire unitary group is given in terms of
the local curvature Fl (the non-Abelian field-strength tensor).
It describes changes in the eigenstates in Hl under variation
of the parameters κμ. Its antisymmetric components (Fl,μν =
−Fl,νμ) are calculated from [27]

Fl,μν = ∂μAl,ν − ∂νAl,μ + [Al,μ, Al,ν]. (6)

According to a statement from differential geometry, the
number of (linear-independent) components {Fl,μν}μν gives a
lower bound to the dimension of Hol(Al ). Here, dimension
refers to the degrees of freedom that completely specify an
element in a matrix group. For example, a unitary in U(dl ) is
completely determined by specifying d2

l real numbers. Hence,
we write dim U(dl ) = d2

l . This implies that, if there are d2
l

linear-independent matrices Fl,μν , it is possible to realize any
element of the unitary group in terms of Eq. (1) [28,29], i.e.,
Hol(Al ) = U(dl ).

A more accurate bound on the dimension of Hol(Al ) can
be obtained by including higher-order covariant derivatives

∇l,σ Fl,μν,∇l,δ∇l,σ Fl,μν, ∇l,ε∇l,δ∇l,σ Fl,μν, . . . . (7)

Here, the covariant derivative operator

∇l,σ = ∂σ + [Al,σ , · ]

generally is different for each eigenspace, thus depending on
the index l . The number of linearly independent matrices in
Eqs. (6) and (7) equals the dimension of Hol(Al ) [30,31].

Clearly, if the components Al,μ are Abelian, then ∇l,σ =
∂σ , and the span of the matrices {Fl,μν, ∂σ Fl,μν, . . . }μνσ ... is
one-dimensional. It follows that Hol(Al ) is an Abelian sub-
group of U(dl ). Note that even though the above statements
do not provide an explicit recipe for designing specific trans-
formations, their existential nature makes them suitable for
estimating the general potency of a quantum system to gener-
ate holonomies. The dimension of the holonomy group acts as
a natural measure of this potency.

Four-mode fully connected graph

In order to illustrate the rather abstract techniques in-
troduced in the previous section, we give an example of a
four-mode fully connected graph, as shown in Fig. 1(c). Fully
connected graphs constitute the most general type of graphs.
Hence, their Hamiltonians are not expected to possess degen-
erate eigenvalues when arbitrary configurations κ = (κμ)M

μ=1
are considered. Nevertheless, one can always construct spe-
cific configurations that lead to degenerate subspaces. This is
done as follows.

Let Ĥ0 be a time-independent Hamiltonian with some fixed
degeneracy structure. Consider the isospectral Hamiltonian

Ĥ (κ) = V̂ (κ)Ĥ0V̂†(κ), (8)

parameterized over points κ = (θ,ϕ) in M . For the four-
mode system, let Ĥ0 = n̂1 + n̂2 − n̂4 (with n̂k = â†

k âk), and

V̂ (θ,ϕ) = V̂12(θ1, ϕ1)V̂23(θ2, ϕ2)V̂34(θ3, ϕ3) (9)

is our unitary of choice. Here, V̂kk+1(θk, ϕk ) creates mixing
between modes k and k + 1. More specifically, we define

V̂kk+1â†
kV̂ †

kk+1 = cos θkeiϕk â†
k + sin θkâ†

k+1,

V̂kk+1â†
k+1V̂

†
kk+1 = cos θke−iϕk â†

k+1 − sin θkâ†
k, (10)

which describes a general SU(2) transformation. The trans-
formation (9) is not the most general unitary but is chosen
such that the Hamiltonian (8) is still bilinear in the creation
and annihilation operators. Thus, it can be represented by the
graph in Fig. 1(c).

If a single particle is subjected to the system, the Hamil-
tonian has a 4 × 4 matrix representation Ĥ |F1 . Here, F1

denotes the first Fock layer, which contains the single-particle
states |1k〉 = â†

k |0〉. In this Fock layer the system has only a
single dark state,

|D〉 = eiϕ3 cos θ3(sin θ1 sin θ2 |11〉 + e−iϕ1 cos θ1 sin θ2 |12〉
+ e−iϕ2 cos θ2 |13〉) − sin θ3 |14〉 . (11)

A straightforward calculation of the corresponding connection
[see Eq. (2)] reveals (we omit the index l = 0 for notational
ease)

Aϕ1 = −i cos2 θ1 sin2 θ2 cos2 θ3,

Aϕ2 = −i cos2 θ2 cos2 θ3,

Aϕ3 = i cos2 θ3,

and Aθ1 = Aθ2 = Aθ3 = 0. The curvature is readily calculated
from Eq. (6). Its nonvanishing components are

Fϕ1θ1 = −2i sin θ1 cos θ1 sin2 θ2 cos2 θ3,

Fϕ1θ2 = 2i cos2 θ1 sin θ2 cos θ2 cos2 θ3,

Fϕ1θ3 = −2i cos2 θ1 sin2 θ2 sin θ3 cos θ3,

Fϕ2θ2 = −2i sin θ2 cos θ2 cos2 θ3,

Fϕ2θ3 = −2i cos2 θ2 sin θ3 cos θ3,

Fϕ3θ3 = 2i sin θ3 cos θ3.

It follows that Abelian holonomies (i.e., Berry phases) can
be designed by adiabatically traversing loops in M , i.e.,
Hol(A) = U(1).

Next, consider the second Fock layer F2 spanned by the
two-particle states

|21〉 , |1112〉 , |1113〉 , |1114〉 , |22〉 ,

|1213〉 , |1214〉 , |23〉 , |1314〉 , |24〉 .

The matrix Ĥ |F2 supports a threefold-degenerate dark sub-
space with states |Dk〉 for k = 1, 2, 3 (the explicit form is
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given in Appendix A). The connection on this subspace is

Aϕ1 |θ2=0
θ1=θ3= π

4
= i

2

⎡
⎣0 0 0

0 1 ei(ϕ1−ϕ2 )

0 e−i(ϕ1−ϕ2 ) −1

⎤
⎦,

Aϕ2 = i cos2 θ2 cos2 θ3

⎡
⎣−2 0 0

0 −1 0
0 0 1

⎤
⎦,

Aϕ3 = i cos2 θ3

⎡
⎣2 0 0

0 −1 0
0 0 1

⎤
⎦,

Aθ1 = cos θ2

⎡
⎣0 0 0

0 0 −ei(ϕ2−ϕ1 )

0 ei(ϕ2−ϕ1 ) 0

⎤
⎦,

and Aθ2 = Aθ3 = 0. Calculating the curvature (6) and its
first-order covariant derivative gives rise to (only linearly in-
dependent components are shown)

Fϕ1θ1 |κ0 =

⎡
⎢⎣

−i 0 0

0 i
2 − i

2
√

2
0 − i

2
√

2
− i

2

⎤
⎥⎦,

Fϕ1θ2 |κ0 =

⎡
⎢⎣

i 0 0

0 i
2

i√
2

0 i√
2

− i
2

⎤
⎥⎦,

Fϕ2θ1 |κ0 =
⎡
⎣0 0 0

0 0 i
0 i 0

⎤
⎦,

∇ϕ1 Fθ1θ2 |κ0 =

⎡
⎢⎣

0 0 0

0 i − i
2
√

2
0 − i

2
√

2
−i

⎤
⎥⎦,

∇θ1 Fϕ2θ1 |κ0 =
⎡
⎣0 0 0

0 −i 0
0 0 i

⎤
⎦, (12)

evaluated at point κ0, with ϕk = 0 and θk = π/4. The ma-
trices in Eq. (12) are the (infinitesimal) generators [32] of a
five-dimensional Lie group. This constitutes a lower bound
on the dimension of Hol(A). Nevertheless, the analysis illus-
trates that the two-particle case enables the generation of more
intriguing holonomies than the single-particle case. More
precisely, the two-particle dark states led to a non-Abelian
holonomy group Hol(A), which is a proper subgroup of U(3).

The key observation is that increasing the number of parti-
cles significantly improved the computational capacity (from
Abelian to non-Abelian holonomies) to generate unitaries on
the dark subspace. Intuitively, it is clear that the dimension of
Hol(A) cannot increase continually when the particle number
becomes larger, as this would result in arbitrarily high compu-
tational power while having only limited physical resources in
M . This leads us to an interesting question: How far can one
increase the dimension of the holonomy group by subjecting
a larger number of particles to a system?

This question will be addressed in the following section by
means of a particle-number threshold, which constitutes a
formal answer to the issue.

III. PARTICLE-NUMBER THRESHOLD

The previously presented benchmark system revealed the
dependence of a system’s holonomy group on the particle
number N . First, this is due to the fact that the spectral proper-
ties (in particular degeneracy) of a quantum system vary when
the corresponding Hamiltonian Ĥ is limited to act on different
Fock layers

FN =
{

|n1, n2, . . .〉
∣∣∣∣∣
∑

k

nk = N

}
.

Second, we notice that even if the degeneracy increases, this
does not necessarily mean that it is possible to generate a more
useful (i.e., higher-dimensional) subgroup of unitaries. There-
fore, it is a natural question to ask, What is the particle number
N at which one of the holonomy groups {Hol(Al )}l reaches
its maximal dimension and is therefore the most suitable for
designing a versatile set of unitaries? We refer to the number
of particles necessary for this endeavor as the particle-number
threshold Nt .

Definition 1. Let Ĥ be the Hamiltonian of a quantum
system in second quantization that evolves adiabatically in
time. The particle-number threshold Nt denotes the minimum
number of particles necessary to initialize any state in the
eigenspace Hl ′ whose holonomy group Hol(Al ′ ) has the high-
est dimension, i.e.,

dim Hol(Al ′ ) � dim Hol(Al )

for all l labeling the other eigenspaces Hl of Ĥ .
In contrast to previous examples, where the focus was on

the dark subspace, finding the PNT Nt of a system demands
an analysis of the holonomy groups of each eigenspace Hl in
order to compute dim Hol(Al ) for all l .

Intuitively speaking, the highest-dimensional holonomy
group Hol(Al ′ ) is the one most useful for manipulating quan-
tum states by geometric means. In order to harness these
transformations, we must be able to prepare quantum informa-
tion in the corresponding eigenspace Hl ′ . As |ψ〉 in Hl ′ (κ0)
contain at most Nt particles, i.e., 〈ψ |n̂|ψ〉 � Nt , one has to
be able to prepare this particle number to fully harness the
holonomy group’s potential. In the language of holonomic
quantum computation [9,10] the PNT of a quantum system Ĥ
gives the number of particles to be prepared in order to come
as close as possible to the desirable notion of universality.

A. Properties of PNTs

The PNT Nt of a (bosonic) quantum system Ĥ is, in gen-
eral, hard to calculate, as it demands a calculation of the
connection Al for each eigenspace (there could be infinitely
many). Nevertheless, some general remarks can still be made.
Consider a quantum system that consists of a collection of
noninteracting subsystems, i.e., Ĥ = ⊗

a Ĥa. Suppose that the
PNT N (a)

t for each subsystem Ĥa is known and that Hol(A(a)
l ′ )

denotes its holonomy group with maximal dimension. The
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composite system Ĥ then has PNT Nt = ∑
a N (a)

t . This be-
comes evident when noting that the highest-dimensional
holonomy group

Hol(Al ′ ) =
⊗

a

Hol
(
A(a)

l ′
)

(13)

is just the tensor product of the holonomy groups Hol(A(a)
l ′ ) of

each individual subsystem. The holonomy group (13) of the
composite system acts on the subspace with energy

∏
a ε

(a)
l ′ ,

where ε
(a)
l ′ denotes the eigenenergy of the subspace on which

the group Hol(A(a)
l ′ ) acts.

Next, consider a Hamiltonian with isospectral parametriza-
tion, that is,

Ĥ (κ) = V̂ (κ)Ĥ0V̂†(κ), (14)

with Ĥ0 being a Hamiltonian with fixed degeneracy structure
{dl}l and eigenstates {|ψl,a〉}l,a. Suppose there is a sufficiently
large parameter space M such that V̂ (κ) is the most general
unitary operator. Adiabatic evolution in the lth eigenspace is
then governed by the most general connection

(Al,μ)ab = 〈ψl,b| V̂†∂μV̂ |ψl,a〉 . (15)

In the above, we made use of the fact that V̂ (κ) |ψl,a〉 are
the eigenstates of (14). By construction, one has Hol(Al ) =
U(dl ). For such a general parametrization, it is, indeed, the
eigenspace with the largest degeneracy dl ′ � dl that is the one
most desirable for the generation of non-Abelian holonomies.
Hence, Nt is the number of particles necessary to populate any
state in the most degenerate eigenspace Hl ′ .

B. PNT of the Kerr-medium Hamiltonian

What happens when V̂ is not an arbitrary unitary and is
limited to some smaller set of physically accessible opera-
tions? For concreteness, consider the two-mode Hamiltonian
associated with a nonlinear Kerr medium

Ĥ0 = n̂1(n̂1 − 1̂) + n̂2(n̂2 − 1̂).

Here, the unitary V̂ (α, β, ξ, ζ ) is a product of single- and two-
mode displacement,

D̂k (α) = exp(αâ†
k − α∗âk ),

K̂ (β ) = exp(βâ†
1â2 − β∗â1â†

2), (16)

as well as single- and two-mode squeezing,

Ŝk (ξ ) = exp
[
ξ (â†

k )2 − ξ ∗â2
k

]
,

M̂(ζ ) = exp[ζ â†
1â†

2 − ζ ∗â1â2], (17)

respectively [33]. By driving coherent displacement (α, β )
and squeezing parameters (ξ, ζ ) through a closed loop in
M = C4, holonomies on the eigenspaces of Ĥ are obtained.
Reference [34] showed that this enables arbitrary U(4) trans-
formations over the zero-eigenvalue eigenspace H0. This
was done by explicitly constructing loops that implement
the square root of a SWAP gate together with a holonomic
single-qubit rotation. In Ref. [30] the author came to the
same conclusion but via an analysis of the curvature and its
covariant derivatives. Note that the subspace H0 [at the base
point (α, β, ξ, ζ ) = 0] is spanned by the number states |0102〉,

|1102〉, |0112〉, and |1112〉; that is, two photons are necessary
to initialize any state in the subspace.

In order to determine the PNT of the Kerr-medium
Hamiltonian, one has to check whether the higher-energy
eigenspaces offer any computational advantage; that is, do
we find a holonomy group Hol(Al ) > U(4)? Let us make
the first step of this analysis explicit. Given a maximum of
three photons, each of the states |01, 22〉, |11, 22〉, |21, 12〉,
and |21, 02〉, spanning the eigenspace H1 with energy ε1 =
2, can be initialized. Starting from the connection (15) for
V̂ = K̂ (β )M̂(ζ )D̂k (α)Ŝ j (ξ ), the curvature (6) and its covariant
derivatives can be calculated (see Appendix B). We find 16
linearly independent matrices; thus, the connection on this
subspace is irreducible, i.e., Hol(A1) = U(4). We conclude
that the holonomy group Hol(A1) does not offer any advantage
over Hol(A0) but demands the preparation of an additional
photon. In order to evaluate the PNT of the system, the
analysis has to be continued for higher-energy eigenspaces
Hl (with l � 2), which demands the preparation of a higher
photon number N .

An extended study (up to N = 50) of the curvature Fl

shows that, even though further increasing the particle number
(N > 3) populates subspaces with increased degeneracy (up
to dl = 10 for some eigenspaces), their holonomy groups do
not offer a computational advantage. By that we mean

dim Hol(Al ) � dim Hol(A0),

verified for all eigenspaces Hl with index l � 352 (see
Table I). We did so by explicitly calculating the components
Fl,μν of the curvature and their covariant derivatives up to
order 3 (these are too large to display here). The computed
dimension of the groups {Hol(Al )}l did not increase further
after the first-order derivatives, thus giving us high confidence
that the dimension was determined accurately.

There is an intuitive explanation for the fact that
eigenspaces involving higher particle numbers (N > 6) lead
to less useful holonomy groups. The Gaussian operations (16)
and (17) contribute to the evolution only via the connection
Al . The derivative ∂μ in Eq. (15) that acts on the operators
(16) and (17) leads to creation and annihilation operators
of (at most) quadratic order. Hence, Fock states with larger
differences in their photon numbers cannot be transformed
into each other by a quantum holonomy, even when they lie in
the same subspace.

In summary, the subspace H0 (containing at most two-
particle states) should be preferred when the system is utilized
in a holonomic quantum computation. Therefore, the PNT
of the two-mode Kerr Hamiltonian is Nt = 2. Moreover, it
was shown that restricting the parametrization of the Hamil-
tonian (14) to unitaries V̂ that can be implemented by
Gaussian operations (16) and (17) led to most of the system’s
eigenspaces having reducible connections Al , i.e., Hol(Al ) ⊂
U(dl ). Hence, degeneracy became a quantity of secondary in-
terest. In Table I the spectral properties of the two-mode Kerr
Hamiltonian Ĥ are listed together with their capacity to gen-
erate holonomies on the eigenspaces Hl (for l = 0, . . . , 352).
Note that subspaces with degeneracy dl � 4 are not listed in
in Table I, as it is already clear that their holonomy groups
cannot exceed the dimension of Hol(A0) = U(4).
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TABLE I. Holonomy groups of the two-mode nonlinear Kerr
medium parameterized by the Gaussian operations (16) and (17).
The degeneracy dl of the lth eigenspace (with energy εl ) is shown.
N denotes the number of particles necessary to fully occupy the cor-
responding eigenspace. The number of linear-independent curvature
components Fl,μν as well as the dimension of the holonomy group
Hol(Al ) are also given. Covariant derivatives were calculated up to
the order of 3.

l εl dl �N dim{Fl,μν}μν dim Hol(Al )

0 0 4 2 14 16
1 2 4 3 14 16
5 12 5 6 9 9
16 42 6 10 9 9
26 72 6 13 12 12
37 110 6 15 9 9
45 132 6 17 9 9
54 162 6 19 6 6
60 182 6 20 9 9
70 212 6 21 3 3
78 240 6 21 9 9
87 272 6 24 9 9
99 312 5 26 3 3
108 342 6 27 9 9
113 362 6 27 3 3
130 420 5 30 9 9
131 422 6 30 3 3
141 462 8 31 9 9
157 512 6 33 6 6
168 552 10 34 9 9
199 662 6 36 3 3
208 702 6 38 9 9
215 722 6 39 6 6
222 756 6 38 9 9
225 762 6 40 3 3
238 812 10 41 9 9
266 912 6 42 3 3
274 942 8 44 3 3
285 992 6 45 9 9
306 1062 8 47 3 3
320 1112 6 48 3 3
323 1122 6 48 9 9
346 1202 8 50 3 3
349 1212 6 49 3 3
352 1232 8 50 3 3

C. PNTs of coupled harmonic oscillators

While the exact calculation of a PNT can be a daunt-
ing task, given a collection of coupled harmonic oscillators,
certain specializations arise that can simplify calculations
drastically. In Fig. 1 such systems were represented as graphs.
The calculation of PNTs for such systems would be relevant,
for instance, to the geometric manipulation of multiphoton
states in linear optics [14] as well as linear optical quantum
computation by holonomic means [20].

Population transfer between different Fock layers FN does
not occur in these systems, as the total number of particles
stays conserved throughout an evolution. From a mathemat-
ical viewpoint, this implies that the system’s Hamiltonian

reveals a block-matrix structure, i.e.,

Ĥ =
⊕
N∈N

Ĥ |FN .

In addition, a spectral decomposition Ĥ = ∑
l εl�̂l always

exists, with �̂l denoting the projector onto the eigenspace
Hl . It follows that the eigenspaces themselves admit a similar
decomposition, that is,

�̂l =
⊕
N (l )

�̂l |FN (l ) , (18)

where the summation is carried out over those particle num-
bers N (l ) at which the corresponding energy εl occurs.

As an example, the Hamiltonian (3) of the � scheme
[Fig. 1(a)] does not possess single-particle eigenstates with
energy 2

√
|κ+|2 + |κ−|2. In other words, the eigenvalue does

not lie in the spectrum of Ĥ |F1 , but it is an eigenvalue of
the matrix Ĥ |FN for N � 2. In this case, the sum in Eq. (18)
corresponds to an infinite series starting with N (l ) = 2, 3, . . . .

If, additionally, the evolution is assumed to be adiabatic,
population transfer occurs within each eigenspace separately.
Hence, the decomposition (18) is inherited by the time-
evolution operator (quantum holonomy)

UAl (γ ) =
⊕
N (l )

UAl (γ )|FN (l ) . (19)

Remarkably, the connection will always be reducible for such
a system because it is not possible to generate transformations
between different Fock layers. The best that one can hope
for is to find is a highly degenerate N-particle block in the
eigenspace Hl such that the holonomy UAl (γ )|FN realizes any
unitary transformation on the subspace Hl |FN . This is nothing
but a geometric incarnation of the well-known fact that net-
works of coupled oscillators (by themselves) do not allow for
universal quantum computation [35] and must be supported
by additional resources, such as measurement-induced non-
linearities [36,37].

Note that even though the quantum holonomy (19) can
have an infinite-dimensional matrix representation, it might
still be commuting, that is, UAl (γ )UAl (γ

′) = UAl (γ
′)UAl (γ )

for any two loops γ and γ ′ in M . For the purpose of illus-
tration, consider the Hamiltonian (3) of the � scheme [see
Fig. 1(a)], which gives rise to an infinite-dimensional dark
subspace. For a single photon, the matrix Ĥ |F1 has only one
dark state. Given two or three photons in the setup, Ĥ |F2 and
Ĥ |F3 both have two dark states. Subjecting four photons to
the system leads to a Hamiltonian matrix Ĥ |F4 with three dark
states. Even though degeneracy further increases, the quantum
holonomy

UA0 =

⎡
⎢⎣UA0 |F1

UA0 |F2

. . .

⎤
⎥⎦

will remain Abelian because the N-particle block

UA0 (γ )|FN = diag
(
eiNφ(γ ), . . . , e−iNφ(γ )

)
is itself a diagonal matrix [see Eq. (5) for N = 2]. Here,
φ(γ ) is the geometric phase defined in Eq. (4). The above
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analysis illustrates that increasing the particle number in the
photonic � scheme does not increase the holonomy group’s
dimension; that is, it stays Abelian. Similar arguments hold for
the other eigenspaces of the system, and thus, a single photon
is sufficient to generate any phase in U(1). Hence, the PNT is
Nt = 1.

Three-mode fully connected graph

Consider a setup containing three oscillator modes â± and
â0. Coupling between the modes is described by the param-
eters κ± and κ0, respectively. The system corresponds to the
three-mode fully connected graph shown in Fig. 1(d).

For simplicity, its Hamiltonian is considered to be in the
configuration

Ĥ (θ,ϕ) = V̂ (θ,ϕ)Ĥ0V̂†(θ,ϕ), (20)

with Ĥ0 = n̂+ − n̂−. In the above equation,

V̂ (θ,ϕ) = V̂+0(θ+, ϕ+)V̂0−(θ−, ϕ−),

with the operator V̂kk+1 defined in Eq. (10). The 3 × 3 matrix
Ĥ |F1 possesses single-particle eigenstates

|B+〉 = cos θ+eiϕ+ |1+〉 − sin θ− |10〉 ,

|D〉 = cos θ−eiϕ− (cos θ+e−iϕ+ |1+〉 − sin θ+ |10〉)

− sin θ− |1−〉 ,

|B−〉 = cos θ−e−iϕ− |1−〉
− sin θ−(cos θ+e−iϕ+ |10〉 − sin θ+ |1+〉),

with eigenenergies ε± = ±1 and ε0 = 0. The connection for
each eigenvalue is readily calculated via Eq. (2), leading to the
nonvanishing components

A+,ϕ+ = i cos2 θ+, A0,ϕ± = i cos2 θ±,

A−,ϕ+ = −i sin2 θ+ cos2 θ+, A−,ϕ− = −i cos2 θ−.

When given more than just a single particle, the Hamil-
tonian (20) gives rise to degenerate subspaces; for example,
considering two particles in the system, the 6 × 6 matrix
Ĥ |F2 possesses two dark states. However, in the following it
will be shown that the resulting holonomies are still Abelian
for arbitrary particle numbers N . It is a well-known fact for
coupled-mode systems that knowing the single-particle evolu-
tion is equivalent to knowing the evolution of the modes âk (t )
in the Heisenberg picture [33], viz.,

â†
±(T ) = e∓iT e

∮
A± â†

±(0), â†
0(T ) = e

∮
A0 â†

0(0).

Subsequently, the evolution of any N-particle state can be
given explicitly. It follows that the state can attain only a Berry
phase as well. The initial N-particle state

|
(0)〉 = 1√
n+!n0!n−!

(â†
+)n+ (â†

0)n0 (â†
−)n− |0〉

(N = n+ + n0 + n−) adiabatically evolves into

|
(T )〉 = en+
∮

A+en0
∮

A0 en−
∮

A− |n+〉 ⊗ |n0〉 ⊗ |n−〉 ,

accumulating a (scalar) geometric phase.
We thus conclude that, independent of the provided par-

ticle number N , the holonomy group can be only Abelian.

Hence, the PNT of the system is Nt = 1, as moving beyond
the single-particle case did not lead to more versatile groups
of holonomies, just higher-dimensional representations of the
group U(1). The above argument is the special case of a
more general bosonic-operator framework which we devised
in Ref. [20]. This formalism enables a photon-number-
independent description of holonomies and thus might be
useful for the calculation of PNTs in coupled-mode systems.

D. PNTs of fermionic systems

So far, all considered quantum systems were bosonic in
nature. Nevertheless, the definition of a PNT is applicable to
any quantum system given in the second quantization (see
Sec. III). Fermionic modes are associated with creation and
annihilation operators satisfying canonical anticommutation
relations. Because of this, the most prominent difference
from the bosonic setups studied previously is that fermions
have to obey the Pauli principle, i.e., two fermions cannot
occupy the same mode simultaneously. This drastically re-
duces the number of possible states in a system, and in
particular, the corresponding Hilbert space (Fock space) is
finite-dimensional. Hence, the calculation of the PNT of a
fermionic system becomes much more manageable in com-
parison to bosonic systems.

PNTs can also be calculated for systems comprising both
bosonic and fermionic modes. As an elementary example,
consider the Jaynes-Cummings Hamiltonian describing the
interaction between an incident light field and a single atomic
energy level at resonance. Within the rotating-wave approxi-
mation, the Hamiltonian reads [33]

ĤJC = ωAσ̂+σ̂− + ωcn̂ + κ (â†σ̂− + âσ̂+),

with ωA being the resonance frequency of the atom, ωc being
the frequency of the incident light field, and κ describing the
strength of the light-matter interaction. The atomic ladder op-
erators σ̂− and σ̂+ = (σ̂−)† shift an electron from the ground
to the excited state and vice versa. The system possesses
a nondegenerate spectrum {εn±}n∈N with the corresponding
eigenstates

|n+〉 = sin θ |g, n + 1〉 + cos θ |e, n〉 ,

|n−〉 = cos θ |g, n + 1〉 − sin θ |e, n〉 ,

where tan(2θ ) = 2κ
√

n + 1/(ωc − ωA) and n is the photon
number. This form of the eigenstates highlights that the un-
derlying parameter space does not possess any curvature, i.e.,
Fn±,θθ = 0 for all photon numbers n ∈ N. Hence, the system
is not suitable for the generation of quantum holonomies, and
this is reflected in the PNT, i.e., Nt = 0.

IV. DISCUSSION

In this article we studied quantum holonomies in relation
to the particle number in a system. It was shown that increas-
ing the number of particles can lead to a higher-dimensional
holonomy group, thus improving the capabilities of the sys-
tem to generate useful unitaries. We introduced the PNT of
a quantum system, which denotes the minimal number of
particles necessary to fully exploit the system’s capacity for
generating a versatile set of quantum holonomies. In addition
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to some general statements that could be made about PNTs,
we illustrated the theory in terms of benchmark examples
relevant to linear and nonlinear quantum optics. We saw that
for systems of coupled oscillators only the Nt-particle block
of an eigenspace contributes to its holonomy group relevantly
because the particle number Nt subjected to the system does
not change throughout the propagation. This result appears to
be relevant to linear optical quantum computation by adiabatic
means. We argued that the results presented are applicable to
both bosonic and fermionic systems of interest. Our general
investigation hints at the utility of the concept in assessing
the capabilities of different quantum systems to perform holo-
nomic quantum computations in terms of holonomies. PNTs
might also be relevant to the simulation of gauge groups in
terms of adiabatic parameter variations.

Currently, there is a lack of analytical tools to compute
PNTs. While this is a straightforward task for fermionic sys-
tems, it becomes a challenging issue for bosonic systems,
where there is no bound on the particle number. Estimations

of the PNT up to some finite particle number might be suf-
ficient for most practical purposes, but general strategies for
calculating PNTs can be relevant for a deeper understanding
of many-particle physics in an adiabatic setting.
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APPENDIX A: TWO-PARTICLE DARK STATES OF THE
FOUR-MODE FULLY CONNECTED GRAPH

In this Appendix, we give the two-particle dark states of the
Hamiltonian matrix Ĥ |F2 of the four-mode fully connected
graph shown in Fig. 1(c). The isospectral Hamiltonian of the
system is given in Eq. (8). The three dark states of the system
read

|D1〉 = 1√
2

(eiϕ3 sin θ1 sin θ2 cos θ3â†
1 + ei(ϕ3−ϕ1 ) cos θ1 sin θ2 cos θ3â†

2 + ei(ϕ3−ϕ2 ) cos θ2 cos θ3â†
3 − sin θ3â†

4)2 |0〉 ,

|D2〉 = (sin θ1 sin θ2 sin θ3â†
1 + e−iϕ1 cos θ1 sin θ2 sin θ3â†

2 + e−iϕ2 cos θ2 sin θ3â†
3 + e−iϕ3 cos θ3â†

4)

× (eiϕ1 cos θ1â†
1 − sin θ1â†

2) |0〉 ,

|D3〉 = (sin θ1 sin θ2 sin θ3â†
1 + e−iϕ1 cos θ1 sin θ2 sin θ3â†

2 + e−iϕ2 cos θ2 sin θ3â†
3 + e−iϕ3 cos θ3â†

4)

× (eiϕ1 sin θ1 cos θ2â†
1 + ei(ϕ2−ϕ1 ) cos θ1 cos θ2â†

2) |0〉 ,

where the parameter angles (θk, ϕk ) are defined in Eq. (10).

APPENDIX B: CURVATURE ON THE SUBSPACE H1 OF THE KERR-MEDIUM HAMILTONIAN

Given the isospectral family Ĥ = V̂Ĥ0V̂† of the Kerr-medium Hamiltonian

Ĥ0 = n̂1(n̂1 − 1̂) + n̂2(n̂2 − 1̂),

non-Abelian holonomies are generated over the eigenspace H1 (with energy ε1 = 2) due to a mixing of the eigenstates

V̂ |01, 22〉 , V̂ |11, 22〉 , V̂ |21, 12〉 , V̂ |21, 02〉 ,

where

V̂ (r, θ) = K̂ (r4eiθ4 )M̂(r3eiθ3 )D̂1(r1eiθ1 )Ŝ1(r2eiθ2 )

is a product of the single- and two-mode operations in Eqs. (16) and (17).
Calculating the connection A1 on this subspace via Eq. (15) reveals nonvanishing components

A1,r1 |(0,ζ ) =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦, A1,r4 |(0,ζ ) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 −2e−iθ4

0 0 0 0
0 2eiθ4 0 0

⎤
⎥⎥⎦,

A1,θ4 |(0,ζ ) =

⎡
⎢⎢⎣

4ir4s1|s2| 0 0 0
0 2ir4s1|s2| 0 2iζ ∗ cos(2r4)
0 0 −4ir4s1|s2| 0
0 2iζ cos(2r4) 0 −2ir4s1|s2|

⎤
⎥⎥⎦,
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where s1 = cos(|ζ |), s2 = eiθ4 sin(|ζ |), and ζ = r4eiθ4 . Above, we evaluated the connection at a point with r1 = r2 = r3 = 0 and
θ1 = θ2 = θ3 = 0. The corresponding curvature (6) [evaluated at (0, ζ )] can be computed as

F1,r1r2 |(0,ζ ) =

⎡
⎢⎢⎣

0 −2 0 0
2 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦, F1,r1r3 |(0,ζ ) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦, F1,r2r3 |(0,ζ ) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 4
0 0 0 0
0 −4 0 0

⎤
⎥⎥⎦,

F1,r1r4 |(0,ζ ) =

⎡
⎢⎢⎣

0 0 0 2e−iθ4

0 0 0 0
0 0 0 eiθ4

−2eiθ4 0 −e−iθ4 0

⎤
⎥⎥⎦, F1,r1θ4 |(0,ζ ) =

⎡
⎢⎢⎣

0 0 0 −2iζ ∗ cos(2r4)
0 0 0 0
0 0 0 iζ cos(2r4)

−2iζ cos(2r4) 0 iζ ∗ cos(2r4) 0

⎤
⎥⎥⎦

F1,r4θ4 |(0,ζ ) =

⎡
⎢⎢⎣

4i[r4 cos(2r4) + s1|s2|] 0 0 0
0 −2i[3r4 cos(2r4) − s1|s2|] 0 −4i|s2|2e−iθ4

0 0 −2i[r4 cos(2r4) + s1|s2|] 0
0 −4i|s2|2eiθ4 0 2i[3r4 cos(2r4) − s1|s2|]

⎤
⎥⎥⎦.

Its first-order covariant derivatives are found to be

∇θ1 F1,r1r2 |(0,ζ ) =

⎡
⎢⎢⎣

0 −2i 0
−2i 0 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦, ∇r4 F1,r1r3 |(0,ζ ) =

⎡
⎢⎢⎣

0 0 0 0
0 0 −2e−iθ4 0
0 2eiθ4 0 0
0 0 0 0

⎤
⎥⎥⎦,

∇r4 F1,r1r2 |(0,ζ ) =

⎡
⎢⎢⎣

0 0 0 −4e−iθ4

0 0 0 0
0 0 0 0

4eiθ4 0 0 0

⎤
⎥⎥⎦, ∇r2 F1,r2r3 |(0,ζ ) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 −4i
0 0 0 0
0 −4i 0 0

⎤
⎥⎥⎦

∇θ4 F1,r1r3 |(0,ζ ) =

⎡
⎢⎢⎣

0 0 0 0
0 0 2iζ ∗ cos(2r4) 0
0 2iζ cos(2r4) 0 2ir4s1|s2|
0 0 2ir4s1|s2| 0

⎤
⎥⎥⎦, ∇r4 F1,r2r3 |(0,ζ ) =

⎡
⎢⎢⎣

0 0 0 0
0 −16i sin(θ4) 0 0
0 0 0 0
0 0 0 16i sin(θ4)

⎤
⎥⎥⎦,

∇r1 F1,r1θ1 |(0,ζ ) =

⎡
⎢⎢⎣

2i 0 0 0
0 6i 0 0
0 0 4i 0
0 0 0 4i

⎤
⎥⎥⎦, ∇r3 F1,r2r4 |(0,ζ ) =

⎡
⎢⎢⎣

4i sin(θ4) 0 0 0
0 12i sin(θ4) 0 0
0 0 20i sin(θ4) 0
0 0 0 20i sin(θ4)

⎤
⎥⎥⎦.

The second-order derivatives [evaluated at (0, ζ )] read

∇r1∇r4 F1,r1r3 |(0,ζ ) =

⎡
⎢⎢⎣

0 0 2e−iθ4 0
0 0 0 0

−2eiθ4 0 2i sin(θ4) 0
0 0 0 −2i sin(θ4)

⎤
⎥⎥⎦,

∇r1∇θ4 F1,r1r3 |(0,ζ ) =

⎡
⎢⎢⎣

0 0 −2iζ ∗ cos(2r4) 0
0 0 0 0

−2iζ cos(2r4) 0 2ir4 cos(θ4) cos(2r4) 0
0 0 0 −2ir4 cos(θ4) cos(2r4)

⎤
⎥⎥⎦.

The evaluation at point (0, ζ ) suffices to show that these are 16 linearly independent matrices. It follows that the corresponding
holonomy group Hol(A1) is isomorphic to a 16-dimensional Lie group. More specifically, we have Hol(A1) = U(4); that is, the
connection is irreducible.
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