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It is known that the variance and entropy of quantum observables decompose into intrinsically quantum and
classical contributions. Here a general method of constructing quantum-classical decompositions of resources
such as uncertainty is discussed, with the quantum contribution specified by a measure of the noncommutativity
of a given set of operators relative to the quantum state, and the classical contribution generated by the mixedness
of the state. Suitable measures of noncommutativity or “quantumness” include quantum Fisher information, and
the asymmetry of a given set, group, or algebra of operators, and are generalized to nonprojective observables and
quantum channels. Strong entropic uncertainty relations and lower bounds for Rényi entropies are obtained, valid
for arbitrary discrete observables, that take the mixedness of the state into account via a classical contribution to
the lower bound. These relations can also be interpreted without reference to quantum-classical decompositions,
as tradeoff relations that bound the asymmetry of one observable in terms of the entropy of another.
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I. INTRODUCTION

A quantum observable such as position or spin has two
generic sources of uncertainty. The first arises when the ob-
servable does not commute with the state of the quantum
system: this implies that the state is not an eigenstate of the
observable, leading to a spread of measurement outcomes.
The second source of uncertainty arises when the state is
mixed: a loss of classical information due to mixing reduces
the predictability of the measurement outcome, leading to
an increased spread. It follows that the two sources are,
respectively, intrinsically quantum and classical in nature.
The first can be useful as a resource, e.g., in allowing a
complementary observable to have a small spread, whereas
the second is usually not, as mixing contributes noise to all
observables.

Luo suggested quantifying such quantum and classical
contributions to a given measure of uncertainty, M(X |ρ), for a
Hermitian operator X and state described by density operator
ρ, via a quantum-classical decomposition of the form [1,2]

M(X |ρ) = Q(X |ρ) + C(X |ρ), (1)

and gave the particular example

Varρ (X ) = − 1
2 Tr([X,

√
ρ]2) + (

Tr[X
√

ρX
√

ρ] − 〈X 〉2
ρ

)
(2)

for the variance of a Hermitian operator. In this example the
“quantum” contribution is the skew information of X with
respect to ρ [3], and is clearly nonzero only if the observable
does not commute with the state, whereas the “classical”
contribution is nonzero only if the state is mixed, as expected.
A second example is a quantum-classical decomposition of

the entropy of a Hermitian operator, given by Korzekwa
et al. [4].

A simple approach to unifying and generalizing such
quantum-classical decompositions is discussed in Sec. II,
based on the idea that the intrinsically quantum contribution
to a given resource measure is maximized when the observer
has access to a pure state of the system, and is degraded by
classical mixing for a local observer who only has access to a
component of such a system. For example, a maximally entan-
gled pure state of two qubits is a useful quantum resource for
dense coding and for estimation of a local rotation, but this
usefulness vanishes for an observer who only has access to
one of the two qubits (described by a maximally mixed state).

The general approach is described in Sec. II A. It starts with
some given measure Q(X,Y, . . . |ρ) of the “quantumness” of a
resource, for operators X,Y, . . . and state ρ. The correspond-
ing “maximum potential” M(X,Y, . . . |ρ) of the resource and
its “classicality” C(X,Y, . . . |ρ) are then constructed so as
to satisfy a decomposition analogous to Eq. (1). Several ex-
amples are given in Sec. II B, including the decomposition
of variance and covariance matrices with respect to quantum
Fisher information; decompositions of Shannon entropy with
respect to both asymmetry and the conditional entropy of self-
dual communication channels; and, of particular relevance to
this paper, the decomposition of Rényi entropy with respect to
Rényi asymmetry, where the latter has applications to quan-
tum coherence, time-energy uncertainty relations, quantum
information, open quantum systems, and quantum metrol-
ogy [5–9]. It is also shown that measures of quantumness
can equivalently be defined via sets, groups, or algebras of
operators, and generalized to arbitrary discrete observables
and to quantum channels. An alternative approach, based on
convex and concave roofs, is discussed in the Appendix, with
corresponding examples.
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The main technical results are given in Sec. III, including
a strong uncertainty relation for Rényi entropies of discrete
observables X and Y represented by positive operator-valued
measures (POVMs) {Xx} and {Yy}:

Hα (X |ρ) + Hβ (Y |ρ)

� − log μXY + max{Cα (Y |ρ),Cβ (X |ρ)}. (3)

Here the Rényi parameters α, β ∈ [ 1
2 ,∞) are related by

α−1 + β−1 = 2; μXY denotes the maximum eigenvalue of
X 1/2

x YyX 1/2
x over x and y; and the last term takes the mixedness

of ρ into account via the classical components of the Rényi
entropies. The logarithm base is left arbitrary throughout,
corresponding to a choice of units (e.g., to bits for base 2 and
to nats for base e).

Equation (3) is clearly stronger than the standard uncer-
tainty relation

Hα (X |ρ) + Hβ (Y |ρ) � − log μXY , (4)

for Rényi entropies [10–12], which has no classical mixing
term. Further, for rank-1 POVMs, with Xx = |x〉〈x| and Yy =
|y〉〈y|, Eq. (3) generalizes the known uncertainty relation

H (X |ρ) + H (Y |ρ) � − log max
x,y

|〈x|y〉|2 + H (ρ) (5)

for Shannon entropies [4,13,14] (which correspond to α =
β = 1), that takes the mixedness of the state into account via
its von Neumann entropy, H (ρ) := −Tr(ρ log ρ ). It is also
shown in Sec. III that Eq. (3) may be written as a direct
tradeoff between the asymmetry of one observable and the en-
tropy of another, without any reference to quantum-classical
decompositions, leading to a simple lower bound for Rényi
asymmetry, as well as to entropic bounds such as

Hα (X |ρ) � − log μρX , α � 1
2 , (6)

for the Rényi entropy of an arbitrary discrete observable X .
Some readers may choose to skip directly to Sec. III, and refer
back to Sec. II for definitions.

Results and possible future work are discussed in Sec. IV.

II. BUILDING QUANTUM-CLASSICAL
DECOMPOSITIONS

A. A general approach

As noted in the Introduction, access to a maximally en-
tangled pure state of two qubits is a useful resource for the
estimation of a local rotation, but this usefulness vanishes for
an observer who only has access to one of the two qubits,
described by a maximally mixed state. This motivates the
more general idea that the quantum contribution to the degree
to which a given resource can be exploited is maximized for a
notional observer who has access to a pure state of the system,
with any classical component arising from the presence of
mixing when there is only partial access.

Accordingly, if the quantumness of some resource is quan-
tified by a measure Q(X,Y, . . . |ρ), for some set of operators
X,Y, . . . and state ρ, the maximum potential of the resource,
M(X,Y, . . . |ρ), is defined by

M(X,Y, . . . |ρ) := Q(X ⊗ 1a,Y ⊗ 1a, . . . |ρψ ), (7)

where ρψ ≡ |ψ〉〈ψ | is a purification of state ρ on the ten-
sor product H ⊗ Ha of the system Hilbert space H with an
ancillary Hilbert space Ha [15]. This immediately yields a
corresponding quantum-classical decomposition of the form

M(X,Y, . . . |ρ) = Q(X,Y, . . . |ρ) + C(X,Y, . . . |ρ), (8)

generalizing Eq. (1), with C(X,Y, . . . |ρ) := Q(X ⊗ 1a,Y ⊗
1a, . . . |ρψ ) − Q(X,Y, . . . |ρ) representing the classical com-
ponent of the resource relative to an observer who only has
access to the mixed state ρ of the system (rather than to the
purified state ρψ ).

Several examples and generalizations are given below, but
first three natural assumptions for Q(X,Y, . . . |ρ) are identi-
fied (related requirements have been previously discussed by
Luo [1,2] and Korzekwa et al. [4]).

(i) It will be assumed that there is no potential quantum
resource to exploit if the relevant operators commute with the
state of the system, i.e.,

Q(X,Y, . . . |ρ) = 0 if [X, ρ] = [Y, ρ] = · · · = 0. (9)

Hence, the quantumness acts as a measure of noncommutativ-
ity.

(ii) The decomposition must be well defined, with the
values of the quantum and classical components being inde-
pendent of the choice of purification. This is guaranteed by
the assumption that Q(X,Y, . . . |ρ) is invariant under unitary
transformations, i.e.,

Q(X,Y, . . . |ρ) = Q(UXU †,UYU †, . . . |UρU †) (10)

for all unitary transformations U . In particular, noting that any
two purifications ρψ and ρψ ′ can be related by a local uni-
tary transformation U = 1 ⊗ Ua acting on the tensor product
H ⊗ Ha [15], where this leaves operators on H invariant, it
follows that Eqs. (7) and (8) are independent of the choice of
purification as required.

(iii) The classical component must be non-negative, and
vanish for pure states (i.e., when there is no classical mixing).
This is equivalent, via Eqs. (7) and (8), to the assumption that
the quantumness increases under purification (e.g., when an
observer gains access to the full quantum system), i.e., that

Q(X,Y, . . . |ρ) � Q(X ⊗ 1a,Y ⊗ 1a, . . . |ρψ ) (11)

for any purification ρψ of ρ. In particular, this assumption
ensures that C(X,Y, . . . |ρ) � 0, with equality for pure states,
as desired.

The main advantage of the above construction method
is that the maximum potential value of a quantum resource
accessible to an observer, M, and the classical contribution
due to mixing, C, are fully determined by the choice of the
quantumness (or noncommutativity) measure Q. Other advan-
tages are the applicability to arbitrary sets of operators and the
straightforward extension to nonprojective observables and
quantum channels, as illustrated in the examples below. An
alternative method of constructing quantum-classical decom-
positions, based on convex and concave roofs of pure-state
resource measures, is discussed in the Appendix.
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B. Examples

It is convenient in what follows to call a given discrete
observable X a projective observable if the correspond-
ing POVM {Xx} consists of orthogonal projections, i.e.,
XxXx′ = δxx′Xx, and a nonprojective observable otherwise.
Note that a projective observable X is equivalently represented
by the Hermitian operator X ≡ ∑

x xXx. The distinction be-
tween a projective observable and its corresponding Hermitian
operator will always be clear by context.

1. Skew information, variance, and the Fisher information matrix

Luo’s decomposition of the variance of a projective observ-
able into quantum and classical contributions [1,2],

Varρ (X ) = Mskew(X |ρ) = Qskew(X |ρ) + Cskew(X |ρ) (12)

as per Eq. (2), corresponds to choosing the quantumness mea-
sure to be the skew information of the observable with respect
to the state [3], i.e.,

Qskew(X |ρ) := 1
2 Tr{(i[X,

√
ρ])2}. (13)

The skew information may be physically interpreted as, for
example, a measure of the information content of an ensemble
that conserves X [3]; a variant of quantum Fisher information
in quantum metrology [1,16,17]; a measure of asymmetry
[18]; or (for nondegenerate observables) as a measure of co-
herence [19,20].

Note that assumptions (9) and (10) are trivially satisfied
by the skew information, while assumption (11) follows be-
cause Qskew(X ⊗ 1a|ρψ ) = Varρ (X ) for any purification of ρ,
implying via identity (2) and Eq. (12) that

Cskew(X |ρ) = Tr{[ρ1/4(X − 〈X 〉ρ )ρ1/4]2} � 0. (14)

Hence, properties (i)–(iii) of Sec. II A all hold as required.
The above decomposition can be generalized to the case of

more than one projective observable, and to other measures
of quantum Fisher information, using recent results by Kudo
and Tajima [21]. In particular, let Q f

F (X1, X2, . . . |ρ) denote
the quantum Fisher information matrix corresponding to a
given monotone metric function f , for some set of projective
observables X1, X2, . . . and density operator ρ, where each
choice of f corresponds to a measure of the sensitivity of
the state to unitary transformations generated by these observ-
ables [16,21]. Assumptions (9)–(11) of Sec. II A hold for Q f

F
as a direct consequence of Theorem 9 of [21], and the con-
struction method yields the quantum-classical decomposition

M(X1, X2, . . . |ρ) = Covρ (X1, X2 . . . |ρ) = Q f
F + C f

F (15)

of the symmetrized covariance matrix, with coefficients
defined by

[Covρ (X1, X2, . . . |ρ)] jk := 1
2 〈XjXk + XkXj〉ρ − 〈Xj〉ρ〈Xk〉ρ.

(16)

Thus, the covariance matrix has an infinite family of quantum-
classical decompositions, with Eqs. (12)–(14) providing just
one particular example. It is shown in the Appendix that,
for the case of a single projective observable, the alternative
construction method given there picks out the particular

decomposition having the minimal Fisher information
(corresponding to the symmetric logarithmic derivative [16]).

2. Distance, Shannon entropy, and standard asymmetry

Shannon entropy is a well-known resource measure in var-
ious information contexts, and Korzekwa et al. have given a
corresponding quantum-classical decomposition for the case
of projective observables [4], as briefly described below. An
alternative decomposition of Shannon entropy is noted in
Appendix A 1, based on information properties of self-dual
quantum communication channels, i.e., communication chan-
nels which are invariant under a duality mapping between the
signal ensemble and the receiver measurement [22,23].

The decomposition in [4] corresponds to choosing the
quantumness to be a particular measure of the “distance” from
the state of the system to a set of postmeasurement states.
More generally, let d (ρ, σ ) � 0 be a positive function that
vanishes for ρ = σ , and define the corresponding measure
of quantumness for a projective observable X with associated
projection valued measure {Xx} via

Qd (X |ρ) := inf
σ

d (ρ, σX ) = inf
σ :[σ,X ]=0

d (ρ, σ ), (17)

where σ is implicitly restricted to the set of density operators
of the system and

σX :=
∑

XxσXx (18)

is the postmeasurement state for a projective measurement of
X on state σ . Such distance-based measures of quantumness
or noncommutativity are commonly used to quantify asym-
metry and coherence resources [18,24].

Note that Qd satisfies assumption (9) of Sec. II A by
construction, while assumptions (10) and (11) are satisfied
if d (ρ, σ ) is invariant under unitary transformations and is
nonincreasing under the partial trace operation—and in par-
ticular if d (ρ, σ ) is nonincreasing under general completely
positive trace preserving (CPTP) maps [15]. These properties
hold in the case of the relative entropy distance function [15],
defined by

d (ρ, σ ) = D1(ρ‖σ ) := Tr[ρ(log ρ − log σ )], (19)

for which Qd evaluates to the standard measure of asymmetry
[25,26],

Q1(X |ρ) = D1(ρ‖ρX ) = H (ρX ) − H (ρ), (20)

using the identity D1(ρ‖σX ) = H (ρX ) − H (ρ) + D1(ρX ‖σX ).
Here the subscript “1” provides the basis for a generaliza-
tion to Rényi asymmetry in the next example. The standard
asymmetry Q1(X |ρ) is equal to the increase in system entropy
due to a nonselective measurement of X , and is a useful
quantum resource measure in various contexts [4,18,24–29]
(these contexts typically have different sets of “free” states
and operations, but the resource measure itself has the same
form).

Korzekwa et al. simply postulate that the standard
asymmetry, Q1, is the intrinsically quantum contribution
to the Shannon entropy of the observable, H (X |ρ) :=
−∑

x p(x|ρ) log p(x|ρ) [4]. In contrast, an advantage of the
general approach in Sec. II A is that the link to Shannon
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entropy is derived rather than postulated. In particular, the
maximum potential of the standard asymmetry, available to
an observer with access to a purification |ψ〉〈ψ | of ρ, follows
from definition (7) and Eq. (20) as

M1(X |ρ) = H

(∑
x

Xx ⊗ 1a|ψ〉〈ψ | Xx ⊗ 1a

)
− H (|ψ〉〈ψ |)

= H

(∑
x

〈ψ |Xx ⊗ 1a|ψ〉|ψx〉〈ψx|
)

= H (X |ρ), (21)

where {|ψx〉} is the set of orthonormal states with
|ψx〉 proportional to (Xx ⊗ 1a)|ψ〉, and the last line fol-
lows via 〈ψ |Xx ⊗ 1a|ψ〉 = Tr[|ψ〉〈ψ |Xx ⊗ 1a] = Tr[ρXx] =
p(x|ρ). Hence, the approach in Sec. II A constructively gener-
ates the quantum-classical decomposition

H (X |ρ) = Q1(X |ρ) + C1(X |ρ) (22)

given in [4], with the classical contribution evaluating to

C1(X |ρ) = H (ρ) −
∑

x

p(x|ρ)H (XxρXx/p(x|ρ)). (23)

Note for any rank-1 projective observable X , with Xx ≡ |x〉〈x|,
that the classical contribution reduces to the von Neumann
entropy H (ρ) [4]. More generally, if H (X |ρ) is identified
with the entropy of the classical measurement record, then
the classical contribution equals the average decrease of the
system entropy due to making such a record.

Korzekwa et al. use decomposition (22) to obtain a simple
proof of entropic uncertainty relation (5) for rank-1 projective
observables [4]. The decomposition, uncertainty relation and
method of proof are generalized below to Rényi entropies and
to nonprojective observables. A rather different decomposi-
tion of Shannon entropy, based on a quantumness measure
for self-dual communication channels, is discussed in Ap-
pendix A 1.

3. Rényi asymmetry and Rényi entropy

A particular choice of interest for the distance function
d (ρ, σ ) in Eq. (17) is the quantum generalization of the
classical Rényi relative entropy [30] to the sandwiched Rényi
divergence [31,32],

d (ρ, σ ) = Dα (ρ‖σ ) := 1

α − 1
log Tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
, (24)

where the index α ranges over [0,∞). This generalizes the
relative entropy function in Eq. (19) (which corresponds to
the limit α → 1), and introductory expositions of its basic
properties may be found, for example, in [31,33]. The most
important of these properties for the purposes of this paper is
that it is nonincreasing under CPTP maps when α � 1

2 , i.e.,
the data-processing inequality

Dα[φ(ρ)‖φ(σ )] � Dα (ρ‖σ ), α � 1
2 , (25)

holds for any CPTP map φ [33,34].
For projective observables the above choice of d (x, y) gen-

erates the corresponding quantumness measure [6]

Qα (X |ρ) := inf
σ :[σ,X ]=0

Dα (ρ‖σ ) = inf
σ

Dα (ρ‖σX ) (26)

via Eq. (17). This measure generalizes the standard asym-
metry in Eq. (20), and is known as the Rényi asymmetry
of X with respect to ρ. It has found applications in the ar-
eas of quantum coherence, quantum information, time-energy
uncertainty relations, quantum metrology, and open quantum
systems [5–9].

Assumptions (9)–(11) hold for the Rényi asymmetry
Qα (X |ρ) when α � 1

2 as a consequence of data-processing
inequality (25), as may easily be checked. Further, the max-
imum potential of the Rényi asymmetry is directly related to
the Rényi entropy [30]

Hβ (X |ρ) := 1

1 − β
log

∑
x

p(x|ρ)β (27)

of observable X for state ρ, via

Mα (X |ρ) = Qα (X ⊗ 1a|ρψ ) = Hβ (X |ρ),
1

α
+ 1

β
= 2.

(28)

Here the first equality follows via definition (7) and the second
equality by showing, via direct minimization in Eq. (26), that
Qα (X | |ψ〉〈ψ |) = Hβ (|ψ〉〈ψ |X ) for any pure state |ψ〉, from
which Mα (X |ρ) = Hβ[(ρψ )X⊗1a ] = Hβ (X |ρ) follows by di-
rect calculation (see also the proof of Theorem 3 in [9]).
Hence, the general approach in Sec. II A yields the quantum-
classical decomposition

Hβ (X |ρ) = Qα (X |ρ) + Cα (X |ρ),
1

α
+ 1

β
= 2, (29)

of Rényi entropy, generalizing the case of Shannon entropy in
Eq. (22) (which corresponds to the limit α → 1). It follows
that the Rényi asymmetry Qα (X |ρ) is upper bounded by the
Rényi entropy Hβ (X |ρ), with equality for pure states [9]. In
contrast, the classical component Cα (X |ρ) vanishes for pure
states by construction, as befits a measure of mixedness, and
reaches the upper bound of Hβ (X |ρ) when X is classical with
respect to ρ, i.e., when [X, ρ] = 0. Decomposition (29) will
be used in Sec. III to obtain strong uncertainty relation (3) for
Rényi entropies.

4. Generalizing to nonprojective observables

The previous examples are restricted to projective observ-
ables. However, it is not difficult to generalize to arbitrary
observables, as required for the general results in Sec. III.

The idea is to exploit Naimark’s extension theorem, that
an observable X with POVM {Xx} on Hilbert space H can al-
ways be extended to a projective observable X̃ with projection
valued measure {X̃x} on a larger Hilbert space H̃, with

Xx = PX̃xP, (30)

where P denotes the projection from H̃ onto H [35–39].
It follows that any given measure of quantumness Q(X |ρ)
for projective observables can be extended to nonprojective
observables via (noting ρ̃ ≡ ρ on H̃ since Pρ̃P = ρ)

Q(X |ρ) := Q(X̃ |ρ̃) ≡ Q(X̃ |ρ). (31)

While this definition will typically depend on the choice of
extension mapping X → X̃ , the results obtained in this paper
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are valid for any choice. Hence, the mapping can and will be
left unspecified in what follows.

As a simple example, the extension of the skew information
in Eq. (13) to general observables follows, using PρP = ρ and
X̃xX̃x′ = δxx′ X̃x, as

Qskew(X |ρ) = 1
2 Tr{(i[ X ,

√
ρ])2} + Tr[ρ(X 2 − X

2
)], (32)

in terms of the moment operators X m := ∑
x xmXx. This is

independent of the mapping Xx → X̃x and reduces to Eq. (13)
for projective observables. Note that the second term is typi-
cally nonzero for nonprojective observables, corresponding to
an additional information resource if the extended observable
is physically accessible. Remarkably, the maximum potential
of the resource is given by the variance for both projective and
nonprojective observables, with definition (7) leading to

Mskew(X |ρ) = Varρ (X ) = 〈X 2〉ρ − 〈X 〉2
ρ. (33)

Thus, the general decomposition of variance has the same
form as Eq. (12), with X replaced by X̄ in Eq. (14).

As a second example, the Rényi asymmetry in Eq. (26)
generalizes to

Qα (X |ρ) = inf
σ :[σ,X̃ ]=0

Dα (ρ‖σ ) = inf
σ

Dα (ρ‖σX̃ ) (34)

where, as always, σ is implicitly restricted to range over the
density operators of the system (hence, PσP = σ ). Thus, the
asymmetry quantifies the distance from the state of the system
to the set of postmeasurement states following a measurement
of X̃ . Such postmeasurement states do not typically lie in
the Hilbert space H of the system, and hence the asymmetry
will typically be nonvanishing for nonprojective observables
(see also Corollary 2), corresponding to the sensitivity of ρ to
unitary displacements generated by X̃ on the extended Hilbert
space. If such displacements are not physically accessible then
the generalized asymmetry might more appropriately be re-
ferred to as hidden asymmetry (or perhaps superasymmetry).

Note from Eq. (30) and the property PρP = ρ that
Tr[ρX̃x] = Tr[ρXx], implying that Hβ (X̃ |ρ) = Hβ (X |ρ). It
follows immediately that Eq. (34) generates a quantum-
classical decomposition of Rényi entropy having precisely
the same form as Eq. (29) for projective observables. Fur-
ther, it is straightforward to show, using definition (34) and
P|ψ〉 = |ψ〉, that for a pure state ρ = |ψ〉〈ψ | the generalized
asymmetry is given by

Qα (X | |ψ〉〈ψ |) = Hβ (X | |ψ〉〈ψ |), 1

α
+ 1

β
= 2, (35)

similarly to the case of projective observables. Hence, Eq. (29)
for the general case implies that the classical contribution to
the Rényi entropy vanishes for pure states for both projective
and nonprojective observables, i.e.,

Cα (X | |ψ〉〈ψ |) = 0, α � 1
2 . (36)

Finally, it is of interest to note that the general defini-
tion of asymmetry in Eq. (34) reduces to Eq. (26) for the
case of projective observables, irrespective of the choice of
extension mapping Xx → X̃x. In particular, if PEP is a pro-
jection for two projections P and E , then writing P⊥ = 1 −
P one has (PEP⊥)(PEP⊥)† = PEP − (PEP)2 = 0, and so
PEP⊥ = 0 = P⊥EP, yielding E = (P + P⊥)E (P + P⊥) =

PEP + P⊥EP⊥, from which [P, E ] = 0 follows. Hence, if X
is a projective observable then [P, X̃x] = 0 via Eq. (30). But ρ

and σ in Eq. (34) similarly commute with P (since PρP = ρ

and PσP = σ ), and evaluation of the right-hand side then
leads directly to Eq. (26) as claimed.

5. Asymmetry of sets vs groups vs algebras vs channels

It is straightforward to generalize the class of distance-
based quantumness measures in Eq. (17) from the case of
a single projective observable X to any set S of bounded
operators, via

Qd (S|ρ) := inf
σ :[σ,X ]=0 ∀X∈S

d (ρ, σ ) = inf
σ∈S′

d (ρ, σ ), (37)

where σ again is implicitly restricted to the set of density
operators of the system and

S′ := {Y : [X,Y ] = 0 ∀X ∈ S} (38)

denotes the commutant of S, i.e., the set of operators that
commute with all members of S. This generalized measure is,
therefore, the distance from the state of the system to the set
of states that commute with the operators in S. Such measures
are commonly used to quantify asymmetry resources, i.e.,
the degree to which the state is noninvariant with respect to
members of S, when S is either (i) a unitary representation
of some group [7,9,18,25,26,28,29] or (ii) an operator algebra
[6,8,40].

Remarkably, while the cases of arbitrary sets, unitary group
representations, and operator algebras may appear to repre-
sent prima facie significant distinctions, this is in fact not
so, provided that either S or S′ in Eq. (37) is closed un-
der the adjoint operation (as is usually the case in practice
[6–9,18,25,26,28,29,40]). For example, the standard asym-
metry (20) of a projective observable X is equivalently
represented in Eq. (37) via any of the set {X }, the group
of unitary operators {eiaX }, and the algebra of operators that
commute with X . Links between these cases are therefore
briefly clarified below for the interested reader, including
their unification via the extension of quantumness to quantum
channels, and applications to the standard asymmetry measure
(other readers may wish to skip directly to Sec. III).

Proposition 1. If either S or S′ is closed under the adjoint
operation, then the quantumness measure Qd (S|ρ) in defini-
tion (37) is invariant under the replacement of the set S by
the von Neumann algebra S′′, or by the group GS′′ of unitary
operators in S′′ (where both replacements are closed under the
adjoint operation).

Proof. Note that S′ is closed under the adjoint operation
under either of the conditions of the proposition, since the
closure of S under the adjoint implies that [X †,Y ] = 0 for all
X ∈ S and Y ∈ S′, which is equivalent to [X,Y †] = 0. Further,
S′ is closed under multiplication and addition (since [X,Y ] =
[X, Z] = 0 implies [X,Y Z] = [X,Y + Z] = 0), and contains
the unit operator (since [X,1] ≡ 0). Hence, S′ is an algebra,
and the closure of S′ under the adjoint operation guarantees
that it is a von Neumann algebra [41]. Now, any von Neumann
algebra a is equal to its double commutant a′′, and its com-
mutant a′ is also a von Neumann algebra [41]. Hence, S′ =
(S′)′′ = (S′′)′, implying that Qd (S|ρ) = Qd (S′′|ρ) as claimed.
Moreover, any element of a von Neumann algebra can be
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written as a linear combination of (at most four of) its unitaries
[41], and hence an operator commutes with the members of
the von Neumann algebra S′′ if and only if it commutes with
the members of the group GS′′ of unitary operators in S′′.
Thus, S′ = (S′′)′ = (GS′′ )′, implying Qd (S|ρ) = Qd (S′′|ρ) =
Qd (GS′′ |ρ) as claimed. Note each replacement is closed under
the adjoint operation, since S′′ is a von Neumann algebra and
U −1 = U † for U ∈ GS′′ . �

Thus, for example, a distance-based measure of rotational
asymmetry has the same value irrespective of whether S in
Eq. (37) is chosen to be (a) the set of rotation operators
{Jx, Jy, Jz}, (b) the algebra generated by these operators, or
(c) the unitary representation {eiJ·n} of the rotation group
[42]. This general link between sets, groups, and algebras of
operators is further illuminated by extending the definition of
Qd to quantum channels.

In particular, for a given distance function d (ρ, σ ) and
CPTP map φ, define

Qd (φ|ρ) := inf
σ

d (ρ, φ(σ )). (39)

Thus, Qd (φ|ρ) is the distance from ρ to the set of output
states of the channel, and may be interpreted as a measure
of how closely ρ can be prepared via the channel. Further,
this measure reduces to Qd (X |ρ) in Eq. (17) for the channel
φX (σ ) := σX . It is therefore natural to ask, for the general
case of an arbitrary set of operators S, whether there is a
corresponding channel φS such that

Qd (S|ρ) = Qd (φS|ρ) (40)

i.e., such that the range of φS is equal to the commutant S′ of S.
It turns out that, under the closure assumption of Proposition
1, the answer is largely affirmative.

First, if S = {X } for some projective operator X , then

φS (σ ) = φX (σ ) :=
∑

x

XxσXx = σX (41)

as noted above. Second, if the group GS′′ = {Ug} of unitary
operators on S′′ is compact, with normalized measure dg, then
φS is the twirling map [25,26]

φS (σ ) = φGS′′ (σ ) :=
∫

dgUgσU †
g . (42)

Third, if the system Hilbert space is finite dimensional, then

φS (σ ) := ES′ (σ ) (43)

where, for a given von Neumann algebra a, Ea denotes the
conditional expectation map defined via [6,41]

Tr[XY ] ≡ Tr[XEa(Y )] (44)

for X ∈ a and arbitrary Y . These maps agree on their common
domains, and cover most situations of interest.

Finally, these maps allow the explicit evaluation of the
standard asymmetry Q1(S|ρ) in most cases.

Proposition 2. If S = {X } for a projective observable X
and/or GS′′ is compact and/or the system Hilbert space is
finite dimensional, for some set of operators S, and d (ρ, σ )
is the relative entropy distance function in Eq. (19), then the
standard asymmetry measure Q1(S|ρ) defined in Eq. (37) is

given by

Q1(S|ρ) = D1[ρ‖φS (ρ)] = H[φS (ρ)] − H (ρ). (45)

Proof. The result relies on the composition properties
φ ◦ φ = φ and φ ◦ f = f ◦ φ for any numerical function
f , and the duality property φ∗ = φ, which may be checked
to hold when φ is any of the maps in Eqs. (41)–(43).
In particular, these three properties, used in turn, yield
Tr[ρ log φ(σ )] = Tr[ρ log φ ◦ φ(σ )] = Tr{ρφ[log φ(σ )]}=
Tr[φ(ρ) log φ(σ )]. Hence, definitions (19) and (39) give

D1(ρ‖φ(σ )) − D1(ρ‖φ(ρ)) = Tr{φ(ρ)[log φ(ρ)− log φ(σ )]}
= D1[φ(ρ)‖φ(σ )] � 0,

implying Q1(φ|ρ) = D1[ρ‖φ(ρ)] + infσ D1[φ(ρ)‖φ(σ )] =
D1[ρ‖φ(ρ)]. Thus, since Eq. (40) holds under the stated
conditions,

Q1(S|ρ) = Q1(φ|ρ) = Tr[ρ log ρ] − Tr[ρ log φ(ρ)]

= −H (ρ) − Tr[φ(ρ) log φ(ρ)] = H[φ(ρ)] − H (ρ)

as required. �
Proposition 2 implies that φS (ρ) is the output state of φS

that is closest to ρ, when distance is measured via relative
entropy, and significantly generalizes Eq. (20) for the standard
asymmetry of single observables. It has been previously given
by Gao et al. for the case that S is a von Neumann algebra on
a finite Hilbert space [6]. Note also that Corollary 2.3 of Gao
et al. for strong subadditivity generalizes to [using (S ∪ T )′ =
S′ ∩ T ′ and Proposition 1] the uncertainty relation

Q1(S|ρ) + Q1(T |ρ) � Q1(S ∪ T |ρ), (46)

for the standard asymmetry of any two sets S and T for which
φS ◦ φT = φT ◦ φS . The following section is concerned with
uncertainty relations for Rényi asymmetry.

III. TRADEOFF RELATIONS FOR ASYMMETRY
AND ENTROPY

A. Rényi asymmetry vs Rényi entropy

The Rényi asymmetry Qα (X |ρ) in Eqs. (26) and (34) rep-
resents the distance between the state of the system and a
set of postmeasurement states for X , as measured via the
sandwiched Rényi divergence in Eq. (24). It is also a measure
of the sensitivity of the state to transformations generated by
X (or its Naimark extension), and is the quantum component
in the quantum-classical decomposition of Rényi entropy in
Eq. (29). It reduces to the standard asymmetry given by the
quantum relative entropy in Eq. (20) for the case α = 1,
and the general case has recently been found to have useful
applications in the areas of quantum information, quantum
metrology, quantum coherence, open quantum systems, and
time-energy uncertainty relations [5–9].

As the intrinsically quantum contribution to Rényi entropy,
Rényi asymmetry should be expected to play a fundamen-
tal role in entropic uncertainty relations. This expectation
is supported by uncertainty relation (46) of Gao et al. for
the standard asymmetry. In particular, for two conjugate
rank-1 projective observables X and Y on a d-dimensional
Hilbert space, with Xx = |x〉〈x|, Yy = |y〉〈y| and |〈x|y〉|2 =
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d−1, one has (σX )Y = (σY )X = d−11 from Eq. (18), imply-
ing φ{X,Y }(σ ) = d−11 from Eqs. (37) and (40), and Eq. (46)
simplifies to

Q1(X |ρ) + Q1(Y |ρ) � Q1({X,Y }|ρ) = log d − H (ρ) (47)

with Q1({X,Y }|ρ) evaluated via Proposition 2. Noting that
H (ρX ) = H (X |ρ) and H (ρY ) = H (Y |ρ) for such observ-
ables, and applying Eq. (20), this is equivalent to the tradeoff
relation,

Q1(X |ρ) + H (Y |ρ) � log d, (48)

between the standard asymmetry and Shannon entropy of
the observables [and to the strong entropic uncertainty re-
lation H (X |ρ) + H (Y |ρ) � log d + H (ρ) for the Shannon
entropies of such observables [4,13]].

A second example is the analogous tradeoff relation

Qα (Jz|ρ) + Hα (	|ρ) � log 2π, α � 1
2 , (49)

for angular momentum and rotation angle [9]. Noting the
upper bound Qα (Jz|ρ) � Hβ (Jz|ρ) from Eq. (29), this imme-
diately implies and so is stronger than the standard uncertainty
relation Hα (Jz|ρ) + Hβ (	|ρ) � log 2π for the Rényi en-
tropies of these observables [43].

It is shown here that similar tradeoff relations hold for
arbitrary pairs of discrete observables, whether projective or
nonprojective. However, the case of one projective and one
arbitrary observable will be considered first, as the derivation
is particularly simple for this case.

Theorem 1. For a discrete projective observable X with
projection valued measure {Xx}, and an arbitrary discrete ob-
servable Y with POVM {Yy}, one has the tradeoff relation

Qα (X |ρ) + Hα (Y |ρ) � − log max
x,y

λmax(XxYyXx ), α � 1
2 ,

(50)

between Rényi asymmetry and entropy, where λmax(A) is the
maximum eigenvalue of Hermitian operator A.

Proof. The proof is a generalization of the derivation given
by Korzekwa et al. of entropic uncertainty relation (5) for
rank-1 projective observables [4]. First, define a “measure and
discard” CPTP map ϕY , from the Hilbert space of the system
to the Hilbert space of a record system suitable for registering
the result of a measurement of Y , via

ϕY (ρ) :=
∑

y

Tr[ρYy]|y〉〈y|, (51)

where {|y〉} is an orthonormal basis for the record system.
Equation (18) and data-processing inequality (25) for the
sandwiched Rényi divergence then give

Dα (ρ‖σX ) � Dα[ϕY (ρ)‖ϕY (σX )]

= 1

α − 1
log

∑
y

Tr[ρYy]αTr[σXYy]1−α

= 1

α − 1
log

∑
y

Tr[ρYy]αTr

[
σ

∑
x

XxYyXx

]1−α

.

The final trace is over a sum of orthogonal subspaces, corre-
sponding to the set of projections Xx. Hence, this trace is max-

imized, for a given value of y, when σ is the eigenstate corre-
sponding to the maximum possible eigenvalue of XxYyXx over
all x, and so is upper bounded by μ = maxx,y λmax(XxYyXx ).
Thus, noting that 1

α−1 log
∑

y a(y)b(y)1−α is monotonic de-
creasing in b(y) for a(y), b(y), α � 0, the Rényi asymmetry
in Eq. (26) has the lower bound

Qα (X |ρ) = inf
σ

Dα (ρ‖σX )

� inf
σ

1

α − 1
log

∑
y

Tr[ρYy]αμ1−α

= − 1

1 − α
log

∑
y

p(y|ρ)α − log μ. (52)

Recalling the definition of Rényi entropy in Eq. (27), this is
equivalent to the statement of the theorem. �

Theorem 1 provides a strong link between asymmetry and
entropy that significantly extends tradeoff relations (48) and
(49) for conjugate observables. It further leads to strengthened
uncertainty relations for Rényi entropies, as discussed further
below. Note that the proof of the theorem is relatively ele-
mentary, relying on a simple manipulation of data-processing
inequality (25) for the sandwiched Rényi divergence, suggest-
ing it may also be used to obtain analogous tradeoff relations
for other distance-based measures of quantumness or asym-
metry.

Noting that the asymmetry Qα (X |ρ) vanishes for [X, ρ] =
0 [consistent with Eq. (9) for measures of quantumness], The-
orem 1 gives a lower bound for the Rényi entropy Hα (Y |ρ)
in this case. A particular choice of X yields the following
interesting albeit weak corollary.

Corollary 1. For an arbitrary discrete observable X with
POVM {Xx}, and state ρ with spectral decomposition ρ =∑

j e jE j (i.e., Ej is the projection onto the eigenspace cor-
responding to eigenvalue e j of ρ), one has the lower bound

Hα (X |ρ) � − log max
x, j:e j>0

λmax(EjXxEj ), α � 1
2 , (53)

for Rényi entropy.
Proof. Define the projection onto the support of ρ by

E := ∑
j:e j>0 Ej , implying ρ = EρE , and let YE be the pro-

jection of Y onto the support of ρ, with POVM {EYyE}.
Replacing X by ρ and Y by YE in Theorem 1 gives
a vanishing asymmetry Qα (ρ|ρ) = 0 via definition (26)
and a lower bound μρYE = maxy, j:e j>0 λmax(EjEYyEEj ) =
maxy, j:e j>0 λmax(EjYyEj ) via EEj = Ej (= 0) for e j > 0
(= 0). Noting Hα (YE |ρ) = Hα (Y |ρ) and changing notation
from Y to X then yields the corollary as desired. �

Corollary 1 bounds the Rényi entropy of any observable in
terms of its degree of incompatibility with the system state.
Note that it represents a slight sharpening of Eq. (6) in the
Introduction, where the latter does not limit the maximiza-
tion to e j > 0, and implies a state-independent lower bound,
− log λmax(Xx ), via Ej � 1. However, the corollary does not
take the mixedness of the state into account, making it rela-
tively weak in comparison to bounds that do.

For example, Corollary 1 is weaker than the known classi-
cal lower bound

Hα (X |ρ) � H∞(X |ρ) = − log max
x

p(x|ρ) (54)
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for Rényi entropy, following from the monotonic decreas-
ing property Hα (X |ρ) � Hβ (X |ρ) for α < β [44,45], where
H∞ depends on mixedness via the eigenvalues e j of ρ. In
particular, the operator EjXxEj is nonzero only on the Tr[Ej]-
dimensional unit eigenspace of Ej and so has at most Tr[Ej]
nonzero eigenvalues, implying that the sum of its eigenval-
ues, Tr[EjXxEj], is upper bounded by Tr[Ej]λmax(EjXxEj ).
Hence, defining p j := e jTr[Ej], then

∑
j:p j>0 p j = 1 and

one has p(x|ρ) = ∑
j:e j>0 e jTr[EjXxEj] �

∑
j:p j>0 p jλmax

(EjXxEj ) � max j:e j>0 λmax(EjXxEj ). Maximizing over x im-
mediately implies the bound in Corollary 1 is never greater
than the bound H∞(X |ρ) in Eq. (54), as claimed (with equality
for pure states).

A second example will be given in Corollary 5 below,
which provides a strong lower bound for Rényi entropy that
depends on mixedness rather than incompatibility, and which
is stronger than both Corollary 1 and the classical bound (54)
for sufficiently mixed states.

The main technical result of this paper is a generalization
of Theorem 1 to all discrete observables, whether projective
or nonprojective, via the generalized definition of asymmetry
in Eq. (34).

Theorem 2. For arbitrary discrete observables X and Y ,
with corresponding POVMs {Xx} and {Yy}, one has the tradeoff
relation

Qα (X |ρ) + Hα (Y |ρ) � − log μXY , α � 1
2 , (55)

for asymmetry and entropy, where

μXY := max
x,y

λmax
(
X 1/2

x YyX 1/2
x

) = μY X (56)

denotes the maximum eigenvalue of X 1/2
x YyX 1/2

x over x and y.
Proof. It is first necessary to generalize Y to an observable

Ỹ on the extended Hilbert space H̃ for which the Naimark
extension (30) is defined for X . In particular, Ỹ is defined to
correspond to the POVM {Yy} ∪ {P⊥} on H̃, with P⊥ := 1̃− P,
and ϕY in Eq. (51) is generalized to the measure and discard
map

ϕỸ (ρ̃) :=
∑

y

Tr[ρ̃Yy]|y〉〈y| + Tr[ρ̃P⊥]|y⊥〉〈y⊥|, (57)

for general states ρ̃ on H̃, where |y⊥〉 is the record state
corresponding to POVM element P⊥. For system state ρ on H
and general state σ̃ on H̃ one then has, using data-processing
inequality (25) and noting that p(y⊥|ρ) = Tr[ρP⊥] = 0 via
ρ = PρP,

Dα (ρ‖σ̃X̃ ) � Dα[ϕỸ (ρ)‖ϕỸ (σ̃X̃ )]

= 1

α − 1
log

∑
y

Tr[ρYy]αTr[σ̃X̃Yy]1−α

= 1

α − 1
log

∑
y

Tr[ρYy]αTr

[
σ̃

∑
x

X̃xYyX̃x

]1−α

similarly to the proof of Theorem 1. Also similarly, noting that
the X̃x are orthogonal projections, the final trace is maximized
for a given value of y by choosing σ̃ to be the eigenstate corre-
sponding to the maximum over x of the maximum eigenvalue

of X̃xYyX̃x. Now,

λmax(X̃xYyX̃x ) = λmax
[(

X̃xY
1/2

y

)(
X̃xY

1/2
y

)†]
= λmax

[(
X̃xY

1/2
y

)†(
X̃xY

1/2
y

)]
= λmax

(
Y 1/2

y X̃xY
1/2

y

)
= λmax

(
Y 1/2

y PX̃xPY 1/2
y

)
= λmax

(
Y 1/2

y XxY
1/2

y

)
= λmax

(
X 1/2

x YyX 1/2
x

)
, (58)

with the second and last lines following from λmax(AA†) =
λmax(A†A), and the fourth and fifth lines from Yy = PYyP and
Eq. (30), respectively. Hence,

Qα (X |ρ) = inf
σ

Dα (ρ‖σX̃ )

� inf
σ̃

Dα (ρ‖σ̃X̃ )

� − 1

1 − α
log

∑
y

p(y|ρ)α − log μXY (59)

similarly to Eq. (52). This is equivalent to the statement of
the theorem, noting that μXY = μY X via the last two lines of
Eq. (58). �

Theorem 2 reduces to Theorem 1 when X is a projective
observable, and underpins the strong uncertainty relation for
Rényi entropies given in Theorem 3 below. Note that μXY can
also be written as

μXY = max
x,y

∥∥X 1/2
x Y 1/2

y

∥∥2

∞ = max
x,y

∥∥Y 1/2
y X 1/2

x

∥∥2

∞ (60)

where ‖A‖∞ = [λmax(A†A)]1/2 denotes the operator norm of
A, i.e., the largest singular value of A.

Theorem 2 immediately provides a simple lower bound for
Rényi asymmetry, as per the following corollary.

Corollary 2. For an arbitrary discrete observable X with
POVM {Xx} one has the lower bound

Qα (X |ρ) � − log max
x

λmax(Xx ), α � 1
2 , (61)

for the Rényi asymmetry of X .
Proof. Choose Y = 1 in Theorem 2 and observe that

Hα (1|ρ) ≡ 0. �
The lower bound in Corollary 2 is trivial for projective

observables, but typically nonvanishing otherwise, corre-
sponding to the “hidden” asymmetry discussed following
Eq. (34). For example, the lower bound is log 3

2 for the qubit
trine observable T discussed following Corollary 5.

Finally, it is worth noting here, as a preview to the next sec-
tion, that the standard uncertainty relation for Rényi entropies
in Eq. (4) of the Introduction has a simple direct derivation via
Theorem 2 for the case of Shannon entropy, i.e., α = β = 1,
as per the following corollary.

Corollary 3. For arbitrary discrete observables X and Y ,
with corresponding POVMs {Xx} and {Yy}, one has the en-
tropic uncertainty relation

H (X |ρ) + H (Y |ρ) � − log μXY (62)
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for Shannon entropy, where

μXY := max
x,y

λmax
(
X 1/2

x YyX 1/2
x

) = μY X (63)

denotes the maximum eigenvalue of X 1/2
x YyX 1/2

x over x and y.
Proof. The uncertainty relation follows immediately for

any pure state ρ = |ψ〉〈ψ |, from Eq. (35) and Theorem 2. It
then immediately follows for general states via the concavity
of Shannon entropy. �

Corollary 3 is given for rank-1 projective observables in
[10] and for arbitrary observables in [11], and generalized to
uncertainty relation (4) for Rényi entropies in [12]. However,
the proofs of Theorem 2 and Corollary 3 ultimately rely on
data-processing inequality (25), rather than on Riesz’s theo-
rem [10–12]. This has the advantage of leading to the stronger
uncertainty relation in Eq. (3) for Rényi entropies for very
little additional work, as will be shown next.

B. Strong uncertainty relations for Rényi entropies

It is straightforward to strengthen Corollary 3, so as to
obtain uncertainty relation (3) of the Introduction, which takes
the mixedness of the state into account.

Theorem 3. For arbitrary discrete observables X and Y ,
with corresponding POVMs {Xx} and {Yy}, one has the en-
tropic uncertainty relation

Hα (X |ρ) + Hβ (Y |ρ)

� − log μXY + max{Cα (Y |ρ),Cβ (X |ρ)} (64)

for Rényi entropies with 1/α + 1/β = 2, where Cα (Z|ρ) is
the classical contribution to Hβ (Z|ρ), defined via quantum-
classical decomposition (29), and

μXY := max
x,y

λmax
(
X 1/2

x YyX 1/2
x

) = μY X (65)

denotes the maximum eigenvalue of X 1/2
x YyX 1/2

x over x and y.
Proof. Substitution of the quantum-classical decomposi-

tion (29) of Hβ (X |ρ) into Theorem 2 gives

Hβ (X |ρ) + Hα (Y |ρ) � − log μXY + Cα (X |ρ) (66)

for 1/α + 1/β = 2. Comparing the inequality resulting from
swapping X with Y in this expression with the inequality
resulting from swapping α with β then yields the theorem as
desired. �

Recalling that the classical component Cα (X |ρ) vanishes
for pure states as per Eq. (36), it is seen that Theorem 3
improves on the standard uncertainty relations in Eq. (4) and
in Corollary 3 by taking the mixedness of the state into ac-
count. For example, for the special case α = β = 1 one has
the following corollary.

Corollary 4. For an arbitrary rank-1 discrete observable X
and an arbitrary discrete observable Y , with respective POVM
elements {|x〉〈x|} and {Yy}, the Shannon entropies of X and Y
satisfy the uncertainty relation

H (X |ρ) + H (Y |ρ) � − log max
x,y

〈x|Yy|x〉 + H (ρ). (67)

Proof. For projective observables this result is an immedi-
ate consequence of Eq. (23) and Theorem 3 for α = β = 1.
More generally, for any discrete observable X , with Naimark
extension X̃ , Eqs. (23) and (31) yield C1(X |ρ) = H (ρ) −

∑
x p(x|ρ)H (ρ̃x ), with ρ̃x := X̃xρX̃x/p(x|ρ) defined on the

extended Hilbert space. Hence, C1(X |ρ) � H (ρ) for all ob-
servables X (including X = Y ), with equality when X̃ is rank
1. But for a rank-1 observable X one can always choose X̃ to
be rank 1. In particular, expressing the projection X̃x as an
orthogonal sum of rank-1 projections, X̃x = ∑

k |x, k〉〈x, k|,
the Naimark extension property Xx = PX̃xP in Eq. (30) re-
quires that P|x, k〉 = 0 for all but one value of k, k = kx say,
implying one can replace X̃ by a rank-1 projective observable
X̃ ′ on the extended Hilbert space H̃ ′ generated by the span
of {|x, kx〉}, with X̃ ′

x := |x, kx〉〈x, kx|. Hence, making such a
choice, it follows that C1(X |ρ) = H (ρ) � C1(Y |ρ). Substitu-
tion into Theorem 3 with α = β = 1 then gives the corollary
as desired. �

Corollary 4 generalizes the known uncertainty relation for
Shannon entropies of rank-1 projective observables in Eq. (5)
of the Introduction [4,13], and is given in Eq. (71) of [14]
under the assumption of a finite system Hilbert space. Note
that H (ρ) appears as the measure of mixedness in this case
because it is an upper bound for classicality when α = β = 1
and is saturated for rank-1 observables.

Finally, Theorem 3 also yields a strong lower bound for the
Rényi entropy of discrete observables that takes mixedness
into account.

Corollary 5. For an arbitrary discrete observable X with
POVM {Xx} one has the lower bound

Hα (X |ρ) � − log max
x

λmax(Xx ) + C α
2α−1

(X |ρ), (68)

for Rényi entropy.
Proof. Choose Y = 1 in Theorem 3, and note that 0 �

Cα (1|ρ) � Hβ (1|ρ) = 0 via quantum-classical decomposi-
tion (29) (which is valid for arbitrary observables as discussed
in Sec. II B 4). The corollary also follows directly from the
asymmetry lower bound in Corollary 2, again using Eq. (29)
(but with α and β swapped). �

For the case of a rank-1 observable X and α = 1 one has
C1(X |ρ) = H (ρ) as per the proof of Corollary 4, and the lower
bound in Corollary 5 reduces to

H (X |ρ) � − log max
x

〈x|x〉 + H (ρ). (69)

This also corresponds to choosing Y = 1 in Corollary 4,
and is stronger than the alternative choice Y = X , which
replaces H (ρ) by 1

2 H (ρ). For rank-1 projective observables
(i.e., 〈x|x〉 ≡ 1), it reduces to the known property that the
Shannon entropy of such observables is never less than the von
Neumann entropy [since p(x|ρ) = ∑

j Sx j p j where Sx j :=
|〈x|ψ j〉|2 is a doubly stochastic matrix for any orthogonal
decomposition ρ = ∑

j p j |ψ j〉〈ψ j | of ρ].
It is of interest to compare Corollary 5, which gives a lower

bound for Rényi entropy that depends on the sharpness of
X and the mixedness of ρ, with classical lower bound (54).
As a simple example, consider the projective qubit observable
X = σ · n for spin direction n, and state ρ = 1

2 (1 + σ · r) with
Bloch vector r. Corollary 5 then yields the lower bound

H (X |ρ) � H (ρ) = −1 + r

2
log

1 + r

2
− 1 − r

2
log

1 − r

2
,

(70)
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FIG. 1. Lower bounds on measurement entropy for qubit states.
The lower bound in Eq. (70) for qubit observable X = σ · n, follow-
ing from Corollary 5, is plotted as a function of the Bloch vector
length r (upper solid blue curve), while the classical lower bound
(71) is plotted for the cases θn,r = 0, i.e., n · r = r (lower solid red
curve), and θn,r = π

3 , i.e., n · r = 1
2 r (dashed black curve). Corre-

sponding plots of the lower bounds for the measurement entropy
of the trine observable T in Eqs. (72) and (73) may be obtained by
adding log 3

2 to each lower bound. For both observables the classical
lower bounds are seen to be weaker than the bound from Corollary 5
for sufficiently mixed states, as discussed more generally in the main
text.

for the Shannon measurement entropy, with r := |r|. In con-
trast, the corresponding classical lower bound in Eq. (54)
gives

H (X |ρ) � log
2

1 + |n · r| = log
2

1 + r| cos θn,r| , (71)

where θn,r is the angle between n and r. Both lower bounds
range from zero for r = ±n up to log 2 for r = 0. However,
as depicted in Fig. 1, the bound in Eq. (70) is always stronger
for sufficiently mixed states [as is easily proved noting that
Eq. (70) is concave in r and Eq. (71) is convex in r, with
equality at r = 0].

As an example for the case where X is a nonprojec-
tive observable, consider the qubit trine observable X = T
with POVM elements Tj = 1

3 (1 + σ · m j ), where m j denotes
the unit vector [cos(2π j/3), sin(2π j/3), 0] for j = 0, 1, 2
[37,39,46]. Corollary 5 then gives the lower bound

H (T |ρ) � log 3
2 + H (ρ), (72)

whereas the classical lower bound (54) gives

Hα (T |ρ) � log 3
2 + log

2

1 + r max j cos θm j ,r
, (73)

where θn,r is the angle between m j and r. While both lower
bounds range from a minimum value of log 3

2 for r = m j ,
up to the maximum possible value of Hα (T |ρ) = log 3 for
r orthogonal to the plane of trine directions, the bound in
Eq. (72) is always stronger for sufficiently mixed states, as
depicted in Fig. 1 (with the common term log 3

2 subtracted).
For example, if r is antialigned with one of the trine directions,
then cos θm j ,r is maximized for θm j ,r = π

3 and Corollary 5
outperforms classical lower bound (54) (and hence also

Corollary 1) for r � 0.753, corresponding to the intersection
of the upper solid and dashed curves in Fig. 1.

More generally, for the case of an arbitrary observable X
and α = 1, Corollary 5 reduces to the lower bound

H (X |ρ) � − log max
x

λmax(Xx ) + H (ρ)

−
∑

x

p(x|ρ)H (ρ̃x ), (74)

for Shannon entropy, with ρ̃x := X̃xρX̃x/p(x|ρ), for any
Naimark extension X̃ of X as per Eq. (30) (see also the proof
of Corollary 4). This case is intriguingly similar in form to the
lower bound

H (X |ρa) � − log max
x

λmax(Xx ) + H (ρb)

−
∑

x

p(x|ρ)H (ρb|x ) (75)

for Shannon entropy in Eq. (65) of [14] for any joint state
ρab, with ρb|x := tra[ρabXx]/p(x|ρa). It would be of interest to
explore the connection between these bounds in future work.
This is nontrivial given that ρb = ∑

x p(x|ρa)ρb|x whereas ρ �=∑
x p(x|ρ)ρ̃x. The key may lie in the related asymmetry lower

bound given in Corollary 2.

IV. DISCUSSION

The results weave two main threads together. The first is a
general approach to quantum-classical decompositions of re-
source measures for observables (and sets of operators), based
on the idea that pure states are the most resourceful (Sec. II A).
The quantum contribution to the resource measure arises from
the noncommutativity or incompatibility of observables with
the state, and the classical contribution from the mixedness
of the state. The approach unifies previous decompositions
of variance and entropy, and generalizes them to the decom-
position of the symmetrized covariance matrix with respect
to measures of quantum Fisher information, and the decom-
position of Shannon entropy with respect to the conditional
entropy of self-dual communication channels (Secs. II B 1,
and II B 2 and Appendix A 1), and is applied to Rényi en-
tropy in particular (Sec. II B 3). In the latter case the quantum
contribution is provided by the Rényi asymmetry, with its
connection to Rényi entropy arising from duality relation (35)
for pure states.

The second thread is the generalization and unification of
measures of quantumness and asymmetry to nonprojective
observables (Sec. II B 4), and to sets, groups, and algebras of
operators and to quantum channels (Sec. II B 5). The Rényi
asymmetry is a particular example of interest, as it generalizes
the standard asymmetry measure based on relative entropy
and has applications in contexts as diverse as coherence, infor-
mation, uncertainty relations, metrology, and open quantum
systems.

The weaving of the two threads is in two natu-
ral stages. In the first stage, tradeoff relations between
Rényi asymmetry and Rényi entropy are obtained, as per
Theorems 1 and 2 (Sec. III A). These have relatively elemen-
tary derivations, based on data-processing inequality (25) for
sandwiched Rényi divergences, and significantly generalize
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known relations (48) and (49) for the case of conjugate ob-
servables. Corollaries 1–3 are simple applications of these
theorems that yield lower bounds for Rényi asymmetry and
Rényi entropy, and recover previously known uncertainty re-
lation (4) for the case of Shannon entropy. All these results
are independent of any consideration of quantum-classical
decompositions.

It is in the second stage that the tradeoff relations for
Rényi asymmetry are combined with the quantum-classical
decomposition of Rényi entropy in Eq. (29), to obtain the
strong uncertainty relation for Rényi entropies in Theorem
3 (Sec. III B). This relation is valid for both projective and
nonprojective observables, and improves on known uncer-
tainty relation (4) by taking the mixedness of the system state
into account via the classical contribution to Rényi entropy.
Corollary 4 recovers a general result from Theorem 3 for the
case of Shannon entropies, using the property that the classical
contribution is bounded by the von Neumann entropy of the
system for this case, while Corollary 5 gives a strong bound
for Rényi entropy that improves on Corollary 1 and classical
lower bound (54) for sufficiently mixed states.

It is worthwhile remarking here on a point of terminol-
ogy. The term “quantumness” has been used for the measure
of noncommutativity Q(X,Y, . . . |ρ) introduced in Sec. II A,
given its fundamental role as the inherently quantum contribu-
tion to uncertainty and other resource measures [1,2,4]. Note,
however, that the nonvanishing of a quantum commutator
has a direct classical analog: the nonvanishing of a classical
Poisson bracket. Hence, one can define classical analogs of
asymmetry and the like (e.g., as a measure of the distance
between a given phase-space distribution and the set of phase-
space distributions invariant under canonical transformations
generated by a given classical observable). Nevertheless, this
does not extend to give a classical analog of the approach
to quantum-classical decompositions in Sec. II A. In par-
ticular, this approach relies on the purification of a given
quantum state on a larger Hilbert space, whereas there is no
analogous purification of classical phase-space distributions
to a delta distribution on a larger phase space. Hence, the
term “quantumness” may be justified as reflecting an essen-
tially quantum feature in the context of quantum-classical
decompositions.

There are various possible directions for future work, in-
cluding the following. First, it is known that the bound μXY

in known uncertainty relation (4) can be improved using
majorization properties of Schur-convex functions such as
Rényi entropy [47,48]. This suggests looking for similar im-
provements to the lower bounds in Theorems 1–3. Perhaps,
for example, the argument based on a monotonic decreasing
function in the proof of Theorem 1 can be strengthened via a
majorization argument.

Second, it is of interest to seek analogous tradeoff relations
and uncertainty relations for continuous observables such as
position and momentum. Here the main technical issue is
that the kets appearing in the spectral decompositions of such
observables are non-normalizable, so that the analog of σX in
Eq. (18) is not a density operator. However, it may be pos-
sible to take suitable limits of discrete observables to obtain
results for this case, as has been done previously for Shannon
entropic uncertainty relations [49,50].

Third, whereas the measures of quantumness considered
in the paper are focused on measures of uncertainty and
asymmetry, consideration of other resource measures such
as entanglement and Bell nonlocality, and related quantum-
classical decompositions, is also a possible avenue of
exploration. One might, for example, maximize some measure
Q(X1 ⊗ X2,Y1 ⊗ Y2, . . . |ρ) or u(X1 ⊗ X2,Y1 ⊗ Y2, . . . |ψ )
over sets of local observables to obtain a measure of bipartite
entanglement for state ρ or ψ , and apply the approach in
Sec. II A or the alternative approach in Appendix A 2 to
obtain corresponding quantum-classical decompositions. It
would also be of interest to extend Proposition 2 for the
standard asymmetry measure, to sets S of two or more
(noncommuting) operators on an infinite Hilbert space, for
the case that the group of unitary operators on the double
commutant S′′ is noncompact.

Fourth and finally, it should be possible to extend or relate
the strong uncertainty relation in Theorem 3 to the pres-
ence of quantum memory or quantum side information, in
which uncertainties are conditioned on systems with which
the system of interest is correlated [13,14]. For example,
the general method given by Coles et al. in [51] is appli-
cable to Rényi conditional entropies of the form Hα (a|b) :=
− infσb Dα (ρab‖1a ⊗ σb), noting that the sandwiched Rényi
divergence (24) satisfies the required properties for α �
1
2 . Hence, noting further the duality property Hα (a|b) +
Hβ (a|c) = 0 for 1/α + 1/β = 2 and any pure state ρabc

[31,33], Theorem 1 of [51] yields an uncertainty relation of
the form

Hα (X |b) + Hβ (Y |c) � − log μXY ,
1

α
+ 1

β
= 2, (76)

where X and Y are observables on the first compo-
nent of a tripartite state ρabc, ρXb := ⊕xTrac[ρabcXx ⊗
1b ⊗ 1c] ≡ ϕX (ρab), and ρY c := ⊕yTrab[ρabcYy ⊗ 1b ⊗ 1c] ≡
ϕY (ρac) (see also Theorem 11 of [31]). It would be of inter-
est to find a connection between quantum memory and the
classical contribution to Rényi entropy via a comparison of
this uncertainty relation with Theorem 3 (see also the related
discussion at the end of Sec. III B).
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APPENDIX: FURTHER EXAMPLES
OF QUANTUM-CLASSICAL DECOMPOSITIONS

1. Decomposition of Shannon entropy via a quantumness
measure for self-dual channels

A quantum-classical decomposition of Shannon entropy is
obtained here that is quite different from the decomposition of
Korzekwa et al. [4] discussed in Sec. II B 2, based on a choice
of quantumness measure that arises in the context of quantum
communication channels.

In particular, consider the communication channel defined
by measuring observable X with POVM {Xx} at the receiver,
on members of an ensemble of signal states with average
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density operator ρ, for the case of the “dual” ensemble
EX,ρ := {px; ρx} defined by [22,23]

px := Tr[ρXx], ρx := ρ1/2Xxρ
1/2

Tr[ρXx]
(A1)

(note that ρ = ∑
x pxρx, and the choice of ρx is left arbitrary if

px = 0). This “self-dual” channel is invariant under source du-
ality, i.e., interchange of the signal ensemble and the receiver
measurement [22,23]. It provides a strong lower bound for
the maximum information obtainable from a measurement of
X on an ensemble with density operator ρ [23], and is closely
related via the inverse map pxρx → Xx to the “pretty good
measurement” used in the proof of the Holevo-Schumacher-
Westmoreland theorem for the classical capacity of a quantum
channel [15].

Each measurement result x of the self-dual channel gives
some information about which signal state ρx′ was transmit-
ted, with an average uncertainty quantified by the Shannon
conditional entropy [15]:

H (X ′|X ) := H (X, X ′) − H (X ) = H (X ′) − I (X : EX,ρ ).

(A2)

Here I (X : EX,ρ ) is the mutual information of the channel,
and H (X ′) = −∑

x′ px′ log px′ = H (X |ρ) is the entropy of
the signal-state distribution px′ in Eq. (A1). Note that the joint
distribution of X and X ′ for state ρ follows via Eq. (A1) as

p(x, x′|ρ) := Tr[ρ1/2Xx′ρ1/2Xx]. (A3)

Now, if X is a projective observable, then the conditional
entropy of the self-dual channel provides a measure of quan-
tumness satisfying assumption (9) of Sec. II A [since [X, ρ] =
0 implies the signal states in Eq. (A1) are orthogonal, so that
one has a noiseless classical channel with H (X, X ′) = H (X )].
Further, assumptions (10) and (11) are also satisfied (noting
for a pure state ρ = |ψ〉〈ψ | that the signal states are identical
and hence carry no information). Hence, noting p(x, x′) in
Eq. (A3) is invariant under Naimark extension (30) (since
PρP = ρ), it follows that the conditional entropy of the self-
dual channel in Eq. (A2) is a measure of quantumness for both
projective and nonprojective observables, corresponding to

Qsd(X |ρ) := H (X |ρ) − I (X : EX,ρ ). (A4)

Recalling from Eq. (A1) that the signal states are identical
and carry no information when ρ is pure, it follows that
Msd(X |ρ) = H (X̃ ⊗ 1a|ρψ ) = H (X |ρ) for any Naimark ex-
tension X̃ of X and purification ρψ of ρ, and the approach of
Sec. II A then yields the quantum-classical decomposition

Msd (X |ρ) := H (X |ρ) = Qsd(X |ρ) + Csd(X |ρ) (A5)

of Shannon entropy, with the classical component given by the
mutual information of the self-dual channel, i.e.,

Csd(X |ρ) := I (X : EX,ρ ) = 2H (X |ρ) − H (X, X ′|ρ). (A6)

Here the second equality follows by direct calculation [23],
where the last term is the Shannon entropy of the joint proba-
bility distribution in Eq. (A3).

The decompositions of Shannon entropy in Eqs. (22) and
(A5) are seen to be rather different, although by construc-
tion they agree for projective observables when [ρ, X ] = 0 or

ρ = |ψ〉〈ψ |. It would be of interest to compare these decom-
positions in more detail elsewhere.

2. An alternative roof-based approach
to quantum-classical decompositions

The method of constructing quantum-classical decomposi-
tions in Sec. II A is guided by the level of accessibility, and
hence usefulness, of a given quantum resource. In particular,
the classical component arises due to lack of access to a
purified state of the system. Here an alternative approach is
briefly described, based on the direct decomposition of the
system state into a mixture of pure states. The approach is
conceptually simple, but appears to be less general and tech-
nically more challenging than the approach given in the main
text.

The starting point is a function u(X,Y, . . . , |ψ ) that quan-
tifies a quantum resource for the pure states of a given system.
It is natural to consider such functions in various contexts,
e.g., the entropy of the Schmidt coefficients for an entangled
pure state. The function u is assumed to satisfy two minimal
properties: (a) no quantumness when the system is in a simul-
taneous eigenstate of observables X,Y, . . . , i.e.,

u(X,Y, . . . |ψ ) = 0 if Xψ = xψ,Y ψ = yψ, . . . , (A7)

and (b) invariance under unitary transformations, i.e.,

u(UXU †,UYU †, . . . |Uψ ) = u(X,Y, . . . |ψ ) (A8)

for any unitary transformation U .
Now, let Pρ denote the set of pure-state decompositions of

density operator ρ, i.e.,

Pρ :=
{
{p j ; ψ j} : p j � 0,

∑
j

p j |ψ j〉〈ψ j | = ρ

}
, (A9)

where |ψ〉〈ψ | denotes the density operator corresponding to
ψ . The quantum-classical decomposition corresponding to
function u is then defined via

M(X,Y, . . . |ρ) := sup
{p j ;ψ j}∈Pρ

∑
j

p ju(X,Y, . . . |ψ j ), (A10)

Q(X,Y, . . . |ρ) := inf
{p j ;ψ j}∈Pρ

∑
j

p ju(X,Y, . . . |ψ j ), (A11)

C(X,Y, . . . |ρ) := M(X,Y, . . . |ρ) − Q(X,Y, . . . |ρ). (A12)

Thus, M and Q are the concave and convex roofs of u, with
the classical component given by their gap.

It is straightforward to check that the above construc-
tion satisfies the basic requirements discussed in Sec. II A.
Assumption (9) follows from property (A7), noting that com-
mutativity implies there is a pure-state decomposition into
simultaneous eigenstates, while assumptions (10) and (11)
are direct consequences of property (A8) and definitions
(A10)–(A12), respectively. It is seen that the classical mixing
contribution arises in this approach directly via the mixing of
pure states, in contrast to the approach in Sec. II in which the
mixing is generated via a partial trace.
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a. Example: Variance and minimal Fisher information

As a first example, choose u to be the variance of a projec-
tive observable, i.e.,

uV (X |ψ ) := VarψX = 〈X 2〉ψ − 〈X 〉2
ψ. (A13)

The concave and convex roofs of this function are given in
[52,53], respectively (see also [54]), and the above “roof”
construction then yields the corresponding quantum-classical
decomposition

MV (X |ρ) = VarρX = QV (X |ρ) + CV (X |ρ), (A14)

where

QV (X |ρ) = 1

2

∑
j,k

|〈 j|[X, ρ]|k〉|2
〈 j|ρ| j〉 + 〈k|ρ|k〉 . (A15)

Here {| j〉} is the set of eigenstates of ρ and the summation
runs over the eigenstates that generate nonzero denominators.
The summation may be recognized, up to a constant factor,
as the minimal quantum Fisher information, corresponding
to the symmetric logarithmic derivative [16,52,53], and hence
this decomposition of the variance is a special case of the de-
composition of the covariance matrix in Eq. (15) of Sec. II B.
Thus, the roof construction method picks out a preferred quan-
tum Fisher information for the decomposition, in comparison
to the method in the main text.

b. Example: Shannon entropy and informational power

More generally, the convex and concave roofs of a
given function will not be amenable to analytic calcula-
tion, making this approach reliant on numerical methods.
Consider, for example, the case where the function u is
the Shannon entropy of observable X , i.e., uH (X |ψ ) :=
H (X |ψ ) = −∑

x〈ψ |Xx|ψ〉 log〈ψ |Xx|ψ〉. The roof construc-
tion then gives the decomposition

MH (X |ρ) = QH (X |ρ) + CH (X |ρ) (A16)

with

MH (X |ρ) := sup
{p j ;ψ j}∈Pρ

∑
j

p jH (X |ψ j )

= H (X |ρ) − inf
E∈Pρ

I (X : E ), (A17)

QH (X |ρ) = inf
{p j ;ψ j}∈Pρ

∑
j

p jH (X |ψ j )

= H (X |ρ) − sup
E∈Pρ

I (X : E ), (A18)

CH (X |ρ) := sup
E∈Pρ

I (X : E ) − inf
E∈Pρ

I (X : E ), (A19)

where I (X : E ) is the Shannon mutual information for observ-
able X and signal ensemble E . Hence the quantum component
is directly related to the maximum mutual information of the
observable over the set of pure-state signal ensembles for
density operator ρ, also called the “informational power” of
the observable for state ρ [55], while the classical component
is given by the gap between the maximum and minimum
possible mutual information.

In general there are few analytic results for the maximum
and minimum mutual information of a pure-state channel
with fixed X and ρ, and so the mutual information must be
maximized or minimized numerically. However, upper and
lower bounds are provided by choosing particular pure-state
ensembles in Pρ , such as the Scrooge ensemble [56] or (for
rank-1 observables) the self-dual ensemble in Eq. (A1) above,
which can be used as estimates of the minimum and maximum
values, respectively. The von Neumann entropy H (ρ) also
provides an estimate of the maximum value via the Holevo
bound for mutual information [15]. Hence, for example, for a
rank-1 observable X one has the inequalities

H (X |ρ) − H (ρ) � QH (X |ρ) � Qsd(X |ρ), (A20)

Qsd(X |ρ) − q(ρ) � CH (X |ρ) � H (ρ), (A21)

where Qsd(X |ρ) is the conditional entropy of the self-dual
channel in Eqs. (A2) and (A4), and q(ρ) is the subentropy
of ρ, i.e., the entropy of the Scrooge ensemble for ρ [56].
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