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Enhancement of vacuum birefringence with pump laser of flying focus
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Vacuum birefringence is one of the most fascinating properties of quantum electrodynamics. In laser-induced
vacuum polarization signatures, the interaction length is usually limited by the pump laser’s Rayleigh length
and temporal length. Here, we show that a flying focus pump with focus velocity –c can overcome the short
interaction length of the tightly focused pump laser, providing high intensity and long interaction length at the
same time, which may lead to the experimental detection of vacuum birefringence.
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I. INTRODUCTION

Quantum electrodynamics (QED) predicts the virtual
electron-positron pair creation from the vacuum [1,2]. The
polarization of these pairs modifies the propagation of light,
and photon-photon scattering can happen even in the vac-
uum. One of the most famous signatures of QED is vacuum
birefringence [3–5]. After a linearly polarized probe laser
passes through the strong pump field, perpendicularly polar-
ized scattering photons can be generated, resulting in induced
ellipticity for the probe. So far this effect has not been detected
in the laboratory because the signal is strongly suppressed by
powers of the critical field Icr = 2.3 × 1029 W cm−2. Moti-
vated by the development of ultrastrong electromagnetic fields
[6–8], there have been many proposals to detect vacuum bire-
fringence, where the pump field can be a constant magnetic
field of a few teslas [9–11], or an ultrastrong laser field to the
order of 1023 W cm−2 [12–15]. Though the laser can generate
a much stronger background field, the interaction length is
much smaller, usually limited by the pump laser’s temporal
length and Rayleigh length [15].

Flying focus is a newly developed technique for controlling
the trajectory of peak laser intensity [16,17]. It was first ex-
perimentally demonstrated with a chromatic focusing system
combined with chirped laser pulses [16]. Alternate techniques
include using a Kerr lens [18] and an axiparabola-echelon
pair [19]. Recently, the exact solutions of a flying focus with
arbitrary focal velocity were derived [20]. The controlled focal
velocity enables a wide range of applications that require
velocity matching and a high-intensity interaction over an
extended distance [20], including laser wakefield acceleration
[19], radiation reaction [21], and nonlinear Thomson scatter-
ing [22].

Here, we show that in the laser-induced vacuum polar-
ization effect, a flying focus pump with the focus velocity
–c can overcome the limitation of the tightly focused laser’s
short Rayleigh length, greatly enhancing the signal when the
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pump’s temporal length is larger than its Rayleigh length.
The physical reason is that the probe laser can always experi-
ence the most intense part of the pump laser’s spatial profile,
thereby allowing for a long pump pulse in the detection of
vacuum birefringence, having the advantage of providing both
high intensity and long interaction length.

II. ANALYSIS OF VACUUM BIREFRINGENCE WITH THE
FLYING FOCUS PUMP

References [21,23] describe the flying focus beam with the
focus moving backwards at the speed of light compared to
the laser propagation direction (the exact solutions of a flying
focus with arbitrary focal velocity can be seen in [20]). We
employ this solution to model the flying focus beam, as it sat-
isfies the free Maxwell’s equations exactly, and precisely fits
the physical situation we consider. In what follows, we work
in Gaussian units ε0 = 1, c = 1, h̄ = 1. From the standpoint
of the generation of an arbitrarily structured laser [24], for the
vacuum wave equation(

∂2
x + ∇2

⊥ − ∂2
t

)
A⊥(x, r, t ) = 0, (1)

the field can be expressed as the integral over varying prop-
erty, such as frequency k. To describe the moving focus,
upon performing the Galilean change of variables η = t−x
and φ = t + x, the transverse components of the four-vector
potential at the radial position r can be expressed as

A⊥(η, r, φ) =
∫

Ã⊥(η, r)e−ikφdk, (2)

where Ã⊥ satisfies (∇2
⊥ + 2ik∂η/2

)
Ã⊥ = 0. (3)

This equation takes the same form of the paraxial wave
equation for the Gaussian beams, with the solution

Ã⊥ = f (k)
1

1 + iη′/x0
exp

[
− r2

w2
0 (1 + iη′/x0)

]
, (4)

where η′ = η/2 is the spatiotemporal variable which de-
scribes the movement of the focus, w0 is the beam waist,
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x0 = 0.5kw2
0 is the Rayleigh length, and f (k) is an ar-

bitrary function that describes the spectral profile. As an
example, we assume a Gaussian spectral profile f (k) =
exp[−(k − k0)2τ 2/4]. In general, Eq. (2) contains spatial-
temporal coupling terms, and cannot be written analytically.
However, for the pulse with many periods, the integration over
frequencies can be well estimated as the use of a Gaussian
temporal shape. For calculation simplicity, we consider the
special case of an isodiffracting pulse [25], where all the
frequency components have the same Rayleigh range. Thus
Eq. (2) can be easily carried out [26]:

A⊥(η, r, φ) = 1

1 + iη′/x0
exp

[
− r2

w2
0 (1 + iη′/x0)

]

× exp

[
−

(
φ − r2

2η′ − 2ix0

)2
/

τ 2

]
e−ik0φ.

(5)

This shows that the duration of the pulse is involved in the
spatial distribution of the pulsed beam. When r2/(x0τ ) � 1,
this spatially dependent term can be safely neglected. In our
situation, the transverse size of the interaction region is much
smaller than the flying focus laser’s waist, and the beam has
many periods, so that this condition is always satisfied, and
we have

A⊥(η, r, φ) = 1

1 + iη′/x0
exp

[
− r2

w2
0 (1 + iη′/x0)

]

× exp(−φ2/τ 2)e−ik0φ. (6)

As discussed in [21], this flying focus laser has almost the
same energy and intensity as the traditional Gaussian beam of
the same w0 and τ .

Now we employ this flying focus beam to enhance the
vacuum birefringence signal. We consider the scenario of
the head-on collisions between an optical laser pump and a
x-ray free-electron laser (XFEL) probe. This prospect was
first proposed by [27], and is further analyzed in many papers
such as [28,29]. To maximize the vacuum birefringence effect,
the polarization angle between the two beams is π/4, and
the intersection angle between the propagation directions is
π [27]. Let the two initial pulses be

EX = AX (r′, x′)hX (t − x′)e−i(ωX t−kX x′ )ez, (7)

EL = AL(r′, t − x′)hL(t + x′)e−i(ωLt+kLx′ )
√

2(ey + ez)/2,

(8)

where hX (x) = exp(−x2/τ 2
X ), hL(x) = exp(−x2/τ 2

L )
describe the Gaussian temporal shape with the length
τX , τL. The optical pump laser AL(r′, t−x′) takes the flying
focus envelope in Eq. (6) with the waist wL, and the XFEL
probe takes the traditional Gaussian envelope AX (r′, x′) with
the waist wX . Here we neglect the terms with the same
order of those neglected in the paraxial approximation for
the Gaussian beams. The two beams move in the opposite
direction, while the pump laser’s focus moves in the same
direction as the XFEL probe.

In classical theory, photons cannot interact with each
other, as Maxwell equations are linear. However, QED
shows that the vacuum is full of virtual electron-positron

pairs, and is in fact nonlinear. The Euler-Heisenberg
Lagrangian [1,2] includes such fermion dynamics to one-loop
order. The lowest-order Euler-Heisenberg Lagrangian corre-
sponding to four-photon interaction is

L = 1

8π
(E2 − B2) + ξ

8π
[(E2 − B2)

2 + 7(E · B)2], (9)

where ξ = e4/45πm4, e is the electron charge, and m is the
electron mass. This expression is valid for amplitude much
less than the critical field, and frequency much less than the
electron mass. A modified wave equation can be derived from
the effective Lagrangian density,(

∇2 − ∂2

∂t2

)
E = 4πJ, (10)

where the vacuum current is

J = ∂

∂t

(
∂P
∂t

+ ∇ × M
)

− ∇(∇ · P), (11)

with the polarization P = ξ [2(E2 − B2)E + 7(E · B)B]/4π

and magnetization M = ξ [−2(E2 − B2)B + 7(E · B)E]/4π.

Therefore photon-photon scattering is treated in a
“quantum-vacuum-modified” classical equation approach
[13,30], corresponding to the four-wave coupling process. The
total field can be expressed as EL + EX + ES, where EX, EL
are the initial pulses that satisfy the Maxwell equation in
vacuum, and ES is the scattering wave satisfying Eq. (11)
generated by the vacuum current. Since the electromagnetic
invariants can be nonzero only for the superposition of beams,
the vacuum current only exists at the overlap of two beams.
In the four-wave coupling, we are interested in the scatter-
ing wave with frequency ωX corresponding to the absorption
accompanied by the emission (and vice versa) of pump pho-
tons for a probe photon, as the other frequency components,
ωX ± 2ωL, are usually strongly suppressed [13]. When adding
the scattering field to the probe field, vacuum birefringence
manifests itself as the induced ellipticity. To detect the signal,
an analyzer (polarizer) is set before the beam reaches the
detector, and only photons polarized perpendicularly to the
initial polarization direction can pass.

Equation (10) can be solved using Green’s func-
tion methods. For the detector at far field r =
(R cos θ, R sin θ cos ϕ, R sin θ sin ϕ) with the small scattering
angle θ , the generated field is the superposition of the
vacuum current source contribution in the interaction
region r0 = (x′, r′ cos β, r′ sin β ) at the retarded time
trect = t − |r − r0| ≈ t−R + x′ cos θ + r′ sin θ cos(ϕ−β ),
written as

ESy(t, θ, ϕ) = −3
√

2ξk2
X

8πR

∫ ∞

−∞

∫ ∞

0

∫ 2π

0
e−iωX (t−R)

× h[x′, t − R + x′ cos θ + r′ sin θ cos(ϕ − β )]

× e−i(ωX cos θ−kX )x′
A2

L(r′, trect − x′)AX (r′, x′)

× e−iωX r′ sin θ cos(ϕ−β )dx′r′dr′dβ. (12)

It can be seen that the transverse integration takes a similar
form of the Fraunhofer diffraction, where the polarized vac-
uum can be considered to diffract the probe, and the optical
laser A2

L plays the role of an aperture. The scattering wave
has a different angular distribution for the different choices

062213-2



ENHANCEMENT OF VACUUM BIREFRINGENCE WITH … PHYSICAL REVIEW A 107, 062213 (2023)

of the beams’ waists, known as the vacuum diffraction ef-
fect [31–34]. For wX > wL, the scattering wave would have
a larger angular distribution than the XFEL probe, and at
a certain angle, the scattering signal could be stronger than
the XFEL background and be discernible. For a given XFEL
photon number, a larger wX means a larger diffraction angle
and a larger discernible photons rate, but the total signal
strength decreases because fewer XFEL photons are included
in the interaction region. Here we use the XFEL with a much
smaller waist than the optical pump to get the maximum total
scattering photon number, since the signal’s polarization is the
detection signature and we do not have to spatially separate it
from the XFEL background. In this way, the scattering wave
has the same angular distribution as the XFEL background,
and we do not account for the transverse structure of the opti-
cal pump laser, but instead consider its longitudinal structure
1/[1 + (trect − x′)2

/4x2
L].

Now we consider the longitudinal integration in Eq. (12).
For the beams with many periods, we have x′θ2, r′θ � τX , τL

so that the temporal shape

h[x′, t − R + x′ cos θ + r′ sin θ cos(ϕ − β )]

≈ h(x′, t − R + x′) = h2
L(t − R + 2x′)hX (t − R), (13)

showing that the scattering signal wave has the same tem-
poral profile hX (t−R) as the probe XFEL. When the probe
at longitudinal position x′ meets the pump at time t−R + x′,
it generates the radiation at time t . The scattering signal
is the superposition of vacuum current source contribution
at different longitudinal positions, and the extent of the in-
teraction volume depends on the pump’s temporal profile
h2

L(t−R + 2x′): for a given t−R, 2x′ can vary in the range
of τL. Additionally, the interaction volume also depends on
the pump’s longitudinal spatial profile. For a traditional Gaus-
sian envelope with the decaying focal terms 1/(1 + x′2/x2

L ),
the vacuum current source becomes weak for large x′ far
away from the focus; thus the effective interaction length
is limited by the pump’s Rayleigh length. However, as the
probe at different longitudinal position x′ meets the pump
at the different time, things are different when the pump’s
intensity varies with time. For flying focus that travels in the
same direction of the probe, the retarded time at different
position x′ varies synchronously with the movement of focus
trect − x′ ≈ t−R. As shown in Eq. (12), the decaying focal
terms 1/[1 + (t−R)2/4x2

L] are irrelevant to the longitudinal
position, which means the probe can always experience the
most intense part of the pump’s spatial profile.

III. EXPERIMENTAL PARAMETERS AT THE STATION
OF EXTREME LIGHT

We use the parameters based on the experiment proposal
of the Station of Extreme Light (SEL) at the Shanghai High
Repetition Rate XFEL and Extreme Light Facility (SHINE)
[35,36]. For the XFEL we choose kX = 12 914 eV, τX =
30 fs, and photon number NX = 1012. The x-ray instrument
includes the compound refractive lens (CRL) made of beryl-
lium for focusing and the polarizer for purifying the polarity.
The high-purity polarizer is realized with channel-cut crystal
Si-800, which only reflects photons at a certain polarization

FIG. 1. The pump’s on-axis spatial-temporal intensity at the re-
tarded time for (a) flying focus (above) and (b) traditional Gaussian
beam (below) with the temporal length τL = 75 fs. The intensity is
normalized with I0 = 2.5 × 1023 W cm−2. The red line refers to the
longitudinal interaction range in Eq. (12).

direction. We chose six-reflection channel cut with an extrac-
tion ratio of 6 × 10−10 to ensure the sufficient polarization
purity.

For the optical pump laser we choose kL = 1.36 eV, 4 PW
focused to wL = 1 µm, which has the same peak intensity as
the proposed 100 PW, 5 µm at SHINE. We set the temporal
length τL as the variable. As will be shown in the next section,
flying focus allows for a long pulse in vacuum birefringence
detection. So far flying focus pulses with intensities of the
order of 1014 W cm−2 have been produced [17] and intensi-
ties beyond the relativistic threshold 1018 W cm−2 have been
envisaged [21,23]. Since the main technological constraint on
the ultrastrong laser is the intensity, in principle a flying focus
laser with peak intensity 2.5 × 1023 W cm−2 can be obtained.

IV. RESULTS

Figure 1(a) shows the pump’s on-axis intensity at the re-
tarded time I (trect , x′) = I (t−R + x′, x′) as a function of the
spatial and temporal coordinate for τL = 75 fs. The red line
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FIG. 2. Spectrum of the scattering photons for the pump with
flying focus (filled blue curve) and traditional Gaussian envelope (red
dashed line). The temporal length τL = 75 fs.

manifests the integration region over x′ in Eq. (12), and the
red line’s different location t−R corresponds to scattering
waves at different t . To compare with the traditional Gaus-
sian beam, Fig. 1(b) gives the result of that with the same
parameter. When using the flying focus, the replacement of
1/(1 + x′2/x2

L ) with 1/[1 + (t−R)2/4x2
L] manifests that the

scattering wave’s effective temporal length, instead of the
interaction length, is limited by the pump’s Rayleigh length.
It can be seen that for flying focus, the pump has the narrower
extent in the t−R direction, but a wider extent in the x di-
rection. As mentioned earlier, the generated scattering wave
has the same temporal length τX = 30 fs as the probe, which
means the intensity distribution at |t−R| > 30 fs has little
significance, so that the flying focus with the longer extent
in the x direction has more advantages. With the growth of τL,
for flying focus, the interaction length grows simultaneously,
while for a traditional Gaussian beam, the interaction length
is limited by the pump’s Rayleigh length. Therefore, when
τL 	 xL, the interaction volume with flying focus of the order
τL can have a much larger spatial extent than the traditional
Gaussian beam of the order xL.

Now we consider the property of the scattering wave. From
the uncertainty relationship, a shorter temporal length limited
by 1/[1 + (t−R)2/4x2

L] means a wider frequency bandwidth
for the scattering wave. As vacuum birefringence corresponds
to the scattering process of absorption accompanied by the
emission of one pump photon, the generated scattering wave’s
frequency can vary in the range of the pump’s bandwidth
compared to the XFEL. For the traditional Gaussian beam,
its bandwidth is dominated by the Gaussian temporal shape
hL(t + x′), where a longer temporal length corresponds to
a narrower bandwidth. (For a chirped pulse hL(t + x′) =
exp[−(t + x′)2(1 + iC)/τ 2

L ], h2
L changes to hLh∗

L and it still
gives the same result with the nonchirp case.) However, for
flying focus, the spatial-temporal coupling term AL(r′, t−x′)
is independent of h2

L, so that it can provide a wide bandwidth
even for the long pulse. From the origin of flying focus, it
comes from the time-dependent phase at different longitudinal
positions [20]. Figure 2 shows the scattering wave’s band-

FIG. 3. Dependency of scattering photon number on the pulse
duration for flying focus (filled blue curve) and traditional Gaussian
envelope (red dashed line) with IL = 2.5 × 1023 W cm−2, τX = 30 fs,
and xL = 3.45 µm.

width for τL = 75 fs. For the traditional Gaussian beam, the
scattering wave’s bandwidth is almost unchanged, still being
1/τX = 0.02 eV, while for the flying focus, it can vary in the
wider range 1/xL = 0.06 eV.

When using the flying focus, from Eq. (12), for the XFEL
with a much smaller waist than the pump, the vacuum birefrin-
gence signal can be calculated analytically, normalized with
NX and τL as

N = 9πNX

1372(45π )232

(
IL

Icr

)2

k2
X τ 2

L g(τX ), (14)

where

g(τX ) = 8x2
L

τ 2
X

−
(

8x2
L

τ 2
X

− 1

2

)√
8πx2

L

τ 2
X

× exp

(
8x2

L

τ 2
X

)
erfc

⎛
⎝

√
8x2

L

τ 2
X

⎞
⎠. (15)

For the XFEL with small temporal length τX < 2xL, we
have g(τX ) ≈ 1. This equation manifests that to maximize the
signal, a strong intensity IL is required, so that we use the
tightly focused laser, and the XFEL is an ideal probe since
it can provide both the large frequency kX and the appre-
ciable photon numbers NX . Meanwhile, the scattering signal
can be greatly increased with the longer temporal length τL.
However, for the traditional Gaussian envelope, the quadratic
relationship between N and τL is only valid for small τL when
the diffraction of the pump is not important (the detailed
expression can be seen in [31]). A smaller waist means a
smaller Rayleigh length xL, and when τL 	 xL, xL becomes
the length scale, which means the strong intensity and the long
interaction length cannot be provided simultaneously. Our
flying focus can overcome this limitation. The dependency of
the scattering photon number on the pump’s temporal length
is shown in Fig. 3. It can be seen that flying focus can greatly
enhance the signal when the pump’s temporal length is larger
than its Rayleigh length. Therefore, as shown in Fig. 4(a), the
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FIG. 4. Dependency of the ratio of the signal by the flying focus
N to the signal by the stationary focus N0 on (a) the pump’s duration
τL and the pump’s Rayleigh length xL with IL = 2.5 × 1023 W cm−2,
and τX = 30 fs, and (b) the pump’s duration τL and the probe’s
duration τX with IL = 2.5 × 1023 W cm−2 and xL = 3.45 µm.

ratio of the signal by the flying focus N to the signal by the sta-
tionary focus N0 becomes larger for a smaller Rayleigh length.
Besides, From Fig. 1(a) we can see that most of the flying
focus pump energy distributes in the range about |t−R| < τX ,

and the energy in the range about |t−R| < xL contributes to
the signal. Therefore, as shown in Fig. 4(b), the flying focus
is more superior to the stationary focus for a smaller XFEL
temporal length.

In many papers, such as [37], it is proposed to detect
vacuum birefringence in the regime τL < xL to make full use
of the pump laser’s energy, where infinite Rayleigh-length
approximation of ignoring the pump’s diffraction is widely
used. Here flying focus extends the experimental parameters
of using the long pulse τL 	 xL, and infinite Rayleigh length
is automatically satisfied. For the pump pulse, Eq. (14) shows
that the birefringence signal is only relevant to its energy
ILτL; therefore for a given pulse energy, flying focus pro-
vides a unique approach to detect vacuum birefringence with
weaker intensity and longer temporal length. In high-power
laser systems, the ultrashort beam is usually derived from the
compression. For example, the ELI (Extreme Light Infrastruc-
ture) L1 beamline compresses the beam from 2–3 ps to less
than 15 fs [38]. With the flying focus, the compression of the
beam may not be necessary, which can make the detection of
vacuum birefringence easier.

V. CONCLUSIONS

We investigate vacuum birefringence in the head-on colli-
sion between a XFEL probe and an optical laser pump. We
propose a method of detecting the signal using the flying
focus laser with the focus speed –c. The signal can be greatly
enhanced when the pump’s temporal length is larger than its
Rayleigh length. It partly overcomes the drawback of short
interaction length for an ultrastrong laser in the detection of
vacuum birefringence, which may lead to the experimental
observation of this effect.
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