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We show the controllable excitation transmission can be implemented based on the topologically protected
edge channel in the modulated Su-Schrieffer-Heeger model with gain and loss. We find that the gain and
loss open up a special edge channel with pure imaginary energy, by which the opening and closing of the
topological excitation transmission between left and right edges can be controlled via tuning the amplitude
of the imaginary potential. We reveal that the special edge transmission phenomenon can be comprehended
using an effective lattice model only with the gain and loss at two edge sites, in which the gain or loss added
on the right edge determines the opening or closing of the topological excitation transmission. Applying the
concept of controllable excitation transmission into the lattice with interface, the controllable transmissions
from interface site to right edge site or left edge site can be realized. If treating the interface site as the input
port and treating two edge sites as output port, the present system is equivalent to a two-way topological
switch. Especially, the transmission path of topological switch toward right edge or left edge can be chosen via
tuning the amplitude of the imaginary potential. The controllable excitation transmission and topological switch
further explore the potential applications of topological materials in quantum information processing, which may
provide the enlightening suggestions for implementing the topological devices, including the topological triode

and topological logical gate.
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I. INTRODUCTION

As a basic module for large-scale quantum communica-
tion, quantum state needs to be transmitted between different
nodes with large enough fidelity [1-4]. However, the existence
of inherent defect or fluctuation in the channel inevitably
decreases the transmission efficiency. The discovery of topo-
logical classification [5—8] in condensed matter physics opens
up the new opportunity and possibility to implement robust
and efficient quantum information processing [9-15]. The
topological insulator, as the representative example in the
topological classification of materials, exhibits completely
different properties from the traditional insulator, e.g., the
appearance of gapless boundary states in the gap [5-8,16—
18]. Due to the topological protection originating from the
global characteristic, these boundary states are immune to the
backscattering caused by defect [19-25], leading the bound-
ary state to become the reliable candidate to implement the
robust topological quantum information processing ranging
from robust quantum state transfer to topological distribution.
For example, in the two-dimensional (2D) topological dipo-
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lar arrays, robust quantum state transfer can be implemented
based on the topologically protected edge channel [13]. And
the quantum communication between distant qubits has also
been proposed in the 2D topological networks [14], in which
the linear network of coupled bosonic degrees of freedom
can be employed for the efficient exchange of quantum in-
formation over large distances. Further, the topological beam
splitters with the distribution function have also been imple-
mented based on waveguide array [15], disorder-induced bulk
pumping [26], and the design of the topological domain wall
[27-30].

The dimerized Su-Schrieffer-Heeger (SSH) model [31], as
one of the simplest one-dimensional (1D) lattices with the
nontrivial edge state, has also attracted more and more atten-
tions on the investigations about the topological transmissions
[32-39]. Different from the 2D topological system with the
1D boundary states, the 1D SSH model only has two edge
sites, meaning that the SSH model usually cannot implement
the robust topological transmission based on the general 1D
topological edge channel. To handle it, we need to introduce
an additional periodical parameter to map the second physical
dimension in 2D topological systems [40-46]. Usually, the
periodical parameter can be introduced via the modulated
onsite energy or the hopping amplitudes [41,43,44,47,48], by
which the robust topological transmission can be realized. In
Ref. [33], a robust quantum state transfer scheme has been

©2023 American Physical Society
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proposed based on a dimerized superconducting circuit lattice
with modulation, in which the quantum state prepared at the
left edge site can be transmitted to the right edge site without
the influence of the local disorder. In addition to the photonic
system, the acoustic edge pumping from one boundary to
the opposite boundary can be implemented in the modulated
acoustic lattices [49,50]. To further improve the efficiency of
the topological edge transmission, the accelerated schemes
of topological transmission have been proposed by using
the adiabatic passage [36], designing counterdiabatic driving
[38], and defining the adiabatic invariant [39]. Note that the
above investigations are mainly focused on the transmission
from single node to single node in the SSH lattice, which is
insufficient for the construction of the large-scale topological
quantum network. Thus, we have explored the schemes of
topological edge transmission with two and multiple output
ports [51-53]. We stress that these topological edge transmis-
sion schemes mainly focus on the Hermitian system where
the non-Hermitian effects in practical open system are not
considered. The non-Hermiticity usually has certain effects on
the traditional quantum state transfer schemes, e.g., the unsta-
ble evolution and decreased transport efficiency induced by
detrimental dissipation. However, for topological excitation
transmission, whether the topological protection originating
from gap can balance the detrimental effects of dissipation, is
still an open issue. Especially, it is also an interesting topic
whether the detrimental dissipation can be effectively utilized
in designing the topological excitation transmission scheme.

Inspired by these issues, in this paper, we propose a scheme
to investigate the controllable topological edge transmission
of excitation from left edge site to right edge site in the
modulated SSH model with the alternating gain and loss. We
find that, via tuning the amplitudes of the gain and loss, the
topological excitation transmission from left edge to right
edge can be allowed or blocked. More specifically, when the
amplitudes of gain and loss are positive, the excitation initially
located at the left edge can be transmitted to the right edge
successfully, while, the transmission cannot be implemented
when the amplitudes of gain and loss are negative. We reveal
that the controllable excitation transmission may originate
from the gain or loss added on the right edge site via an
effective lattice model only possessing the gain and loss at
two-end sites. Based on the controllable topological excitation
transmission, we find the gain and loss added into the lattice
with the interface can induce the controllable excitation trans-
mission with different transmission paths. For example, for
the positive (negative) amplitudes of gain and loss, the excita-
tion initially prepared at the interface site can be transmitted
to the right (left) edge site. Thus, if regarding two topological
transmissions with different direction as two output paths, the
present system can be equivalent to a two-way topological
switch, in which the output path can be tuned via controlling
the amplitudes of gain and loss. Our finding further supplies
the relevant investigations of the SSH model in topological
quantum information processing, which may have potential
applications in topological sensor, topological triode, and even
topological logical gate.

The paper is organized as follows: In Sec. II, we demon-
strate that the controllable topological excitation transmission
induced via gain and loss can be implemented in the

b,

S+l

by bN aN+ 1

N
2

700 - 085D - 0050
al bl a2 a‘%-ﬁ—l aN

FIG. 1. The diagrammatic sketch of the SSH model with onsite
imaginary potentials. The lattice contains N unit cells with the size
of L = 2N + 1. In this lattice, each unit cell is composed by a, and
b, sublattice sites accompanied with the intracell hopping J; and
intercell hopping J,. Especially, except the central site, the lattice
has the alternating loss and gain before or after the central (N + 1)th
site.

modulated SSH model. We find that the phenomenon can be
interpreted via the effective SSH model with imaginary po-
tentials added on edge sites. We also investigate the two-way
topological switch based on controllable excitation trans-
missions and discuss the experimental feasibility. Finally, a
conclusion is given in Sec. III.

II. CONTROLLABLE EXCITATION TRANSMISSION
INDUCED VIA GAIN AND LOSS IN
SU-SCHRIEFFER-HEEGER MODEL

A. Model and Hamiltonian

Consider an odd-sized SSH chain with the gain and loss,
as shown in Fig. 1. In this chain, the lattice contains N unit
cells with the size of L = 2N + 1, and we take N as an even
number for convenience. Note that each unit cell of the lattice
is composed by a, and b, sublattice sites accompanied with
the intracell hopping J; and intercell hopping J», respectively.
Especially, except the central site, the lattice has the alternat-
ing loss and gain before or after the central (N + 1)th site. The
lattice can be described by the following Hamiltonian:

N/2
H =) (—iyaa, + iyb}b,)
n=1
N
+ > (—iybib,+iyal, an)
n=N/2+1
N
+ Y (hayby + hal , by + He). (1)

n=1

Here y is the strength of the gain and loss while J; =
J —cos6 and J, = J 4 cosf are the modulated amplitudes
of nearest-neighbor (NN) hopping. For simplicity, we take
J =1 as energy unit and take 6 € [0, 2] as the periodical
parameter. In this way, the first two summations in Eq. (1)
represent the pure imaginary onsite energy induced by gain
and loss, and the last summation represents the modulated
NN hopping between two adjacent sites. When the amplitudes
of gain and loss satisfy y = 0, the present model degenerates
into a standard odd-sized SSH model. For the odd-sized SSH
model, the chiral symmetry leads to the existence of the iso-
lated zero-energy mode in the gap, in which the zero-energy
mode is mainly localized at the left edge site when J; < J,
@ €10, 0.57]U[1.57, 2r]) and is mainly localized at the
right edge site when J; > J, (6 € [0.57, 1.57]), as shown in
Figs. 2(a) and 2(b) (see the Appendix for more discussions).
The zero-energy mode with the alternating localization in the
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FIG. 2. Energy spectra, distributions of gap states, and phase diagram. (a) The energy spectrum of the standard SSH model when y = 0, in
which the red line represents the zero-energy mode. (b) The distribution of zero-energy mode versus the periodic parameter 6. (c) The real part
of energy spectrum when y = 0.2. (d) The corresponding imaginary part of energy spectrum when y = 0.2. The colored lines represent the
gap state with pure imaginary eigenvalue. (e) The real part of gap state versus y and 6. (f) The imaginary part of gap state versus y and 6. (g)
Phase diagram versus y — 6 plane. The blue colored region represents region of gapless point while red region denotes topological insulator
(TI) phase. Here parameters are set as E, = 0 and N = 200, and we take modulus in the process of Tr’ for convenience. (h), (i) The moduli of
energy spectra when y = 0.3 and y = 0.6 for N = 50. J = 1 is chosen as the energy unit.

odd-sized SSH model is widely used to implement the topo-
logical quantum state transfer [33,36,38,39,51], which gives
the typical application of topological insulator in quantum
information processing.

However, when the gain and loss satisfy y # 0, the in-
troduction of the pure imaginary potentials may lead to the
appearance of the complex energy, which further influences
the topological transmission assisted by the topological edge
channel. For example, when y = 0.2, the real and imaginary
parts of the energy spectrum are shown in Figs. 2(c) and 2(d).
Although the real part of the energy spectrum is similar with
the case when y = 0, the appearance of the imaginary part
implies that the system changes from the Hermitian case to
non-Hermitian case. Note that the real part of the energy spec-
trum also has a zero-energy mode [red line in Fig. 2(c)] but it
corresponds to a nonzero imaginary part [red line in Fig. 2(d)].
Thus, if we use the present topological edge channel to imple-
ment the topological transmission now, the edge channel with
pure imaginary eigenvalue may have effects on the dynamical
stability of evolution. The zero-energy mode in the real part
of the energy spectrum and its corresponding imaginary part
versus the parameters 6 and y are plotted in Figs. 2(e) and
2(f). The results reveal that the gain and loss cannot influence
the zero-energy mode in the real part of the energy spectrum.
However, for the case of y > 0 (y < 0), the corresponding

imaginary part of the zero-energy mode is equal to —y (y)
within 6 € [0, 0.57] U [1.57, 2] while is equal to y (—y)
when 6 € [0.57, 1.57] (see the Appendix for more discus-
sions). Especially, we find that the large enough gain and loss,
e.g., |y| > 0.5, the non-Hermiticity makes the Hamiltonian
cannot be diagonalized precisely around the closing point of
gap (0 = 0.5 and 1.57).

The closing point of the gap can be further captured via
the phase diagram defined by non-Hermitian winding num-
ber in real space [54,55], i.e., W = %Tr’(Q*[Q,X]). Here,
X denotes the position operator, L' = L — 21 is the effective
length of bulk after excluding a certain edge length [ = 0.4N,
and Tr’ represents the trace taken only over effective bulk
length. Furthermore, the operator Q = UV is defined via
a singular value decomposition H — E,] = UAV™ (A is the
diagonal matrix) after choosing a base energy E;. The phase
diagram is shown in Fig. 2(g) in which the red region repre-
sents the topologically nontrivial phase while the blue colored
region corresponds to the region for closing point of gap
with ill-defined winding number. Obviously, the region in
which the Hamiltonian cannot be diagonalized precisely in
Fig. 2(f) agrees well with the region for the closing point of
the gap. To further verify the phase diagram, the moduli of
energy spectra when y = 0.3 and 0.6 are plotted in Figs. 2(h)
and 2(i). The energy spectra clearly exhibit corresponding
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windows of gapless points which are extended with the in-
creasing of parameter y. Different from the Hermitian version
of topological quantum state transfer in the standard SSH
model, the window of gapless points originating from the pure
imaginary eigenenergy of gap state may lead to the evolution
of the quantum state becoming instable and entering into the
bulk states. Thus, the effects of the edge channel with pure
imaginary eigenvalue on topological quantum state transfer
should be further estimated.

B. Controllable topological excitation transmission

To further explore the effects of the edge channel
with pure imaginary eigenvalue on the topological trans-
mission, we first recall the adiabatic evolution of the
edge channel. As shown in Fig. 2(b), for the given ini-
tial left edge state |L) = [Vq,, Yoo - ) Yy, Yoy Vaye,) =
[1, 0, ..., 0, 0, 0), it will be evolved under the domination
of the Schrodinger equation i %|L) = H(6,)|L), if we rewrite
the periodical parameter 6 as the form of multiplication be-
tween varying rate 2 and time ¢, i.e., 6 = Q. Ideally, when
the varying rate €2 is small enough, the initial left edge state
|L) will evolve along the zero-energy mode and finally reaches
the right edge state |R) = |0, O, ..., 0, 0, 1) at the final time
tena = /2. In this way, the reliability of the edge channel
can be evaluated quantitatively via the fidelity F between
the practical evolved final state |W) and the ideal final state
|R) with F = |[(R|W/)|. Thus, when fidelity satisfies F' ~ 1,
the evolution between the left edge state |L) and right edge
state |R) can be implemented successfully, meaning that the
excitation initially prepared at the left edge can be transmitted
to the right edge (see more discussions in the Appendix).

The fidelity F' versus the varying rate 2 and imaginary po-
tential amplitude y, when the system has the gain and loss, is
plotted in Fig. 3(a). Here, the blank region around logo(2) =
—3and |y| > 0.5 in Fig. 3(a) represents the invalid region for
normalization of the evolved final state induced by the strong
non-Hermiticity. Furthermore, the fidelity exhibits a special
region [yellow colored region in Fig. 3(a)] with F ~ 1 when
y > 0. Thus, we can control the excitation transmission from
the left edge to right edge via tuning the varying rate 2 and
imaginary potential amplitude y in this region. Actually, the
method of tuning the varying rate €2 is equivalent to control
the adiabatic evolution condition, which has been revealed
in many previous works [36,38,39,51]. However, the later
method on tuning the imaginary potential amplitude y is what
we mainly focused in this work. The fidelity F versus y for
the given 2 is shown in Fig. 3(b). Obviously, the fidelity
keeps F = 0 when y < 0 and changes as F = 1 when y > 0,
meaning that the excitation transmission between two edges
can only be implemented within y > 0. For example, when
2 =0.02 and y = —0.2, the state transfer between |L) and
|R) cannot be implemented successfully, as shown in Fig. 3(c).
On the contrary, when € = 0.02 and y = 0.2, the excitation
initially at the left edge can be transmitted to the right edge, as
shown in Fig. 3(d). In this way, we can control the excitation
transmission between two edges via tuning the imaginary
potential amplitude y, e.g., opening the transmission when
y > 0 and closing the transmission when y < 0.
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FIG. 3. Fidelity and the process of topological excitation trans-
mission. (a) Fidelity F' versus the varying rate 2 and imaginary
potential strength y. (b) Fidelity F' versus the imaginary potential
strength ¥ when Q2 = 0.02. (c) The process of topological excitation
transmission when € = 0.02 and y = —0.2. (d) The process of
topological excitation transmission when € = 0.02 and y = 0.2. (e)
Fidelity F' versus the onsite disorder amplitude W, and imaginary
potential strength y when Q = 0.02. (f) Fidelity F versus the disor-
der amplitude in NN hopping Wy and imaginary potential strength
y when Q = 0.02. (g) Fidelity F for excitation transmission from
the right edge to left edge versus the varying rate 2 and imaginary
potential strength y. (h) Fidelity F' for excitation transmission from
the right edge to left edge versus the imaginary potential strength y
when € = 0.02. J = 1 is chosen as the energy unit.

Benefiting from the protection of gap, the present
controllable excitation transmission between two edges
is also immune to the mild disorders, e.g., onsite
disorder Ho= """ Wo(—i8anala, + i8y bib,) + ZQ/:N/QH
Wo(—i8p,ub}by + i84n+16], aus1) or disorder in NN hop-
ping Hxy = Y, Wyl(81.4aiby + 8244, by) + Hec.]. Here,
Wo (Wy) is the disorder amplitude added into imaginary onsite
potential (NN hopping), 8;, with j =a, b, 1,2 denotes the
uniform random quantity within the range of [—0.5, 0.5].
The fidelities for the excitation transmission from the left edge
to right edge versus disorder amplitudes and non-Hermitian
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parameter y are plotted in Figs. 3(e) and 3(f). Here, we nu-
merically calculate the average fidelities after taking 100 times
of disorder samples. The results reveal that the excitation
transmission from left edge to right edge can be implemented
within a certain range of disorder amplitudes, implying the
robustness of the controllable excitation transmission. Espe-
cially, for the order of magnitude, the present topological
excitation transmission can resist larger disorder added in
NN hopping compared with the onsite disorder, while the
evolution process is much more robust to the onsite disorder
(see more discussions in the Appendix).

Aside from the controllable excitation transmission from
left edge to right edge, we can implement the reverse ex-
citation transmission via exchanging the sign of parameter
y. For example, when parameter y satisfies y < 0, the ex-
citation transmission from the right edge to left edge can be
implemented via varying periodic parameter 6 within [, 27 ]
and choosing appropriate varying rate 2. The fidelity for
the excitation transmission from right edge to left edge, i.e.,
F = (L|Wy), versus parameters 2 and y is plotted in Fig. 3(g),
in which the window of F' ~ 1 indicates the feasible excitation
transmission from right edge to left edge via setting y < 0.
Similarly, the excitation transmission from right edge to left
edge can be opened or closed controllably by setting y < 0 or
y > 0, as shown in Fig. 3(h).

C. Effective model for controllable topological excitation
transmission

To explain the reason of the above controllable topological
excitation transmission, we now introduce a simple effective
model. We stress that the above topological excitation trans-
mission is essentially based on the gap state of system, which
can be determined via its eigenenergy (see more discussions
in the Appendix). Note that, for the large size of lattice chain
(e.g., lattice chain under thermodynamic limit), edge sites can
be regarded as perturbation compared with bulk, meaning the
onsite energy added on edge (bulk) sites almost has no effects
on the bulk (edge) states energy. In other words, onsite energy
added on edge sites mainly determines the eigenenergy of gap
states. This can also be comprehended via the fact that edge
states are mainly localized around edge sites, leading edge
states are much more sensitive to the onsite energy added
on edge sites. As a result, although the gain and loss are
added on multiple sites, only the gain and loss added on both
edge sites have the greatest effects on the gap state. Thus,
the controllable excitation transmission can be revealed via
an effective lattice model only possessing the gain and loss at
two-end sites, namely,

H' =(—iyd]a, +iydy  aw+1)

N
+Y (ialb, + hal b, + He). 2)

n=1

To verify above deduction, we plot the energy spectrum of
the effective model when y = 0.2, as shown in Figs. 4(a) and
4(b). Compared with the results in Figs. 2(c) and 2(d), the
effective model exhibits the similar energy spectrum, reveal-
ing that the effective model may have the similar controllable
excitation transmission. The fidelity F’ between the right edge
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FIG. 4. Energy spectra, fidelity, and topological excitation trans-
mission for the effective model. (a) The real part of energy spectrum
for the effective model when y = 0.2. (b) The imaginary part of
energy spectrum for the effective model when y = 0.2. (c) Fidelity
F' versus the varying rate Q and imaginary potential strength y in
the effective model. (d) Fidelity F’ versus the imaginary potential
strength y when Q = 0.02. (e), (f) When © = 0.02, the processes
of topological excitation transmission in the effective model for
y = —0.2and 0.2. J = 1 is chosen as the energy unit.

state |R) and evolved final state [W}) dominated by Hamilto-
nian H' versus y and Q is plotted in Fig. 4(c). The fidelity F’
exhibits the consistent behavior compared with the original
lattice model. For example, as illustrated in Figs. 4(d)—4(f),
the excitation transmission in the effective model also can be
implemented when y > 0 and becomes invalid when y < 0.
These results together prove that the insightful physics of the
original model can be effectively captured by the effective
model.

In this way, for the initial state |L)=
[Vars Y5 vy Yays Ybys VYay,,)» its probability amplitudes,
in the process of evolution under the domination of effective
model, satisfy

Va, = — YWa, — i1,
Y, = — i1V, — ihrVa,, (0 =1,...,N),
Va, = — iy, , — i1y, (n=2,...,N),
Vaxsr =Y Vayyr — i2Vby - 3)

When y ~ 0, the system can be assumed to still keep Hermi-
tian, and the evolution of the initial state still goes along the
zero-energy mode only possessing the distributions on odd
sites. Thus, probability amplitudes at two-end sites can be

062214-5



QL HAN, LIU, WANG, AND HE

PHYSICAL REVIEW A 107, 062214 (2023)

approximately written as v/, (t) = e" and ¥, (t) = e,
Obviously, the probability amplitude v, at last site is am-
plified when y > 0 and finally is mainly localized at right
edge site after normalization. However, when y < 0, the am-
plified probability amplitude ¥, is transmitted to v, and
finally decays to zero quickly, implying that the transmission
from left to right cannot be implemented for y < 0. Moreover,
when the imaginary potential amplitude y is large enough, the
large enough v, ~ oo or V., ~ oo induced by rapid expo-
nential growth also leads to the invalidity of the normalization.

D. Topological beam splitter and two-way topological switch

The controllable topological excitation transmission in-
duced via gain and loss in the SSH lattice may have potential
applications in the field of topological quantum information
processing. For example, if applying the method of control-
lable topological excitation transmission into the topological
beam splitter scheme in Ref. [52], the topological beam
splitter with controllable two-way transmissions can be im-
plemented. More specifically, when the system has gain and
loss, the topological beam splitter in Ref. [52] now becomes

N/2
HTBS = Z[_V(ajlan - b;bn)] + Z[_IV (aj,an - b;bn)

n=1

+ (halb, + Ja)

b, +H.c.)]

N
+ ) [—iy(lby —al, an)
n=N/2+1

+ (iab, + ha) .,

b, +H.c.)]. “)

Here V =sinf is the alternating onsite energy, y repre-
sents the amplitude of imaginary potentials, and J; =1+
(—=1) cos® (j=1,2) still is the modulated NN hopping.
When y =0, the present model just corresponds to the
topological beam splitter in Ref. [52], in which the initial exci-
tation at the interface site can be transmitted toward two ends
and finally appears at two ends with the equal half-probability,
as shown in Fig. 5(a). The transmission of the topological
beam splitter when y # 0 is plotted in Figs. 5(b) and 5(c).
Obviously, when y = 0.2 (y = —0.2) the excitation initially
prepared at the interface site now can only transmit toward the
right (left) edge site, which determines the position of output
port for topological beam splitter. This controllable topologi-
cal beam splitter can choose one of two different transmission
paths via tuning the imaginary potential amplitude y, which
greatly expands the application scope of the topological beam
splitter.

For the given initial interface state |I) =
0,0,...,0,1,0,...,0, 0), after the evolution of the
Hamiltonian Hrgs, the more detailed behavior of the
controllable topological beam splitter can be further captured
via the fidelity F; = |(L|lI/jTBS)| (K, = |(R|\IJJIBS)|) between
ideal final state |L) (|R)) and the evolved final state |WTBS).
Estimate the effects of the imaginary potential on the fidelities
Fy and F,, respectively. The joint fidelity Fioine = F1 — F>
versus the varying rate 2 and imaginary potential amplitude
v is shown in Fig. 5(d). In this way, the joint fidelity Fiojne = 1
(red region) corresponds to F; =1 while Fojpe = —1 (blue

1 1,0

1
| QOS
0

1 9 17 17

Lattice index

o 1

; | Switch O ——
; W T P Output 2

FIG. 5. Topological beam splitter and two-way topological
switch. (a) The transmission of topological beam splitter when y =
0. (b) The transmission of topological beam splitter from interface
site to right edge site when y = 0.2 and 2 = 0.01. (¢) The transmis-
sion of topological beam splitter from interface site to left edge site
when y = —0.2 and = 0.01. (d) Joint fidelity versus the varying
rate 2 and imaginary potential strength y. (e) Schematic diagram
of topological two-way switch. If regarding the interface site as the
input port and regarding two edge sites as two output ports, the
transmission path can be controllably selected via tuning the strength
of imaginary potential.

region) represents F, = 1. Thus, when the parameters are
within the red (blue) region with Fy =1 (F, =1), the
topological beam splitter can only transmit the excitation at
interface site to the left (right) edge site, meaning that we
indeed can control the transmission paths of the topological
beam splitter via choosing the appropriate . The detailed
varying of F; and F, when ©Q = 0.01 is illustrated in the
inset of Fig. 5(d). Obviously, for the given €2, the fidelity F)
keeps Fy =1 when y < 0 and suddenly change to F; =0
after y = 0, while the fidelity F, keeps F; = 0 when y <0
and suddenly jump to F, = 1 after y = 0, implying that the
transmission paths of the topological beam splitter toward
left and right edges are switched at the point of y = 0. Thus,
if we regard the above switched process as a switch, the
present controllable beam splitter is naturally equivalent to a
two-way topological switch controlled via y, e.g., opening
the right output path via y > 0 or opening the left output path
via y < 0 [see Fig. 5(e)]. The two-way topological switch
can further supply the application of topological materials in
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FIG. 6. Fidelity and the process of topological excitation trans-
mission for Hygg. (a) Joint fidelity versus the varying rate € and
imaginary potential strength y. (b) The process of topological ex-
citation transmission when © = 0.01 and y = 0. (c) The process
of topological excitation transmission when 2 = 0.01 and y = 0.2.
(d) The process of topological excitation transmission when Q2 =
0.01 and y = —0.2. J = 1 is chosen as the energy unit.

quantum optical devices, which may have enlightenment for
the design of topological triode, topological sensor, and even
topological logical gate.

Note that the above two-way topological switch can also
be comprehended by the effective model only having gain and
loss at two-end sites, namely,

Higg = —iyl(aja; — a;N+1a2N+l)]

+ Y [=V(aja, — biba)]

N/2
+ Y (aajb, + ha, by + He.)
n=1
N
+ Y (hajby+hal, by +He). (5
n=N/2+1

The joint fidelity Fioine = Fi — F> under the domination
of Hamiltonian Hygzg is shown in Fig. 6(a). Here, F; =
|(L|\IJJTBS/)| (F, = |(R|\11}BS') |) represent the fidelity between
the ideal final state |L) (|R)) and evolved final state |WTBS).
Obviously, the pattern of fidelities agrees well with the case
shown in Fig. 5(d), implying the validity of the effective
model. Specifically, the effective model is degenerated as the
Hermitian TBS when y = 0, as shown in Fig. 6(b). However,
when y # 0, the effective model is also equivalent to a con-
trollable two-way topological switch, as revealed in Figs. 6(c)
and 6(d).

E. Experiment and discussion

Before conclusion, we give a brief discussion on the ex-
perimental feasibility. Waveguide array composed by a series
of single waveguide is widely used to simulate and map topo-
logical issues [56—61]. The modulated onsite energy or the

log;(£2)

FIG. 7. Fidelity of topological excitation transmission for model
with effective gain. (a) Fidelity F' versus the varying rate 2 and ratio
parameter A when y = 0.5. (b) Fidelity F versus the varying rate Q2
and parameter y when A = 0.25. (c) Fidelity F versus the varying
rate 2 and parameter y when A = 0.5. (d) Fidelity F' versus the
varying rate 2 and parameter y when A = 1. In all cases, the insets
show the change of fidelities along the green lines. J = 1 is chosen
as the energy unit.

modulated coupling between two adjacent waveguides can be
easily implemented via tuning the internal refractive index of
waveguide [57] or changing the space between two waveg-
uides [61]. Thus, the topological model with the modulated
NN hopping and onsite energy can be easily constructed based
on the waveguide array. Besides, the waveguide with the gain
and loss has also been investigated widely and deeply [62-66],
leading the mapping of the topological model with gain and
loss to be feasible. Note that the gain term can usually be
implemented via doping gain media or be effectively mapped
by the smaller loss. For the effective gain mapped by smaller
loss, we can describe it via an effective model, i.e.,

N/2
H, =) (=iyiaja, — iyabiby)
n=1
N

+ Z (_iylbjlbn - iV2aZ+1an+l)

n=N/2+1

N
+ > (ajb, + Ja by +He.). (6)

n=1

Here, y» = Ay; = Ay > 0 represents the overall loss added
into the system. Thus, the terms of —iyzblb” and
—iyzal 4+1@n+1 are equivalent to the effective gain terms when
A < 1 due to the fact of y, < y;. Obviously, if we vary the pa-
rameter A from A < 1 to A > 1, the terms about y, correspond
to change from effective gain to loss, which is equivalent to
the case that y in Eq. (1) changes from y >0 to y < 0.
The fidelity versus varying speed €2 and parameter A for the
excitation transmission from left edge to right edge under the
domination of Eq. (6) is plotted in Fig. 7(a). The white line in
Fig. 7(a) denotes the case of y; = y, which corresponds to a
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lattice chain with the uniform dissipations. Obviously, if we
vary the parameter A from A < 1to A > 1, e.g., the green line
in Fig. 7(a), the controllable excitation transmission from left
edge to right edge can be implemented [see inset in Fig. 7(a)].
For example, opening the topological excitation transmission
from left to right via choosing A < 0.6, or closing the topo-
logical excitation transmission via choosing A > 0.6.

Note that, compared with the theoretical analysis, the real
transition point of the excitation transmission is around A ~
0.6 rather than A = 1. The reason can be comprehended via
tightening restriction of effective gain from y; > y» to y; >
V2, €.2., V1 > 2y or A < 0.5 (at a rough estimate). More
specifically, only the difference between loss rate y; and loss
rate y; is large enough, the smaller loss rate y, can be regarded
as the effective gain. For example, when A = 0.25, we can
always find an appropriate varying rate 2 to implement the
excitation transmission via controlling parameter y within
certain range, as shown in Fig. 7(b). When A = 0.5, although
we can implement the excitation transmission, the optional
range of the parameters y and 2 becomes small, as revealed
in Fig. 7(c). Especially, when y = 1, the system just becomes
a lattice chain with overall uniform dissipations, meaning the
increasing dissipations will destroy the evolution of the initial
state, as shown in Fig. 7(d). Thus, we can use the method of
effective gain to implement the controllable excitation trans-
mission in experiment.

III. CONCLUSIONS

In conclusion, we have proposed a scheme to investigate
the controllable topological excitation transmission in a mod-
ulated SSH model with the alternating gain and loss. We find
that the topological excitation transmission from left edge to
right edge can be controlled by tuning the strength of the
gain and loss, e.g., allowing the topological excitation trans-
mission when y > 0 and prohibiting the transmission when
y < 0. The controllable excitation transmission induced via
gain and loss can be further comprehended via an effective
lattice model with the pure imaginary potentials only added on
two edge sites, in which the positive or negative edge potential
added on the right edge fundamentally determines the opening
and closing for the excitation transmission. Extending the
controllable excitation transmission scheme to the lattice with
interface, the excitation initially prepared at the interface site
can be transmitted to right edge or left edge in a controllable
way. This topological excitation transmission with the tunable
direction can be equivalent to a two-way topological switch,
which greatly enriches the relevant investigations on the topo-
logical quantum optical devices.
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APPENDIX

1. Topological edge channel when y =0 and y # 0

The standard odd-sized SSH model [when y =0 for
Eq. (1)] has chiral symmetry, i.e., CHC~! = —H with C =

diag(1, —1,...,1,—1,1) being the chiral operator in real
space. The chiral symmetry ensures that the eigenvalues ap-
pear in pairs, namely, £y = —E_. Hence, there exists an
isolated eigenvalue needing to be paired with itself, which
leads to the existence of zero-energy eigenvalue Ejy; =
—Ey_ = 0. The eigenstate of zero-energy eigenvalue nat-
urally corresponds to the gap state due to the fact that
zero-energy eigenvalue is located between up and bottom en-
ergy bands. If we assume the zero-energy eigenstate as |V,) =
[Vars Y5 -y Yays Ybys VYay,,)» according to the eigenen-
ergy equation H |W,) = Eo|W¥,), the amplitudes of zero-energy
eigenstate satisfy

Jiyp, =0,
Jll/f(l,, +J21//u,,+1 = 0 ne [I’N]v
Loy, + D1y, =0ne[l,N—1],

S, = 0. (A1)
The boundary condition determines 5, =0 with
n=(1,2,...,N), meaning the =zero-energy gap state

dose not occupy the even sites. Thus, we have |V,) =
11,0,1,0,..., V1,0, »V) after setting ¥, =1
and n = —J;/J,. Obviously, the zero-energy gap state is
mainly localized at left (right) edge when J; < J, (J1 > J»),
providing the foundation of implementing topological
excitation transmission via varying J; and J,.

When parameter y # 0, the eigenenergy of the gap state
will be changed due to the fact that onsite energy usually
can move the energy level. For simplicity, we can assume
the eigenenergy of left and right edge states as E,; and E,
since two edges are added different onsite potentials —iyafa 1
and iyajv +19n+1. Thus, the eigenenergy equation for left edge
state now becomes H|W, ;) = E, 1|V, ), 1.€.,

J1a, iy, + JZI/fanH = quI//bn’
DV, FivVa,., +NVs,,, = Egi¥a,,,-

Here, symbol £ () in the upper (lower) equation denotes n €
[1L51nell,5—1Dandne[§ +1,N](ne[5+1,N -
1]), respectively. Aside from the bulk equations, we can also
obtain three boundary equations

—iVWal +JIWb1 = g,Lwaw
szbﬂ +J11ﬂbﬂ+] = g,LWaMH’
2 2 2

J2I//b1v + i'}/l/faNH = g,quNH M

To solve the above equations, we need to obtain the
eigenenergy of the left edge state. Note that, for the large size
of lattice chain (e.g., semi-infinite lattice chain or lattice chain
under thermodynamic limit), edge sites can be regarded as
perturbation compared with bulk, meaning the onsite energy
added on edge (bulk) sites almost has no effects on the bulk
(edge) states energy. In other words, onsite energy added on
edge sites mainly determines the eigenenergy of edge states.
Thus, we can take the assumption of E,; = —iy for eigenen-
ergy of left edge state due to the existence of —iya?al. In
this way, the non-Hermitian terms in the bulk and boundary
equations [see Eqs. (A2) and (A3)] can be eliminated via the
assumption of E,; = —iy, which reveals that the edge state

(A2)

(A3)
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FIG. 8. Average fidelity F and process of excitation transmis-
sion. (a) Fidelity F' versus the varying rate  and imaginary potential
strength y. (b) The process of excitation transmission when Q2 =
0.01 and y = 0.1. (c) The process of excitation transmission when

2 =0.01 and y = 0.18. (d) The process of excitation transmission
when © = 0.01 and y = 0.5.J = 1 is chosen as the energy unit.

is insensitive to the imaginary potentials added on bulk sites.
After that, we have

N
1/fb” =0ne [1, E],
[ N
Wa,,ﬂ = —J]/le//‘an nell, Ei|,

I/Ib%ﬂ = _ly/‘]l I/IG%H»

Yooy = =1/ 22Va, n€ | = + 1,N],

JZan +J1¢bn+1 = _2iVWau+1 ne|—-+1N- 1:|’

wa = _2iJ//J21//(1N+1 . (A4)

Obviously, the left edge state satisfies v, ,, = —Ji /L,
for n € [1,N], i.e., Ya,,, = (—J1/J2)""",,. Thus, if we set
Yq =1 and | —Ji/J2| < 1, the amplitude v, of left edge
state at a-type site will be decreased exponentially with the
increasing of lattice index. Under this parameter mechanism,
the amplitude v, of the left edge state at b-type site when
ne [% + 1, N] now becomes

I
‘l
3
|
|\
~
=
~
[\
;S\

wbﬂﬂ
2
DL, + I, =
—2iy ( J\"
wa - J2 < z) 1/,(1]-

For the condition of thermodynamic limit (N ~ 00), Wbﬂﬂ =

Yy, =0 can be obtained, which further leads 1//;,2” =0
for n e [% + 1, N]. The above results clearly reveal that

(A5)
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FIG. 9. The process of excitation transmission when disorder
is added into the system. (a)—(c) When onsite disorder amplitude
and varying rate satisty Wy = 0.2 and Q = 0.01, the process of
excitation transmission for y = 0.1, y = 0.18, and y = 0.5. (d)—(f)
When disorder amplitude in NN hopping and varying rate satisfy
Wy = 0.2 and Q2 = 0.01, the process of excitation transmission for
y =0.1,y =0.18,and y = 0.5. In both cases, the random processes
are taken 100 times. J = 1 is chosen as the energy unit.

the left edge state only occupies odd sites in the ex-
ponential way, i.e., the left edge state can be written

as [Wer)=11,0,n.,0,...., 7’7", 0, n¥) with local-
ized index np = —J;/J,. Similarly, we can also obtain

the right edge state via setting E,r =iy, ie., |Wgp) =
In¥, 0, k="', 0, ..., n&, 0, 1) with localized index ng =
—J»/J1. Actually, the form of the left edge state |W,;) is
essentially equivalent to |W, g) since localized indices satisfy
InL] = 1/|ng| = |J1/J2]. For example, when J; < J, (J1 > J»)
W, 1) and |W, ) are both localized at left (right) edge after
normalization, implying that we can represent the gap state
|We) just via Wy ) or Wy R).

2. Average fidelity and robustness

As discussed in Sec. I A, the introduction of non-
Hermitian parameter y generates the windows of gapless
points, which may lead the excitation to enter into bulk
around the gapless point in the evolution process. Thus,
the effects of gapless points for the excitation transmission
should be investigated. In Sec. II B, we have discussed the
controllable excitation transmission via defining the fidelity
F = [{R|Wy)|. Actually, this definition of fidelity focuses on
the success probability of excitation transferred to right edge
without considering the intermediate process of evolved state.
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Usually, if we are only interested in the case that excita-
tion can be transferred to the right edge, this definition of
fidelity is adequate to estimate the transmission efficiency.
However, if we further consider the intermediate process of
evolved state, this definition of fidelity should be modified.
If we set the evolved state at any time as W(¢), the fidelity
at time ¢ between W(r) and gap state W,(r) (by replacing
0 as Qt) can be defined as F; = [(W,(¢)|W(?))|. Thus, the
average fidelity in the whole evolution process can be written
as F =1/T Ziig/ 2 F,. Here T represents the length of time
t for the numerical calculation. In this way, if the excitation
initially prepared at the left edge evolving along the gap state
strictly, the average fidelity satisfies £ ~ 1. Conversely, if the
excitation entering into the bulk (generating diffusion) in the
middle process of evolution, the average fidelity F will be
decreased.

The average fidelity F versus y and varying rate € is
plotted in Fig. 8(a), in which the region of F ~ 1 becomes
much smaller compared with original definition of fidelity F
[see Fig. 3(a)]. More specifically, when the parameters are
within the region of F' ~ 1, the initial state will evolve along
the gap state |W,), meaning the perfect excitation transmis-
sion. For example, when parameters satisfy € = 0.01 and
y = 0.1, the perfect excitation transmission from the left edge

to right edge can be implemented, as shown in Fig. 8(b).
If we fix @ and increase y now, the excitation can still be
transferred to the right edge but the intermediate process can-
not evolve along the gap state, as shown in Figs. 8(c) and
8(d).

We stress that the perfect and imperfect excitation trans-
missions from the left edge to right edge are both robust to
the disorder added into the system. For the given parameters
shown in Figs. 8(b)-8(d), the excitation can still be transferred
to the right edge successfully when the system has disorders
added in onsite imaginary energy or NN hopping, as shown
in Fig. 9. Especially, compared with the NN disorder, the
evolution process of excitation transmission is much more
robust to the onsite disorder. For example, when the system
has mild onsite disorder with Wy = 0.2, the transmission pro-
cess of excitation almost has no changes compared with the
clean system, as shown in Figs. 9(a)-9(c). However, when
the disorder is added into the NN hopping, the transmission
from the left edge to right edge can still be implemented but
the transmission process produces slight changes, as shown
in Figs. 9(d)-9(f). This phenomenon means that the process
of excitation transmission is much more robust to the onsite
disorder compared with the disorder added into NN hopping,
which differs from the results obtained in Figs. 3(e) and 3(f).
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