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Coherent qubit measurement in cavity-transmon quantum systems
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A measurement of the time between quantum jumps implies the capability to measure the next jump. During
the time between jumps the quantum system is not evolving in a closed or unitary manner. While the wave
function maintains phase coherence it evolves according to a non-Hermitian effective Hamiltonian. So under null
measurement the timing of the next quantum jump can change by very many orders of magnitude when compared
to rates obtained by multiplying lifetimes with occupation probabilities obtained via unitary transformation. The
theory developed in 1987 for atomic fluorescence is here extended to transitions in transmon qubits. These
systems differ from atoms in that they are read out with a harmonic cavity whose resonance is determined by the
state of the qubit. We extend our analysis of atomic fluorescence to this infinite level system by treating the cavity
as a quantum system. We find that next photon statistics is highly nonexponential and when implemented will
enable faster readout, such as on timescales shorter than the decay time of the cavity. Commonly used heterodyne
measurements are applied on timescales longer than the cavity lifetime. The overlap between the next photon
theory and the theory of heterodyne measurement which are described according to the stochastic Schrödinger
equation is elucidated. In the limit of large dispersion the intrinsic error for next jump detection, at short time,
tends to zero. Whereas for short-time dyne detection the error remains finite for all values of dispersion.
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I. INTRODUCTION

A quantum system that is simultaneously driven and ob-
served will execute deterministic changes in the amplitudes
of occupation of its various levels |i〉 that are interrupted
by quantum jumps. Various types of quantum measurements
are possible. These include observation of the emission from
a transition between levels such as can be recorded on a
photodetector in the case of fluorescence. When fluorescence
measurements are very efficient one can then measure the time
between emissions or so to speak the next quantum jump. In
order to measure the time t j between successive jumps one
has to be able to measure that a jump has not happened for
times t < t j . For an atom driven to fluorescence by a laser
a measurement of the next quantum jump implies the ability
to determine that no fluorescent photon has been emitted
during the interval between jumps. Consider two different
interpretations of such a null measurement: (a) as no photons
are emitted the quantum system evolves in a unitary manner
during this interval; there is at all times a probability for spon-
taneous decay determined by the lifetime of a level, and its
occupation as determined by the unitary evolution; (b) a null
measurement by the photodetector constitutes an interaction
with the atom which changes its temporal evolution for t < t j .
We shall see that similarly to the ab initio calculations in
[1] (a) is incorrect and that the experimentally measurable
difference between these two models is enormous. The ability
to make a null measurement leads to an irreversible yet phase
coherent change in the evolution of the wave function for
t < t j . This “weak” measurement dramatically changes the
temporal dynamics of the quantum system. In particular, a null
measurement can lead to intervals of zero photon emission

that exceed what would be calculated for the unitary evolu-
tion, model (a), by many, many orders of magnitude [1–3].
We shall be especially interested in the discrepancy between
(a) and (b) when the quantum system has more than two levels
and there is a large variation in the lifetimes of these levels.

As this insight is the building block for this work we first
review as part of the Introduction the case of fluorescence
from a driven three-level atom. Our goal is to extend this
perspective to multilevel quantum systems, such as transmons,
that are dispersively coupled to damped driven resonators.
Dispersive coupling occurs when the resonant frequency of
a cavity depends upon the quantum level which is occupied
by the “atom.” In our approach the transmon is a solid-state
device modeled as an atom with discrete levels. The resonator
is treated as a quantum, not classical, system. This approach
is possible because measurements are made at the photode-
tector. First consider the resonator by itself. We find that for
times short compared to the decay time 1/κ of the cavity the
probability that the next emitted photon will be detected in
the interval [t, d + dt] is [dW/dt]dt where W is not Poisson
distributed but instead is W ∼ exp(−n̄κ3t3/12) where n̄ is the
steady-state occupation number at resonant drive. The simple
recipe for understanding and calculating this case is presented
in Sec. II A.

A purpose of this paper is to develop a bridge between
single-photon detection which is the characteristic measure-
ment technique for ion traps [4] and the heterodyne technique
[5,6] which is characteristic of measurements of solid-state
qubits such as transmons. Both methods use photodetectors
but in dyne detection the photodetector records a signal made
by superimposing the photon escaping from the cavity to a
coherent source. The dyne measurements are described by the
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stochastic Schrödinger equation (SSE). A recipe for interpret-
ing and calculating the SSE is presented in Sec. II B. In order
to compare our next photon formalism with the SSE we eval-
uate its detailed mathematical foundation in Sec. III following
the analysis of Wiseman [5]. Our comparison of these two
methods indicates that whereas the theory of single-photon
detection is fundamental, the SSE as developed for heterodyne
detection is not fundamental. It is a coarse-grained theory
where the smallest time interval �t must be long enough to
allow for the detection of many photons. So heterodyne detec-
tion is not useful for timescales significantly shorter than 1/κ .
In comparison, we argue that detection of the next jump due
to the recording of a single photon is a fundamental process
described by an effective non-Hermitian Hamiltonian. We
show that if one post selects from the SSE those events where
the heterodyne current is equal to its maximum-likelihood
value, then the system evolves exactly as during a null mea-
surement period for short times. An analysis of a protocol
for short-time measurements is provided in Sec. II C. When
the driven resonator is dispersively coupled to a transmon we
find (Sec. II D) that there is a cavity-induced lifetime that
establishes a connection between lifetimes of the transmon
states and intrinsic cavity-transmon parameters. This lifetime
plays an essential role in determining the transition to co-
herently evolving dark periods, as well as the length of the
dark period in a transmon that is driven to Rabi flopping.
In Sec. IV B this new parameter is invoked regarding three-
level systems such as employed in experiments with multiple
transmons [7]. As mentioned, Sec. II provides the higher level
and practical approach to the implementation and interpreta-
tion of the theory of the next quantum jump and its relation
to heterodyne detection. That we extracted a correct theory
is justified by its derivation from the established theory of
continuous measurement which is reviewed in Sec. III. Based
upon the first-principles theory, Sec. IV includes mathematical
derivations of response times when the cavity is initially in
the high- field and low-field coherent state configurations.
The high field occurs when the frequency of the cavity drive
matches the resonant frequency for the level occupied by the
transmon and the low-field state occurs when the transmon
is in its other level so that the system is off resonance. We
calculate the relaxation rates for these cases as well as the
lifetimes of the dark periods and their evolution during the
continuously observed dark state.

The analysis in Sec. IV allows for the description of photon
dynamics when emission is measured relative to the coherent
state as well as the ground state. Given the advantages of
measurements based upon detecting the next single photon
the issue arises as to whether this technique can be ap-
plied to solid-state systems. For experiments on ion traps a
photomultiplier tube is the instrument of choice because of
the O(eV ) energy of a single photon. For solid-state qubits
operating in the GHz domain the lower photon energy ne-
cessitates the use of heterodyne detection. However, we note
that attempts are being made to develop methods for detecting
single radio-frequency photons [8–11]. With this opportunity
in mind we have extended our next quantum jump formalism
[1] to solid-state systems. We wish to emphasize that this is
not a philosophical paper on quantum measurement. We deal
with (sometimes nonintuitive) experimentally measurable

consequences of quantum theory that have implications for
qubit readout and when optimized could drive the design of
new devices.

A. Next photon emission from a three-level atom

The key issues that we wish to generalize in this paper are
contained in the behavior of an atom with three levels that
is externally driven with a time-dependent electric field. So
we first review this case. Consider a three-level atom which
has two excited states |B〉, |D〉 with a common ground state
|G〉; there is no transition between the excited states. The tran-
sitions |G〉-|B〉, |G〉-|D〉 are externally driven near resonance
with oscillating electric fields. A photodetector measures with
100% efficiency the photons emitted via spontaneous decay.
For scenario (a) the amplitudes Ci(t ) to be in |i〉 at time t
are given by the evolution of the externally driven system
governed by a Hamiltonian H . The probability of photon
emission from levels i = B, D within an interval dt at time
t is βi|Ci(t )|2dt where the lifetime of the levels τi = 1/βi are
due to spontaneous decay. For an external driving field tuned
closely to the transition energies

E = EB cos (ωBGt ) + ED cos (ωDG + �)t, (1)

the rotating-wave approximation (RWA) yields

H∗
BG = HGB = −h̄�∗

B; H∗
DG = HGD = −h̄�∗

D exp(i�t ),
(2)

where �i are the Rabi flopping frequencies that are propor-
tional to Ei and

ih̄
dCi

dt
= Hi jCj . (3)

The effects of null measurement become dramatic when
the lifetimes are well separated such as when τB ∼ 1 ns, τD ∼
1 s. So we consider such a case and note that in this limit one
also has that |�D/�B| � 1 so that to leading order (taking
� = |�B| for computational convenience)

CB(t ) = 1
2 [exp(i|�B|t ) cos(|�D|t/

√
2) − exp(−i�Bt )]. (4)

Evolution of the three-level atom according to this Hermitian
Hamiltonian starts from the initial condition that an outgoing
photon has been recorded at t = 0 at which time the atom
resets to the ground state so that CB(0) = CD(0) = 0. In a time
t ∼ 1/|�B| the probability to be in state |B〉 reaches an aver-
age value of 1

2 and there is a strong probability that a photon
with frequency ωBG is emitted in about a ns. Following this
emission the atom resets to |G〉 and the same process repeats.
The probability that after a reset no photons are emitted for
a time T or longer is W (t ) = exp(−βBT/2), where we con-
sider the strong drive limit where |�B| � βB. In particular, the
probability of a dark period of length longer that τD is for the
above physically achievable case W (1 s) = exp(−5 × 108).
As there are about 1/τB attempts per second the chance of
seeing a dark period start per second is W (T )/τB which is still
incredibly small.

According to the principles of quantum theory the above
analysis is way off when the measuring apparatus is capable
of measuring the time between jumps. In fact, the percentage
of time the emission is dark pD can be order unity even in
the limit where the illuminating fields are completely coherent
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(i.e., have zero bandwidth) and even in the limit where the
strong transition is driven at saturation: |�B| � βB. Under the
condition |�D|/βB = ε � 1,

pD = F

2 + F
, (5)

where F = (1 + βBβD/4|�D|2)−1. This enormous increase in
probability comes about from the implementation of scenario
(b). When the intervals of no emission are measured, the
amplitudes Ci(t ) must be reinterpreted as the amplitude for the
atom to be in level “i” at time “t” subject to the observation
that no photons have been emitted since the last recorded
detection which we take to be t = 0. The probability that no
outgoing photons have been recorded in the interval [0, t] is

W (t ) =
∑

|Ci(t )|2. (6)

In view of spontaneous decay this quantity is no longer con-
served. Some of the probability transfers into states with
nonzero outgoing photons. So the effective Hamiltonian for
the evolution of the Ci(t ) is no longer Hermitian. However,
the Hamiltonian evolution of the null emission atom is a
closed description. While the Ci(t ) are a source for states with
outgoing photons there are no states that feed the Ci(t ). For
the three-level atom the closed non-Hermitian equations for
the evolution of the wave function between quantum jumps
takes the simple form

dCD

dt
= i�DCG +

(
i� − βD

2

)
CD,

dCB

dt
= i�BCG −

(
βB

2

)
CB,

dCG

dt
= i�∗

BCB + i�∗
DCD. (7)

In (7) the non-Hermitian terms proportional to βB, βD account
for the transfer of probability amplitude to states with nonzero
numbers of outgoing photons. The amplitude for the atom to
be in the strongly emitting level is

CB(t ) = i sin (|�B|t ) exp

(
−βBt

4

)
+ 4

|�D|2
β2

B

exp (i|�B|t )

×
[

exp

(
−βBt

4

)
− exp (−β	t )

]
, (8)

where the long timescale is determined by

β	 = 1

2
βD + 2|�D|2

βB
� βB. (9)

The separation of timescales in (8) and (9) presents the op-
portunity to observe the system on a timescale T such that
1/βB � T < 1/β	. If there are no jumps during this time T
the wave function is projected onto the slowly evolving term
proportional to exp(−β	t ). For 1/βB � T < t this implies

CG(t ) = CB(t ) = 2iε f exp (i|�B|t ) exp [−β	(t − T )],

CD(t ) = f exp (i|�B|t ) exp [−β	(t − T )], (10)

where f = 1/
√

1 + 8ε2 is a normalization. Once the wave
function takes the form (10) the time to the next jump is
determined by τ	 = 1/β	. For example, if no jump is observed
for a time T ∼ 12τB the probability of observing a dark period

of length τ	 is order unity. For the physical example above the
observation of no emission from the strong transition for a
time of about 12 ns leads to a dark period of about 1 s. The
probability of not seeing an emission, after a reset, for 12
lifetimes of the strong transition is exp(−6) which is small.
However, it is huge compared to the case of unitary evolution
(a). As there are many resets per second, the probability of a
dark period is now large and the percentage of time dark can
be order unity.

The observation of a long dark period is not due to the
absorption of a photon from the light source that is tuned to
the slow |G〉-|D〉 transition. During the dark period the atom
is not shelved in |D〉 but is in an evolving superposition of all
three levels. A large fraction of dark periods end with a reset to
|G〉 due to a photon being emitted from level |B〉! In Eq. (5), 

is the percentage of long dark periods that terminate with the
emission of a photon from level |B〉. We see that an absorption
event does not precede the emission from |D〉. For absorption
to precede emission requires 
 = 0 which is a contradiction
to the existence of a dark period as (5) would then imply that
pD = 0.

During the time between jumps when there has been no
emission for t � 1/βB the wave function is known and is
evolving coherently according to (10). During this interval
there is a window of time ∼τ	 when the wave function can
be modified by changing the electric field so as to return CG

to unity and suppress the next quantum jump [7].

II. PHOTON MEASUREMENT IN A COUPLED
TRANSMON-RESONATOR SYSTEM

A. Next photon emission from a damped driven
harmonic resonator

A method to read out the state of a two-level quantum
system (or qubit) is to couple it to a harmonic cavity in such
a way that the resonant frequency of the cavity depends upon
which level is occupied [12]. The response of the resonator
cavity to a driving field will then be sensitive to the state of the
qubit, and become a measuring device for the qubit state. Here
we treat the resonator as a quantum system in parallel with our
calculations for the three-level atom in the previous section.
In contrast to Atomic, Molecular and Optical (AMO) qubits
the method for reading out a resonator involves coupling to
an infinity of levels. This is the practical method for reading
out the state of transmon qubits. We calculate how the time to
the next quantum jump of the resonator determines the state
of the resonator and then also the qubit. Treating the coupled
resonator as a quantum as compared to a classical system may
be relevant to technological improvements in qubit readout
where it is acknowledged that “reducing the time required
to distinguish qubit states with high fidelity is a critical goal
in quantum-information science” [13]. Next, jump detection
enables a measurement of short-time response and might then
have advantages over heterodyne measurements which are
generally averaged over timescales longer than the lifetime
1/κ of the cavity or resonator.

Damping is an essential aspect of the quantum dynamics
of the next jump. In the previous section we saw that spon-
taneous decay affected the evolution of the wave function in
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such a way as to enable the observation of extended periods
of darkness from a driven atom. Spontaneous decay can be
calculated from first principles and so Eq. (7) for the evolution
of the atom between photodetection events can be derived
by deductive mathematics (B2) and [1]. Equation (7) is then
supplemented with the probability

D(t )dt = −dW (t )

dt
dt (11)

that the next jump is recorded between t and t + dt .
Equations (7) and (11) were derived in [1], they constitute
an extension of the theory of Srinivas and Davies [14] to
nonstationary processes such as occur in the presence of a
continuous drive. Srinivas and Davies [14] showed that in
the presence of a dissipative environment the evolution of
the wave function itself can be described by an effective
Hamiltonian during an interval when no counts are recorded.
Their analysis assumed stationarity and was applied under
conditions of free decay which is a Poisson process. The
long dark periods and separation of timescales observed in
the three-level system do not appear under conditions of free
decay or stationarity. The theory of Srinivas and Davies (SD)
for the evolution of the density matrix matches Lindblad [15]
who also imposed stationarity in the presence of a dissipative
environment.1 For transmon qubits the resonator decay time is
phenomenological and is not derived from first principles. The
transmon dynamics is obtained by supplementing the decay
process with time-dependent excitations as in [1]. This is
equivalent to applying the Lindblad and SD formalisms for the
evolution of the density matrix amd wave function with time-
dependent terms included in the effective Hamiltonian [1]. A
time-dependent effective Hamiltonian evolution interspersed
by wave-function collapse was used by Tian and Carmichael
[18] to study a single atom in a two-level cavity. They call this
extension of the Lindblad-SD theory “quantum trajectories.”
Below we calculate the trajectory for a two-level atom coupled
to cavity modes. The Hamiltonian for a lossless driven res-
onator that is dispersively coupled to a transmon with ground
state |G〉 and excited state |B〉 is modeled following [7] as

HR = h̄χ (|B〉〈B| − 1)c†c − ih̄
(eiωDt c − e−iωDt c†)

+ h̄ωRc†c, (12)

where the strength and frequency of the external driving field
are 
, ωD. When the atom is in |G〉 the resonant frequency of
the cavity is ωC = ωR − χ . We take χ < 0 as in [7] so that the
cavity resonance is lower when |B〉 is occupied. The evolution
of the density matrix ρ of an observed quantum system is
determined by the Lindblad operator [15] L as extended to
apply to nonstationary processes:

ih̄
dρ

dt
= Lρ = Heffρ − ρH†

eff + h̄Iρ, (13)

1We do not understand why this condition was so prominently
imposed. Our first-principles analysis [1] and Appendix B as well
as recent work on the Lindblad equation [16,17] suggest that in the
general case one simply includes the time-dependent potentials in the
effective Hamiltonian.

where Iρ describes the observation. When Iρ = iκcρc†,
κ trc†cρ(t )dt is the probability to detect a quantum of the
cavity mode c in the time interval [t, t + dt]. As the resonator
must be in some state its trace is a constant of the motion
Tr dρ/dt = 0. In order to meet this condition the effective
Hamiltonian must depend on the damping κ and become non-
Hermitian with

Heff = HR − ih̄
(κ

2

)
c†c. (14)

An underlying assumption in the construction of Heff is that
damping is due to the escape of photons which are then ob-
served. In the case of fluorescence in AMO systems these are
photons from spontaneous decay whereas for the transmons of
these might be photons that leave the resonant cavity through
a “hole” in the wall.

Consider now the initial condition where the “atom” and
transmon is in the ground state and the drive is tuned to
resonance so that ωD = ωC , then the evolution of the resonator
up until the first quantum jump is given by

dCG,n

dt
= 
(

√
nCG,n−1 − √

n + 1CG,n+1) −
(κn

2

)
CG,n, (15)

where CG,n(t ) [with CG,n(0) = δn,0] is the amplitude for the
atom to be in G and the resonator to be in state n at time
“t” subject to the measurement that no outgoing photons have
been emitted during the interval [0, t]. This is a situation
where the resonator drive is turned on at t = 0 to determine
the state of the qubit. Here we are calculating the response
given that the qubit is in G. A solution exists in the form

CG,n(t ) = exp [β(t )]α(t )n

√
n!

, (16)

where α(t ) is a free parameter [not the index of the ancilla
Hilbert space appearing in Eqs. (50)–(54)!]. For these initial
conditions

β(t ) = −κ

2
n̄

(
t + 2

κ
(e−κt/2 − 1)

)
, (17)

dβ

dt
= −
α, (18)

and, generally,

W (t ) =
∞∑

n=0

|CG,n|2 = exp(β + β∗ + |α|2). (19)

We have introduced the steady-state occupation of the res-
onator n̄ so that 
 = κ

√
n̄/2. The probability that the next

jump has not occurred in time “t” is W (t ). The probability
that the next jump will occur between t and t + dt is

D(t )dt = −
(

dW

dt

)
dt = καα∗W. (20)

Equations (15) and (20) for the evolution of the driven cavity
take the place of (7) and (11) for multilevel fluorescence. For
short times this case gives

W ∼ exp(−n̄κ3t3/12) (21)

and the expected time to the next jump when n̄ � 1 is t̄ j ∼
(3/κ
2)1/3. For times long compared to the cavity lifetime
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(κt > 1) the nonexponential behavior (21) switches to expo-
nential response so that W → W0 exp(−κ n̄t ). For a strong
drive 
, the time to the first jump can be less than the res-
onator lifetime. For this reason a measurement of the next
jump can offer advantages over heterodyne measurements
of the state of the qubit. Consider next the case where the
atom is reinitialized in G and the resonator is in the coherent
state c|√n̄) = √

n̄|√n̄) but the frequency of the drive is now
tuned to the resonance appropriate to the atom in B, so that
ωD = ωR. Next apply the RWA by looking for a wave function
in the form ψ = ∑

CG,n(t )e−inωDt |n〉. From (12) and (14) one
obtains

dCG,n

dt
= inχCG,n + 
(

√
nCG,n−1 − √

n + 1CG,n+1)

−
(

κn

2

)
CG,n. (22)

The solution is given by (16) and (18), supplemented with

α̇ =
(

iχ − κ

2

)
α + 
,

α(t ) = 


(κ/2) − iχ
{1 − exp [(iχ − (κ/2)]t}

+α(0) exp {[iχ − (κ/2)]t}. (23)

The initial value of the coherent state α(0) (here equal to√
n̄) evolves into a lower value γL = 
/[(κ/2) − iχ ] when the

driving frequency is detuned by χ from the resonance when
the transmon is in G. During this evolution (20) applies, so
the probability of a jump prior to reaching the new stationary
state can be large.

The driven damped oscillator reaches a steady state where
the average occupation is n̄, when the atom is in G, and the
cavity driven at resonance. This result is contained in (17)
and (18) which yield α → √

n̄; t → ∞. Suppose now that
one wishes to make a measurement of a quantum transition
relative to this state. In this case a null measurement occurs
when the resonator remains in the coherent state |γ ) where
c|γ ) = γ |γ ). The observation of a transition from the coher-
ent steady state |G〉|√n̄) is described by the shifted operator

Iγ ρ = iκ (c − γ )ρ(c† − γ ∗) = iκbρb†, (24)

where b is the annihilation operator relative to the coherent
state γ . In this case conservation of probability leads to

Heff = HR − ih̄
(κ

2

)
c†c − ih̄κ

(
γ γ ∗

2

)
+ ih̄κγ ∗c. (25)

If the atom is in G and ωD = ωC the effective Hamiltonian in
the RWA as a function of b is

Heff

h̄
= −i

(κ

2

)
b†b + ib

[

 −

(
κγ ∗

2

)]

− ib†
[

 − κγ ∗ +

(κγ

2

)]
+ i
(γ − γ ∗). (26)

Noting that 
 = κ
√

n̄/2 one finds that when the system is in
the coherent state of the original basis [γ = √

n̄] the effective
Hamiltonian in the shifted basis is

Heff

h̄
= −i

(κ

2

)
b†b. (27)

So if the driven resonator and transmon system starts out in the
state G, b = 0 it stays in that state. Even though the Hamilto-
nian drive is balanced by damping there is no quantum jump
unless an additional external field drives a Rabi flop or if ωD

is changed. The vacuum state |0〉 with eigenvalue b = 0 of
the shifted basis corresponds to the coherent state γ = √

n̄ of
the original basis. In this sense the steady state of the classical
dissipative system becomes a quantum ground state in the next
jump formalism.

B. Comparison of next jump theory with the stochastic
Schrödinger equation for heterodyne detection

The state of the driven cavity gives information about the
state of the qubit due to their dispersive coupling. Above we
have discussed how the time of its next quantum jump is
sensitive to the state of the cavity. This can be seen from the
differing solutions to (22) and (15). In most current experi-
mental arrangements [7] the state of the cavity and therefore
that of the qubit is determined by the readout of a heterodyne
current. This is the current generated on a microwave detec-
tor which is due to the combination of the cavity field with
the field of a much stronger beam. The heterodyning beam
has a different frequency ωh = ωc + �ω than the cavity. The
heterodyne beam impinges on the detector directly, without
interacting with the cavity. The total field to hit the detector is
in the classical limit

E =
(

B√
2

)
exp i(ωc + �ω)t +

(
F√

2

)
exp iωct + c.c.,

(28)

where B, F are the effective field of the heterodyne beam and
the cavity emission. The current recorded by the detector in-
cludes a dc component plus a term at the difference frequency
which is the heterodyne current:

E2 = |B|2 + F 2 + Ih, (29)

Ih =
(

BF ∗

2

)
exp(i�ωt ) + c.c. (30)

In the steady state the cavity emits κ n̄ photons per second;
so in the steady state F = √

κ n̄. Even though we shall take
|B|2 � |F |2 the fluctuations in the externally imposed beam
must be included. In a time �t the number of photons in
the external beam is n = 〈〈n〉〉 + �ζ where 〈〈n〉〉 = |B|2�t .
Measurement of the heterodyne current at frequency �ω/2π

is conditioned on measurement of a current equal to 〈〈n〉〉/�t
in the dc channel of the photodetector’s current. The fluctuat-
ing signal represented by �ζ provides the source of photons
for the heterodyne current. In order that the shot noise in this
interval of time be given by

√〈〈n〉〉 we take �ζ as being
Gaussian distributed so that in the continuous limit

〈ζ̇ (t )ζ̇ (t ′)〉 = B2δ(t − t ′). (31)

The fluctuation in number is equivalent to a fluctuation in the
field of the imposed beam of �B(t ) = ζ̇ (t )/B. The inequality
|B|2 � |F |2 means that �t is small compared to the time
over which the cavity response is changing. The probability of
recording a given trajectory ζ (t ) is determined by the stochas-
tic Schrödinger equation which we now motivate heuristically.
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The deductive presentation following Refs. [5,6] is in Sec. III.
According to (30) the measurement operator for a heterodyne
current includes the product of the cavity and external fields.
The cavity field is due to the quantum processes in the cavity
and is given by F → √

κc. The heterodyning field is treated
classically and is given by ζ̇ /B. In this way observation of a
heterodyne emission is represented in the continuum limit by

Ihρ = −i
√

κ

[
cρ

(
ζ̇

B

)
e−i�ωt +

(
ζ̇

B

)
ei�ωtρc†

]
. (32)

The additional terms which put the operator (32) into the
form Ihρ = OρO† vanish in the continuum limit as shown
in Sec. III. This leads to the effective Hamiltonian

Heff = HR − ih̄
(κ

2

)
c†c + ih̄

(√
κζ̇

B

)
[exp(−i�ωt )]c. (33)

The probability of recording a given trajectory ζ̇ (t ) is now
given by

iψ̇ =
[
−i
(c − c†) − i

(κ

2

)
c†c + i

(√
κζ̇

B

)
e−iφ(t )c

]
ψ,

(34)

where we have taken ωc = 0, �ωt = φ(t ). A solution can
again be found in the form (16) with

α = 2


κ
+
(

α(0) − 2


κ

)
e−κt/2,

β̇ = −
α + α

(√
κ

B

)
ζ̇e−iφ(t ). (35)

The initial value α(0) evolves to the steady-state value γ =√
n̄, which value will be chosen for this example. In this limit

β = −

√

n̄t + √
n̄

(√
κ

B

)
T (t ) + β(0), (36)

where T (t ) = ∫ t
0 ds ζ̇ (s)e−iφ(s) and now β(0) = −n̄/2. From

(31), 〈〈T (t )T ∗(t )〉〉 = B2t . Therefore, T is a complex ran-
dom variable that is Gaussian distributed as P(T ) =
(1/πB2t ) exp(−T T ∗/B2t ), and defining the average current
I = T/t , its distribution as a complex variable is

P(I ) = t

πB2
exp(−t I2/B2). (37)

Although a given current trajectory has a Gaussian distri-
bution the recorded current also involves the probability of
making that measurement. The combination of these prob-
abilities completes implementation of the SSE. In this case
Eqs. (19) and (36) yield the combined probability distribution
for I as being

Ph(I ) = P(I )||ψ (I )||2 =
(

t

πB2

)
exp

[
−t

(
I

B
− √

κ n̄

)2
]
.

(38)

So for large times the probability is sharply peaked at I =
B
√

κ n̄ which is the classical limit of the heterodyne current.
To determine n̄ with a fractional accuracy δ requires that the
wave function be narrowed down for a time κt > 1/δ2n̄. If the
measurement process starts from the state with α = 0 then an

additional timescale t ∼ 1/κ enters the measurement which is
determined by the evolution of α according to (35).

When the measurement has been sufficiently long the max-
imum probability of (38) is attained: I (t ) = ζ̇e−iφ = B

√
κ n̄.

Making this substitution into the SSE leads to (25) except for
a normalization factor. So when the measurement has been
carried out longer than 1/κ the heterodyne protocol is the
same as the evolution according to the effective Hamiltonian
(25) which describes the null evolution between jumps.

C. Short-time measurements of the state of the qubit

Although the heterodyne protocol as dictated by the SSE
converges to the null-measurement evolution at long times
their fidelity and noise characteristics differ at short times. In
the limit of large n̄, |χ |, an efficient measurement of the next
jump has advantages.

For the two-level atom dispersively coupled to a resonator
a measurement of the next jump of the resonant cavity yields
information on the state of the qubit. If the qubit is in |B〉
and the drive frequency is on resonance for this state, then
the expected time to the next jump is t̄ j ∼ (3/κ
2)1/3. For
sufficiently large n̄ this time is shorter than 1/κ . If instead
of being in |B〉 the qubit was in state |G〉 when the drive
is turned on there is also a chance of recording a jump. To
evaluate this error rate we introduce the probabilities PG(t ),
PB(t ) that the qubit is in state G, B and there has been
a click in the detector within time “t” of the drive being
turned on: PG(t ) = 1 − W (χ, t ), PB(t ) = 1 − W (0, t ), where
W (χ, t ), W (0, t ) are given by (18), (19), and (23). Using
the condition that a click has been observed at or before a
time t the error rate is ε = PG/(PG + PB). Homodyne and
heterodyne techniques have different errors at short time. First
we compare the error for next photon readout to the error for
dispersive readout using the homodyne technique. In this case
the SNR at short times follows from the application of (38) or
by use of the quantum Langevin equation [19] to get

SNR = 1√
18




κ
(κt )5/2. (39)

A comparison of these metrics is made possible via the rela-
tion between the error εDR for homodyne dispersive readout
and its SNR [20]:

εDR = 1

2
erfc

(
SNR

2

)
. (40)

Figure 1 [21] displays a comparison of the error for disper-
sive homodyne readout compared to the next jump. The inset
contains a plot of the logarithmic decrement of the timewise
distribution of the next jump:

Y = −1 + (2χ/κ )2

n̄W

dW

dτ
. (41)

Information in the oscillations at short time may allow for
a smaller error in the proposed measurements. Whereas a
click is interpreted as occupation of |B〉, the absence of a
click in [0, t] can be interpreted as occupation of |G〉. The
error ε0 in this application of a null measurement is due to
the possibility that the atom does not emit a photon while
in |B〉: ε0 = W (0, t )/[W (0, t ) + W (χ, t )]. For the parameters
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FIG. 1. Comparison of error for qubit-state detection for dis-
persive homodyne readout εDR and next jump readout ε. The
dimensionless time is τ = κt . The error for the next jump detection
decreases with increasing dispersion and for this curve we have
taken χ/κ = 20; for dispersive readout χ/κ = 1

2 which optimizes
the SNR. In each case the resonator drive is set to n̄ = 100. For
dispersive homodyne readout the error becomes very small at times
longer than the resonator lifetime. For coherent qubit detection via
the next jump the error is minimized at short time and becomes
50% at long times (not shown). However, at very short time χt < 1
the error ε is large as dispersion prevents one from determining
whether the atom is in |G〉 or|B〉. Inset: For large dispersion the time
dependence of the arrival of the next photon has large oscillations.
The scaled logarithmic decrement Y of the norm as a function of
time is plotted in the inset for χ/κ = 20.

used for Fig. 1(χ/κ = 20; n̄ = 100), ε0 ∼ 0.3; ε ∼ 0.1, for
κt = 0.5. When κt = 0.7 the error of readout due to a null
measurement has dropped to ε ∼ 0.1.

In Sec. III C we will derive Eq. (39) using the formalism
developed in Sec. III. We will also show that the time de-
pendence SNR ∝ (κt )5/2 is peculiar to the homodyne scheme
and that in the heterodyne scheme it is instead SNR ∝ (κt )3/2.
These signal-to-noise ratios are optimized with respect to the
dispersion. In the case of homodyne readout this occurs for
χ = κ/2 and heterodyne readout is optimized for χ → ∞.
For next photon detection the short-time error decreases to
zero as dispersion increases. To see this consider the norm
W (χ, t ) at short times κt < 1 which follows from Eqs. (18)
and (23): W (χ, t ) ∼ exp[− κ3n̄

2χ2 (t − sin χt
χ

)]. During the time

interval 1/χ < t � 1/κ , W (χ, t ) ∼ exp[−κ3n̄t/2χ2]. Tak-
ing, for example, κt ∼ [12/n̄]1/3 which is the expected time
to the next jump, then W (χ, t̄ j ) ∼ exp[−(3/2)1/3(κ n̄1/3/χ )2]
and for large χ , PG ∼ (κ n̄1/3/χ )2 ∼ ε.

D. Lifetime of two-level system coupled to a driven resonator

The upper level of a two-level quantum system acquires a
finite lifetime due to its coupling to a driven resonator. This
lifetime 1/βB = √

π/2
√

2
 exists even in the limit κ → 0. It
is similar to radiation damping except here the flow of energy
is to higher excited levels |n〉. This term plays a key role when
a transmon is driven by Rabi flopping between B and G. It sets
the fastest timescale for the system.

We start with the two-level system coupled to a resonator.
Now the drive is set to be resonant with the atom in B.
When externally driven transitions are included the equations
become

dCG,n

dt
= i�∗CB,n +

(
dCG,n

dt

)
R

, (42)

dCB,n

dt
= i�CG,n + 
(

√
nCB,n−1 − √

n + 1CB,n+1)

−
(κn

2

)
CB,n, (43)

where (dCG,n/dt )R is given by the right-hand side of (22) and
� is the Rabi flopping frequency. We analyze this process
in the limit where 
2/χ2 � 1, so that |CG,2/CG,1|2 � 1. Ne-
glecting CG,n for n > 1 yields

dCB,0

dt
= i�CG,0 − 
CB,1, (44)

dCG,0

dt
= i�∗CB,0 − 
CG,1, (45)

dCG,1

dt
+
(κ

2
− iχ

)
CG,1 = 
CG,0. (46)

The flow of probability to higher levels leads to a relation
which closes the equations [21] (see Sec. IV for more details)

CB,1 =
√

2

π
CB,0. (47)

Use of (47) in (44) gives a lifetime 1/βB to the upper level
CB,0 where

βB

2
=
√

2

π

. (48)

The solution to (44), (45), (46), and (47) displays motion on
two well-separated timescales: the short timescale 2/βB and
the long timescale 1/γ , where

γ = 2|�|2
βB

. (49)

If a continuous measurement of the system finds that the next
jump has not occurred for a time longer than 2/βB, then there
is a lull and a warning that the jump will take place on the
long timescale 1/γ . During this time the transmon is in a co-
herently evolving superposition of its B and G levels. During
this lull there is an opportunity to rotate the wave-function
amplitudes and affect the future jump statistics [7].

In Sec. IV B we present the theory for the dark periods
which occur when an additional level “D” is introduced into
the transmon system. It is coupled to “G” via Rabi flopping.
As “D” is not coupled directly to the resonator it can have a
long lifetime. This theory is an extension of the three-level
atom (Sec. I) to include the quantum mechanical treatment of
the readout resonator which is coupled to “G, B.”

III. A QUICK REVIEW OF CONTINUOUS
MEASUREMENT THEORY

The summary of the theory of continuous measurement
by photodetectors given in this section relies heavily on
Refs. [5,6] (see also [22,23]). The results described here are
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well known and the purpose of this section is twofold. First
of all, we want to make the limitation and domain of ap-
plicability of the stochastic Schrödinger equation (SSE) as
explicit as possible. Specifically, we will show that while the
SSE adequately describes the measurement protocols known
as heterodyne or homodyne detection, it shares with those
protocols an intrinsic limitation in time resolution. We will
find that both SSE and heterodyne and homodyne detection
are inadequate to describe short timescale measurements but
we will also show that other measurement schemes exist, which
do not share that limitation. This is the other purpose of this
section. The description of other measurement schemes, that
can give information about the transmon-cavity system on
short timescales, will begin in Sec. IV.

We will consider a system made by an observed subsystem,
described by a state vector ψ in a Hilbert space H and an
ancilla, described by a vector

∏
a |αa〉 in a product Hilbert

space
∏

a Ha. Measurement is described by initializing the
ancilla Hilbert space in the vector

∏
a |0〉 and letting the sys-

tem interact during the time interval [nε, (n + 1)ε] with the
Ha=n copy of ancilla Hilbert space. We will make use of a
preferred basis of the Hilbert space Ha which we denote by
|α〉, α = 0, . . . , N . In the time interval [nε, (n + 1)ε], the sys-
tem ψ and the appropriate component of the ancilla |0〉 evolve
under a Hamiltonian H . On the initialized state ψ ⊗ |0〉, H is

Hψ ⊗ |0〉 =
∑

α

(Ẽαψ )|α〉, Hψ ⊗ |α〉 = (Ẽ†
αψ )|0〉, (50)

where the Eα are some operators acting on H. The evolution
from t = nε to t = (n + 1)ε to O(ε2) is

ψ ⊗ |0〉 → ψ ⊗ |0〉 − iε
∑

α

(Ẽαψ ) ⊗ |α〉

− 1

2
ε2
∑

α

(Ẽ†
α Ẽαψ ) ⊗ |0〉. (51)

To describe a continuous measurement one must choose Ẽ0 =
O(1), Ẽα = O(ε−1/2) so we define Ẽ0 ≡ E0, Ẽα = ε−1/2Eα ,
α �= 0. A strong (projective) measurement on the Ha Hilbert
space effects a weak measurement of ψ . The probability of
recording the ancilla in the state |α〉a=(n+1)ε is given by the
diagonal entry 〈α|ρT |α〉a=(n+1)ε of the density matrix of the
system ρT . Its time derivative in the continuum limit is

〈0|ρ̇T |0〉t =
(

− iE0 − 1

2

∑
α �=0

E†
αEα

)
〈0|ρT |0〉t

+〈0|ρT |0〉t

(
iE0 − 1

2

∑
α �=0

E†
αEα

)
, (52)

〈α|ρ̇T |α〉t = Eα〈0|ρT |0〉t E
†
α, α �= 0. (53)

The subscript t reminds us that there is a different ancilla
Hilbert space at each time t . Since the nth copy of the ancilla
space decouples after interacting with the observed subsystem
in the time interval [nε, (n + 1)ε] and at t = (n + 1)ε the
(n + 1)th copy of the ancilla state is initialized at |0〉a=(n+1)ε ,
we see that in the continuum limit at each time the density
matrix is ρT = |0〉〈0|tρT |0〉〈0|t . Thanks to this property we
can obtain a reduced evolution equation by tracing the density
matrix over the ancilla variables to define the density matrix
of the observed subsystem ρ = ∑

α〈α|ρT |α〉t , which obeys
the evolution equation

ρ̇ =
∑
α �=0

EαρE†
α − iHeffρ + iρH†

eff, Heff = E0− i

2

∑
α �=0

E†
αEα.

(54)

Notice that E†
0 = E0. In quantum information theory the evo-

lution in Eq. (54) is called a (continuous) quantum channel;
the Eα are called the Kraus operators.

We will concentrate on the case α = 0, 1 and call E1 ≡ E .
The evolution equation becomes

ρ̇ = Lρ ≡ Iρ − iL0ρ. (55)

The time-dependent Lindblad operator L has been de-
composed in Eq. (55) into the sum of of a “free” term
L0ρ = Heffρ − ρH†

eff, describing evolution between obser-
vations, plus the interaction term Iρ = EρE†, describing
observations. Here we will use perturbation theory in I
to find the evolution of a quantum system, conditioned on
the measurement of photocurrents (rather than individual
photons).

To describe a measurement of a photocurrent, we must un-
derstand the evolution of the system over a time interval �t �
ε, in which a large number of photons n � 1 are detected.
Photons are detected by a photodetector which measures a
field obtained by superimposing a large classical signal β/

√
κ

to the photons coming from the cavity containing the observed
subsystem (i.e., the atom or the qubit). Since photodetection
is proportional to the field amplitude, the Kraus operator is in
this case

E = √
κc + β. (56)

The time step �t must be large enough to allow multiple
photodetections but so short that the evolution of E under Heff

is negligible [6]. By defining Heff = H ′
eff − i

2ββ∗ we find that
the evolution of the reduced matrix element conditioned on
observing n photons in the time interval �t is

ρ(t + �t ) = e−ββ∗�t e−iH ′
eff�t

∫ �t

0
dt1

∫ t1

0
dt2· · ·

∫ tn−1

0
dtneiH ′

efft1 Ee−iH ′
efft1 . . . eiH ′

efftn Ee−iH ′
efftnρeiH ′†

efftn E†

× e−iH ′†
efftn . . . eiH ′†

efft1 E†e−iH ′†
efft1 eiH ′†

eff�t

≈ (�t )n

n!
e−ββ∗�t

(
1 − iH ′

eff�t − 1

2
H ′2

eff(�t )2

)
EnρE† n

(
1 + iH ′†

eff�t − 1

2
H ′† 2

eff (�t )2

)
. (57)
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In this equation we have discarded terms that become negligi-
ble in the limit �t → 0 while also rescaling β. To find out the
correct scaling we recall that Eq. (57) is the evolution of the
density matrix conditioned on observing n photons in the time
interval �t . To obtain a continuous limit, this number should
be large. Now, Eq. (57) can be written as

ρ(t + �t ) = (ββ∗�t )n

n!
e−ββ∗�t XρX †, (58)

X =
(

1 − iH ′
eff�t − 1

2
H ′2

eff(�t )2

)(
1 + √

κ
c

β

)n

. (59)

The prefactor is a Poissonian distribution in n with mean
〈〈n〉〉 = ββ∗�t . To keep 〈〈n〉〉 large in the limit �t → 0 we
must have β

√
�t � 1.

It is convenient to choose

E0 = H + i

√
κ

2
(c†β − cβ∗), (60)

with H any Hermitian operator that remains finite in the limit
�t → 0. With this choice Eq. (55) describes free evolution in-
between observations and detection events when the detected
field is shifted by a classical field.2 With this choice

H ′
eff = H + i

√
κ

2
(c†β − cβ∗) − i

2
(
√

κc† + β∗)(
√

κc + β )

= H − i
√

κβ∗c − i
κ

2
c†c. (61)

A short calculation shows that, up to terms that vanish faster
than �t in the �t → 0 limit,

1 − iH ′
eff�t − 1

2
H ′2

eff(�t )2 = 1 − iH�t − √
κ〈〈n〉〉 c

β

−κ

2
c†c�t + 1

2
κ〈〈n〉〉2 c2

β2
,

(
1 + √

κ
c

β

)n

=
(

1 + √
κn

c

β
+ κ

n(n − 1)

2

c2

β2

)
.

(62)

Since 〈〈n〉〉 � 1, we can write n = 〈〈n〉〉 + x, with x a Gaus-
sian random variable with zero mean and variance 〈〈n〉〉 =
ββ∗�t . Another short calculation then gives

X = 1 − i

(
H − i

κ

2
c†c

)
�t +

√
κ

β
xc

+ κ

β2

(
x2

2
− x

2
− 〈〈n〉〉

2

)
c2. (63)

The random variable x/β2 is formally of order |√〈〈n〉〉/β2|, so
the scaling of 〈〈n〉〉 and β in the �t → 0 limit implies x/β2 �
�t and the evolution equation is

ρ(t + �t ) = P(x)

{
ρ(t ) − i

[(
H − i

κ

2
c†c
)
�t +

√
κ

β
xc

]
ρ

+ iρ

[(
H + i

κ

2
c†c
)
�t +

√
κ

β∗ xc†

]}
, (64)

2We will use this decomposition in Eqs. (89)–(91).

where P(x) is the probability distribution of x. To obtain
a continuum limit we define the variable �ζ ≡ Bx/|β|,
which is a Gaussian random process with zero mean
and variance σ = B2�t , call �ζl the Gaussian variable in
the time interval [l�t, (l + 1)�t], denote with P(�ζl ) =
(2πσ )−1/2 exp(−�ζ 2

l /2σ ) its probability distribution, and
redefine

ρ(t ) =
N∏

l=0

P(�ζl )ρ̂(t ), t = N�t . (65)

Here B2 is the classical photon number current that is het-
erodyned to the signal from the cavity, so it is the same
as in the Introduction: B2 = 〈〈n〉〉/�t .3 In the continuum
limit �ζ defines a Gaussian white noise ζ (t ) with covari-
ance 〈〈ζ̇ (t )ζ̇ (t ′)〉〉 = B2δ(t − t ′). Because P(�ζ ) → ∞ for
any finite-variance fluctuation in the limit �t → 0, the evo-
lution equation for ρ̂ has the continuum limit

i ˙̂ρ = H[ζ ]ρ̂ − ρ̂H†[ζ ],

H[ζ ] =
(

H − i

2
κc†c + i

√
κ

B
ζ̇eiφc

)
, eiφ ≡ −i

|β|
β

,

(66)

which can be rewritten in terms of an SSE

iψ̇ = H[ζ ]ψ =
(

H − i

2
κc†c + i

√
κ

B
ζ̇eiφc

)
ψ. (67)

A few comments are necessary now.
(i) The wave function ψ is simply an auxiliary tool. It

is not fundamental and in fact it describes some but not all
measurements of the cavity + atom. To arrive at Eq. (67) we
made several approximations, most notably we coarse grained
in time over intervals �t and superimposed the signal from the
cavity with a classical signal β/

√
κ that diverges in the limit

�t → 0. Since any physical β is finite, the continuum limit
can be only an approximation.

(ii) The time interval �t itself is much larger than the
time interval between measurements of the ancilla: �t � ε.
In fact, �t should be long enough to allow for detection of
many photons.

(iii) When φ(t ) is constant, Eq. (67) describes homodyne
detection while when φ(t ) = ωt with ω � κ it describes het-
erodyne detection.

(iv) As we will see in Sec. III A, heterodyne measurement
correlates well with atomic states only when it is performed
for a time T � 1/κ . So, heterodyne detection cannot resolve
small timescales, such as 1/κ or 1/n̄κ .

(v) The main focus of this paper is instead to describe other
measurements (next photon) that can give information on the
transmon-cavity state on timescales shorter than 1/κ .

(vi) Once a solution ρ̂[ζ ] of Eq. (66) is found, the ex-
pectation value 〈〈O(T )〉〉S of an operator O(T )conditioned on
having recorded an output ζ (t ), t ∈ [0, T ] belonging to a set

3Notice that in this formula as in the Introduction �t is a finite,
nonzero time interval.
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of trajectories S is

〈〈O〉〉S =
∫

S
[dζ ]P[ζ ]Tr O(T )ρ̂(T ),

P[ζ ] = C exp

(
−
∫ T

0
dt

1

2B2
ζ̇ 2

)
. (68)

The density P[ζ ] defines a Gaussian white-noise stochastic
process. The constant C normalizes the probability distribu-
tion and is necessary to make the functional integral over S
finite.

(vii) By redefining the auxiliary state vector ψ →
exp(Ac† + B)ψ , we can change H[ζ ], so the stochastic
Hamiltonian is not unique. We will discuss this freedom in
Appendix A.

A. A detour into heterodyne detection

In this paper we will describe the evolution of a quan-
tum system under the constraint of null detection. In this
section we show how to relate the null-detection evolution,
given by the Lindblad equation, to evolution in the heterodyne
detection scheme which is commonly used in experimental
settings. This section and the next have been extensively sum-
marized in the Introduction, where a Fock space language was
used. Here we will use instead the coherent-state formalism.
The reader uninterested in the details of the formalism can
jump to Sec. III C.

The toy example we consider here is a driven cavity with
Hamiltonian

H = −
(c − c†). (69)

A null result is recorded when the cavity is in a coherent
state |γ ) such that (c − γ )|γ ) = 0 so the appropriate Kraus
operators for this system are (56) with β = √

κγ and E0 as in
Eq. (60). The effective Hamiltonian then follows straightfor-
wardly from Eq. (61) and the redefinition made after Eq. (56)
(Heff = H ′

eff − i
2ββ∗)

Heff = E0 − iκ

2
c†c + iκγ ∗(c − γ ) + iκ

2
γ ∗γ

= − iκ

2
c†c − 
(c − c†) − iκ

2
γ ∗γ + iκγ ∗c. (70)

Only one mode with many levels is detected. Notice the term
−iκγ γ ∗/2. In the next photon approach a transition between
two levels of a system with one mode is detected. In hetero-
dyne detection instead, the state of the cavity is measured
by recording a current issuing from a photomultiplier that
measures the amplitude of a field obtained by superimposing
the cavity field c with a classical signal β(t ). The frequencies
of c and β are different and the magnitude of β is much larger
than

√
κ|γ |. So the question to answer is as follows: Why

do experiments that measure the state of the cavity by using
heterodyne detection track the coherent state of the cavity?
Here we follow closely [5]. We need to show that heterodyne
detection collapses the cavity into a coherent state in a time
O(1/κ ). The linear, conditioned time-evolution equation is
given by Eq. (67) [cf. Eq. (41) of [5]]:

iψ̇ =
(

i

√
κ

B
ζ̇e−iφc + H − iκ

2
c†c

)
ψ. (71)

The variable ζ is a Gaussian white noise with covariance
〈〈ζ̇ (t )ζ̇ (t ′)〉〉 = B2δ(t − t ′). By substituting the ansatz ψ =
exp(αc† + β )|0〉 into (71) we get the equations

iα̇ = − iκ

2
α + 
, iβ̇ = −
α + i

√
κ

B
ζ̇e−iφα. (72)

The solutions obeying initial condition α(0) = ᾱ and β(0) =
0 are

α(t ) = 2



κ
(1 − e−κt/2) + ᾱe−κt/2,

β(t ) = −2



κ
[
t − T (t )] + 2




κ

(
ᾱ − 2




κ

)
(e−κt/2 − 1)

+
(

ᾱ − 2



κ

)
S(t ), (73)

with

T (t ) =
√

κ

B

∫ t

0
ds ζ̇e−iφ, S(t ) =

√
κ

B

∫ t

0
ds ζ̇e−iφe−κs/2.

(74)

In the heterodyne approximation φ(t ) = ωt , ω � κ , the ex-
pectation values for T (t ) are

〈T (t )T (t )〉 =
∫ t

0
ds e2i�s ≈ 0, 〈T (t )T ∗(t )〉 =

∫ t

0
ds = κt,

(75)

so T (t ) is a complex Gaussian variable with probability
distribution P = (κtπ )−1 exp(−T T ∗/κt ). Let us use the av-
erage normalized current I (t ) = T (t )/t as random variable.
Its probability distribution is P = (t/κπ ) exp(−tII∗/κ ). The
random variable S(t ) is also Gaussian; for T � 1 it has co-
variance 〈S(t )S∗(t )〉 = 1. We see from the first of Eqs. (73)
that no matter which output current has been recorded and
irrespective of the initial state ᾱ, the cavity evolves towards
the classical coherent state |2
/κ ) in a time O(1/κ ).

Following [5] we compute next the probability P(I )(t )
of recording the outcome I. The norm of the initial state is
||ψ (0)|| = exp(ᾱᾱ∗/2) so for κt � 1 we get

P(I ) = t

κπ
e4
2/κ2+β(t )+β∗(t )−ᾱᾱ∗−tII∗/κ ,

β(t ) ≈ −2



κ
t[
 − I (t )] − 2




κ

(
ᾱ − 2




κ

)

+
(

ᾱ − 2



κ

)
S(t ). (76)

We see that for κt � 1 the probability distribution in I
is sharply peaked at its maximum I = 2
. For any other
values of I the probability is exponentially small P(I ) ∝
exp(−t |I − 2
|2/κ ).

So, a heterodyne readout is a good tracer of the coherent
state. The recorded current is sharply peaked at a single value
I = 2
 and the field in the cavity evolves towards its station-
ary value as in any classical driven damped oscillator. The
characteristic timescale for the measurement is the same as
the damping scale: 1/κ .
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B. Relation to the null-measurement evolution

A “perfect” current readout is exactly equal at each time t
to the maximum-probability current: (

√
κ/B)ζ̇e−iφ = I (t ) =

2
. By setting (
√

κ/B)ζ̇e−iφ = I (t ) = 2
 in (71) we obtain
an equation almost identical to the null-measurement evolu-
tion equation iϕ̇ = Heffϕ, where Heff is given by Eq. (70) with
κγ = 2
. Equation (71) seems to miss the term −iκγ ∗γ /2,
but the term reappears when one realizes that (71) describes
the true evolution of the system only up to a normaliza-
tion. The probability of an outcome at time t conditioned on
measuring the current I (t ) = 2
 is exp(−tII∗/κ )||ψ (t )||2 =
||ϕ(t )||2. The properly normalized wave function ϕ(t ) =
exp(−tII∗/2κ )ψ obeys exactly the equation iϕ̇ = Heffϕ.

So, for a “perfect” heterodyne measurement, that is when
the current I (t ) is always exactly at the most probable value,
the SSE (71) plus the definition of the actual probability of an
outcome (76) tells us that the system evolves exactly as during
a null-measurement period, when no quanta b = c − 2
 are
detected. In other words, when the Gaussian distribution is
sharp, that is when the measurement has been carried out
for longer than 1/κ , we can forget about the complications
of the actual heterodyne measurement protocol and study the
evolution of the system with the effective Hamiltonian (70).
Furthermore, if one postselects from the SSE those events
where the current I (t ) was equal to its maximum-likelihood
value 2
, then the system evolves exactly as during a null-
measurement period for short times as well.

C. Homodyne and heterodyne optimal
measurements at short time

Consider a driven cavity with Hamiltonian

H = 
∗c + 
c† + χc†c. (77)

The SSE is almost identical to Eq. (71):

iψ̇ =
(

i

√
κ

B
ζ̇e−iφc + H − iκ

2
c†c

)
ψ. (78)

The variable ζ is the same that we defined after Eq. (71): a
Gaussian white noise with covariance 〈〈ζ̇ (t )ζ̇ (t ′)〉〉 = B2δ(t −
t ′). By substituting the ansatz ψ = exp(αc† + β )|0〉 into (78)
we get the equations

iα̇ = ωα + 
, iβ̇ = 
∗α + i

√
κ

B
ζ̇e−iφα, ω = χ − iκ/2.

(79)

The solution obeying initial condition α(0) = ᾱ and β(0) = 0
is

α(t ) = 


ω
(e−iωt − 1) + e−iωt ᾱ,

β(t ) = i

√
κ

B

∫ t

0
ds ζ̇ (s)e−iφ(s)α(s) + · · · , (80)

where . . . denotes terms that do not depend on ζ . When
the cavity at t = 0 is empty ᾱ = 0 so Eq. (80) gives in the
homodyne scheme [φ(s) = φ = const]

β(t ) = i

√
κ

B

∫ t

0
ds ζ̇ (s)e−iφ 


ω
(e−iωt − 1). (81)

We compute next the probability P(ζ )(t ) of recording the
outcome ζ :

P(ζ ) ∝ exp

(
β(t ) + β∗(t ) − 1

4B2

∫ t

0
ds ζ̇ 2

)
. (82)

In this equation we neglected normalization terms that are
independent of ζ . The maximum likelihood of the distribution
is at

ζ̇ /B = 2i
√

κ

∫ t

0
ds e−iφ 


ω
(e−iωt − 1) + c.c. (83)

Now, the choice made in [19] is the following: when the
qubit is in |0〉, the frequency of the cavity is χ , when the qubit
is in |1〉, the frequency is −χ . Notice that with this choice
the photon occupation number is the same in both states. The
SNR is not maximized by making the difference in occupation
number as large as possible, but instead by making the phase
difference of the output current as large as possible. Namely,
the signal S is the classical current [Eq. (83)] in state |0〉 minus
the classical signal in |1〉:

S =
∣∣∣∣∣ ζ̇B
∣∣∣∣
χ

− ζ̇

B

∣∣∣∣
−χ

∣∣∣∣∣. (84)

Substituting Eq. (83) into (84) and using the notation ω± =
±χ − iκ/2 and ω+ = −ω∗

− we get

S = 2
√

κ

∣∣∣∣
∫ t

0
ds(ie−iφ
 − ieiφ
∗)

(
e−iω+t − 1

ω+
+eiω∗

+t − 1

ω∗+

)∣∣∣∣.
(85)

This signal is maximized at any time with the choice ie−iφ
 =
±|
| and for large time it is optimized by maximizing

1

χ − iκ/2
+ 1

χ + iκ/2
= 2χ

χ2 + κ2/4
, (86)

i.e., by choosing χ = κ/2. Notice that the signal at times
κt � 1 is proportional to t3 so that the SNR is proportional
to t3/t1/2 = t5/2.

This is not the short-term behavior of other dispersive
coupling schemes. In particular, in our examples and in [7]
ω+ = −iκ/2, ω− = χ − iκ/2 with χ � κ . Moreover, in the
heterodyne scheme and in the RWA for φ(s) the current is
proportional to

I =
∣∣∣∣
∫ t

0
ds e−iφ(s) ζ̇

B

∣∣∣∣ =
∣∣∣∣
∫ t

0
ds


∗

ω∗ (e+iω∗t − 1)

∣∣∣∣. (87)

For χ � κ/2 the current off resonance is negligible, so the
signal is equal to the current at resonance ω = −iκ/2. Hence,

S ≈
∣∣∣∣
∫ t

0
ds

2
∗

κ
(e−κt/2 − 1)

∣∣∣∣. (88)

For κt � 1, S ∝ t2 so the SNR is proportional to t3/2 instead
of t5/2.

IV. LINDBLAD OPERATOR DESCRIPTION OF A
TRANSMON-CAVITY QUANTUM TELEGRAPH

The evolution of a three-level atom in infinite space was
studied in Ref. [1]. Resets of the wave function occur as the
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result of the detection of a photon that is scattered off axis
from the exciting laser. There are an infinity of directions
of propagation for the scattered photons. A transmon in a
cavity is detected in a rather different manner. Instead of
infinitely many radiation modes, only one mode with many
levels is detected; the detection is effected (indirectly, through
heterodyne detection) by recording the state of the cavity,
which changes because of the dispersive coupling of the cavity
mode, etc. So, to understand this system we have to go back to
the basics of measurement theory, i.e., to Eq. (54) and adapt it
to the transmon-cavity system. An atomic three-level V-shape
system, with one state D, weakly coupled to the vacuum G,
and another state B, strongly coupled to it, gives rise to the
“quantum telegraph” phenomenon explained in terms of null
detection in [1]. To recover a similar behavior in the transmon-
cavity case and to relate its parameters to properties of the
cavity is a very nontrivial check of the correctness of optical
measurement theory as well as the aim of this section.

The Lindblad operator appropriate to the transmon-cavity
system is given in Eq. (30) of Ref. [7]:

i
dρ

dt
= Lρ ≡ [HA + HR, ρ] + i

κ

2
(2cρc† − c†cρ − ρc†c),

HA = �B(t )|B〉〈G| + �∗
B(t )|G〉〈B| + �D(|D〉〈G| + |G〉〈D|),

HR = χ (|B〉〈B| − 1)c†c + κ

2i

√
n̄(c − c†). (89)

Compared with Ref. [7] we changed notations as follows:
h̄ = 1, �B(t ) = i�BD(t )/2, �D = i�DG/2; we also set �R =
χB = χ , χD = 0.

The Lindblad operator decomposes into an effective
non-Hermitian Hamiltonian, describing coherent evolution in-
between observations, and a term that describes observation.
When the latter is iκcρc†, κ tr c†cρ(t )dt is the probability
to detect a quantum of the cavity mode c in the time inter-
val [t, t + dt]. This would correspond to measuring the next
quantum jump in a system starting in its true ground state
and is calculated in [21]. Here we want something different:
we want to define a null measurement as the detection of the
cavity in the coherent state

c|γ ) = γ |γ ). (90)

So, the quanta to be detected must be b = c − γ . The Lind-
blad operator now decomposes as Lρ = Heffρ − ρH†

eff + Iρ

with

Heff = HA + HR − i
κ

2
γ γ ∗ − i

κ

2
c†c + iκγ ∗c,

Iρ = iκ (c − γ )ρ(c† − γ ∗). (91)

Before proceeding further it is necessary to make two com-
ments.

(i) The first is on the meaning of the parameter κ . It deter-
mines the strength of interaction between the cavity mode and
the detector that appears in the Kraus operator [see Eq. (56)].
It coincides with the quality factor of the cavity only in the
idealized case that the only way for the photon to escape the
cavity is by being measured. One can imagine to realize this
system with a cavity, perfectly reflecting except for an aper-
ture behind which is a photodetector. The photon may escape
through the aperture and be detected, or be reflected back into

the cavity if not detected. In short, κ is the quality factor of the
cavity in the limit that side channels through which the photon
can escape without being detected are negligible.

(ii) The second observation is that the measurement of the
shifted photon c − γ is done by a standard photodetector that
records a signal made by superimposing the photon escaping
from the cavity to a coherent source of strength γ which is
180◦ out of phase. In this way an emission from the coherent
state generates a null measurement. The procedure is also
described by a shifted Kraus operator (56), but now with a
classical signal that maintains phase coherence with the cavity
photon and has a strength which is tuned to whichever the
appropriate finite value may be, either γ = √

n̄ or γ = γL.
The generic form of the Hamiltonian we shall encounter is

H = ωc†c + 
c† + 
̃c. Notice that we did not assume that
ω is real or that 
̃ = 
∗. For any complex (ω,
, 
̃) the
Schrödinger equations on a coherent state exp(αc† + β )|0〉
are

i
d

dt
eαc†+β |0〉 = (iα̇c† + iβ̇ )eαc†+β |0〉

= [
c† + 
̃α + ωαc†]eαc†+β |0〉. (92)

Equating like terms we get

α = 


ω
(e−iωt − 1) + e−iωtα(0),

β = i


̃

ω
t + 

̃

ω2
(e−iωt − 1) + 
̃

ω
(e−iωt − 1)α(0) + β(0).

(93)

These equations say that a coherent state remains coherent
during time evolution.

A. Stationary states of the cavity

The effective Hamiltonian (91) at � = 0 is

Heff = χ (|B〉〈B| − 1)(b† + γ ∗)(b + γ ) − i
κ

2
γ γ ∗

− i
κ

2
(b† + γ ∗)(b + γ ) + iκγ ∗(b + γ )

− i
κ

2

√
n̄(b − b† + γ − γ ∗). (94)

1. Time evolution of the system when the cavity
is in the high-field coherent state

When the atom is in |B〉, the effective Hamiltonian is purely
quadratic in b if γ = √

n̄. If the atom is not in |B〉 there is a
linear term. As a matrix action on the vector⎛

⎝|B〉
|G〉
|D〉

⎞
⎠, (95)

the effective Hamiltonian is

Heff =
(−i κ

2 b†b 0
0

(−i κ
2 − χ

)
b†b − χ n̄ − χ

√
n̄(b + b†)

)
.

(96)

The upper left block is 1 × 1, the lowest right is 2 × 2. When
the atom is in |B〉 and the cavity is in |√n̄) the system is
stable: Heff|B〉 ⊗ |√n̄) = 0. Its time evolution is induced by
switching on the Rabi frequencies.
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If the atom is not in |B〉, the evolution during a dark period
is

iψ̇ =
[(

−i
κ

2
− χ

)
b†b − χ n̄ − χ

√
n̄(b + b†)

]
ψ. (97)

The ansatz

ψ = exp(αb† + β )|0〉 ⊗ (A|G〉 + B|D〉) (98)

yields the equations

iα̇ =
(
−i

κ

2
− χ

)
α − χ

√
n̄, iβ̇ = −χ

√
n̄α − χ n̄. (99)

Here |0〉 is the vacuum of the b oscillators, defined by b|0〉 =
0, so it is the coherent state |√n̄). The solution with initial
condition ψ |t=0 = |0〉 ⊗ (A|G〉 + B|D〉) is a particular case of
Eq. (93):

α = −χ
√

n̄
1 − e(− κ

2 +iχ )t

i κ
2 + χ

,

β = iχ n̄
i κ

2 t

i κ
2 + χ

+ χ2n̄
e(− κ

2 +iχ )t − 1(
i κ

2 + χ
)2 . (100)

In a time of order t ∼ 2/κ the cavity approaches exponentially
the coherent state

|√n̄ − χ
√

n̄/(χ + iκ/2)) = |iκ√
n̄/(2χ + iκ )) ≡ |γL ),

γL ≡ i
√

n̄κ/(2χ + iκ ). (101)

For χ � 2κ and t � 2/κ the norm of ψ is ||ψ (t )|| ∝
exp(−κ n̄t/2). In Ref. [7] the value is 2χ/κ ≈ 3. Here and
elsewhere we denote the scalar product of states ψ, φ with
(ψ, φ) while we use Dirac’s notation when states are written
as |ψ〉, |φ〉. The norm of ψ is ||ψ || ≡ √

(ψ,ψ ).
(i) This result and Eq. (101) make sense. They say that

when the atom is not in |B〉, the cavity evolves into the low-
field state in a time O(2/κ ) and that the probability P of not
detecting the shift for a time t � 2/κ is exponentially small,
P = ||ψ ||2 ∝ exp(−κ n̄t ).

(ii) Notice the shift in the transition energies −χ n̄, which
is due to the nonlinear dispersive coupling of the atom to the
cavity.

2. Time evolution of the system when the cavity
is in the low-field coherent state

Equation (101) shows that if the atom is not in |B〉,
the cavity is quickly driven to the coherent state |γL ). We
can study the evolution of the system when the cavity is
in |γL ) at t = 0. In this case the Hamiltonian written in
terms of the oscillators a = c − γL is purely quadratic on
any state of the form A|G〉 + B|D〉, while it acquires terms
linear in a, a† if the atom is in |B〉. A brief calculation anal-
ogous to that leading to (96) shows that now the effective
Hamiltonian is

Heff =
(−i κ

2 a†a + i κ
2 [(γ ∗

L − √
n̄)a − (γL − √

n̄)a†] + 2χγLγ ∗
L 0

0
(−i κ

2 − χ
)
a†a + χγLγ ∗

L

)
. (102)

The dispersive shift in frequency for the atomic states |G〉, |D〉
is now χγLγ ∗

L � χ n̄ (when 2χ � κ).
Time evolution is trivial if the atom is in an arbitrary linear

superposition of |G〉 and |D〉, while if the atom is in |B〉, it is
again a particular case of Eqs. (92) and (93), so it is solved by
the ansatz

ψ = exp(αa† + β )|0〉 ⊗ |B〉, (103)

where now |0〉 ≡ |γL ). The equations for α and β are now

iα̇ = −i
κ

2
α − i

κ

2
(γL − √

n̄),

iβ̇ = i
κ

2
(γ ∗

L − √
n̄)α + κ

√
n̄ Im γL. (104)

The solution with initial condition ψ |t=0 = |0〉 ⊗ |B〉 is

α = (
√

n̄ − γL )(1 − e− κ
2 t ),

β = −iκ
√

n̄ Im γLt − κ

2
|γL − √

n̄|2
[

t + 2

κ
(e−κt/2 − 1)

]
.

(105)

If the atom is in |B〉, the cavity collapses to the high-
field coherent state |√n̄) in a time O(2/κ ). The probability
of a null detection of duration t � 1/κ is proportional
to exp(β + β∗) ∝ exp(−κ|γL − √

n̄|2t ) ∼ exp(−κ n̄t ) when
2χ � κ (i.e., |γL| � √

n̄).

In the limit κ → 0, κ
√

n̄ = C, C = const, we get α =
Ct/2, β = −iC Im γLt − C2t2/8 and the norm of the state
at time t is ||ψ || = exp(α∗α/2 + β/2 + β∗/2) = 1. This is
consistent with the absence of dissipation in the limit κ → 0.
In this limit the state diffuses but its norm is constant. The
overlap with the initial state still goes to zero because of
diffusion

|(ψ (0), ψ (t ))| = e−C2t2/8. (106)

This is the origin of the effective damping of the upper trans-
mon level given by Eq. (48).

B. Lifetimes of dark periods

Consider now the case where the drive frequency is chosen
so that the readout cavity is resonant when the atom is in |B〉
and the initial state is chosen to be a superposition of |G〉 and
|D〉. The system is “dark” in that no heterodyne current is
observed. If now fields which induce Rabi flopping between
|D〉 − |G〉 and |B〉 − |G〉 are turned on the dark period will
eventually terminate. We now compute the lifetime of the
dark period with an appropriate version of time-independent
perturbation theory. For the intrinsic spontaneous decay rate
of |D〉 we take βD = 0. During the dark period the system is in
the low-field coherent state with γ = γL and one is measuring
a jump relative to this coherent state. Therefore, the starting
point is the effective Hamiltonian (91) relative to the shifted
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state which is

Heff =
⎛
⎝HB + 2χγLγ ∗

L �B(t ) 0
�∗

B(t ) H�B + χγLγ ∗
L �D

0 �D H�B + χγLγ ∗
L

⎞
⎠,

(107)

with

HB ≡ −i
κ

2
a†a + i

κ

2
[(γ ∗

L − √
n̄)a − (γL − √

n̄)a†],

H�B =
(
−i

κ

2
− χ

)
a†a. (108)

This effective Hamiltonian is an extension of Eqs. (44)–(48)
to include an extra level |D〉 and the initial state γ = γL.
With the change of basis |B〉 → exp(−i2χγLγ ∗

L t )|B〉, |G〉 →
exp(−iχγLγ ∗

L t )|G〉, |D〉 → exp(−iχγLγ ∗
L t )|D〉 and using the

RWA we recast Hamiltonian (108) into

Heff =
⎛
⎝HB �̄B 0

�̄∗
B H�B �D

0 �D H�B

⎞
⎠,

�̄B ≡ lim
T →∞

1

T

∫ T

0
dt �B(t )eiχγLγ ∗

L t . (109)

Solving for |B〉 in terms of |G〉 we get a reduced matrix

Hred − E =
(

�̄∗
B(E − HB)−1�̄B + H�B − E �D

�D H�B − E

)
.

(110)

The next step is to expand around the unperturbed solution
H�Bψ = 0. The unperturbed eigenvectors are

v1 =
(|0〉

0

)
, v2 =

(
0
|0〉
)

, with a|0〉 = 0. (111)

The equation for E is given by Ev = 〈0|Hred|0〉v, v = av1 +
bv2. The 2 × 2 matrix 〈0|Hred|0〉 is

〈0|Hred|0〉 =
(−�̄∗

B〈0|H−1
B |0〉�̄B �D

�D 0

)
. (112)

To compute 〈0|H−1
B |0〉 we use H−1

B = i
∫∞

0 dt exp −iHBt and
Eqs. (103)–(105) [without the term proportional to Im γL be-
cause of the phase shift made in going from (108) to (109)]:

〈0|H−1
B |0〉 = i

∫ ∞

0
dt e− κ

2 |γL−√
n̄|2[t+ 2

κ (e−κt/2−1)] ≡ 2i

βB
.

(113)

In the limit n̄ � 1 we have |γL − √
n̄| ≈ |√n̄| � 1 so we can

evaluate integral (113) using the steepest-descent approxima-
tion

2

βB
=
∫ ∞

0
dt e− κ

2 |γL−√
n̄|2[t+ 2

κ (e−κt/2−1)]

≈
∫ ∞

0
dt e−|γL−√

n̄|2(κt/2)2/2 =
√

2π

κ|γL − √
n̄| . (114)

Notice that βB is not the intrinsic width of the bright level!
Equation (100) identifies the decay rate of the survival prob-
ability as κ n̄. The difference between the two becomes
significant for large photon number n̄ since βB scales with

√
n̄

instead of n̄.

The eigenvalues of Eq. (112) are obtained by solving the
quadratic equation E (E + 2i�̄∗

B�̄B/βB) − �2
D = 0:

E = −i
�̄∗

B�̄B

βB

⎡
⎣1 ±

√
1 − �2

Dβ2
B

�̄2
B�̄∗ 2

B

⎤
⎦. (115)

For 1 � ε � η, ε ≡ |�̄B|/βB, η ≡ |�D/�̄B| we recover the
hierarchy (cf. [24])

iE+ = 2βBε2, iE− = βB

2
η2, βB � iE+ � iE−. (116)

In general the norm of the |G〉, |B〉, |D〉 system has three decay
constants. The condition that the system starts out in a dark
period has eliminated the fastest decay eigenvalue leaving the
rates (116) as determining the long time to the next jump.
The only decay term in this model is βB, the cavity-induced
lifetime of |B〉. Therefore, the next quantum jump will be
accompanied by an occupation of |B〉 and a turn on of the
measuring apparatus tuned to |B〉. This comprises our calcu-
lation of the dark period observed in Ref. [7].

C. What is βB?

As we mentioned earlier, βB cannot be identified with the
width of the bright level so it is interesting to try to understand
what it does represent. A clue comes from applying second-
order time-dependent perturbation theory to a two-level atom
(|B〉, |G〉). The effective Hamiltonian for this system is

Heff =
(

HB �̄B

�̄∗
B H�B

)
, (117)

with the same expressions for HB, H�B as in (108). If the system
starts in the state |G〉|0〉, then the survival amplitude of this
state after a time T is

A(T ) = 1 −
∫ T

0
dt
∫ t

0
ds|�̄|2〈0|e−iHB (t−s)|0〉

= 1 + iT |�̄|2〈0|H−1
B |0〉 + |�̄|2〈0|e−iHT − 1

H2
B

|0〉.
(118)

Heuristically, one can understand the term proportional to
|�̄|2 in this equation as follows: at time s the system undergoes
a Rabi transition from |G〉 to |B〉, with the cavity still in the
state |0〉. When the atom is in |B〉, |0〉 is no longer an eigen-
state of the new cavity Hamiltonian HB, so it starts evolving
in time. At time t the cavity is in the state e−iHB (t−s)|0〉. The
overlap with the vacuum is 〈0|e−iHB (t−s)|0〉. So the sequence of
events in which the state |G〉|0〉 Rabi flops to |B〉|0〉 at time s,
evolves until time t , then returns to |G〉|0〉 with a Rabi flop at
time t has an amplitude |�̄|2〈0|e−iHB (t−s)|0〉. The integration in
t and s occurs because in quantum mechanics it is amplitudes,
not probabilities, that sum coherently. All of this suggests that
2/βB is the amplitude for the long-term survival of the cavity
state |0〉 when the atom is in |B〉. Notice that the cavity couples
to the atom, so |0〉 is the ground state only when the atom is in
|G〉. When the atom is in |B〉, the cavity coupling to photons
changes and |0〉 becomes an excited state that is no longer
stationary.
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D. Limits of validity of the approximation

We computed the lifetime of the dark period using first-
order perturbation theory applied to the Hamiltonian (110),
where we took as perturbation the operator �̄∗

B(E − HB)−1�̄B.
First-order perturbation theory is justified as long as correc-
tions coming from the second order are small. If we perturb
an eigenstate |0〉 with a perturbation V , then the condition for
the validity of the approximation is

|〈0|V |0〉| �
∑

n

∣∣∣∣ 〈0|V |n〉〈n|V |0〉
En − E0

∣∣∣∣. (119)

The right-hand side can be estimated by replacing the sum
with the largest summand, which typically is the element with
the smallest denominator, i.e., the transition to the energy level
closest to E0. In our case the unperturbed energy is E0 = 0
and the closest level is a†|0〉, whose energy is E1 = −iκ/2.
So Eq. (119) can be approximated by

2|�̄B|2/βB �
∣∣∣∣ 〈0|V |1〉〈1|V |0〉

E1 − E0

∣∣∣∣ ∼ 2[2|�̄B|2/βB]2/κ. (120)

This gives a rough estimate for the regime of validity of first-
order perturbation theory:

|�̄B|2/βB � κ. (121)

This equation shows in particular that the limit κ → 0, κ
√

n̄ =
const, |�̄B| = const is beyond the limits of our approximation.
For large dispersion the multiscale approximation enables a
description with the weaker restriction: �2 < β2

B.

V. MULTISCALE APPROXIMATION

We have already obtained one new result in our analysis,
namely, the explicit relation between the lifetimes of various
transmon states and the parameters κ, χ,

√
n̄,�B,D charac-

terizing the transmon-cavity system. The relation is given by
Eqs. (114) and (115). So far we have also confined ourselves
to studying the evolution of the system for times t � 1/κ .

This is the regime where the SSE applies and heterodyne
detection is efficient. Yet, the Lindblad equation can describe
single-photon detection, so it can be applied to studying the
dynamics of our system for times shorter than 1/κ . To study
the short-time regime we need to go beyond perturbation
theory and use instead a multiscale approximation.

Let us write the time evolution of a state |ψ (t )〉 under the
Hamiltonian H = H0 + HI as

|ψ (t )〉 = e−iH0t |ψ (0)〉 − ie−iH0t
∫ t

0
ds eiH0sHI |ψ (s)〉. (122)

We will specialize this equation to the two-level atom with
Hamiltonians

H0 =
(

HB 0
0 H�B

)
, HI =

(
0 �

�∗ 0

)
. (123)

The state vector, written in a Fock basis for the oscillators
c, c†, is

|ψ (t )〉 =
∑

n

(
CB,n|n〉
CG,n|n〉

)
≡
(|B(t )〉

|G(t )〉
)

. (124)

We choose as initial condition CG,0 = 1 with all other coeffi-
cients equal to zero so that Eq. (122) becomes(|B(t )〉

|G(t )〉
)

=
( −i�

∫ t
0 ds e−i(t−s)HB |G(s)〉

e−itH�B |0〉 − i�∗ ∫ t
0 ds e−i(t−s)H�B |B(s)〉

)
.

(125)

The lowest entry in the right-hand side of this equation sim-
plifies when the detuning χ is larger than any other scale in
the system, in particular, when it is much larger than κ . When
χ � κ we can use

lim
χ→∞ 〈n|e−i(t−s)H�B |B(t )〉 ≈ ei(t−s)χn〈n|B(t )〉 = 0 for n > 0

(126)

to neglect all terms in |G(t )〉 except the n = 0 one. Here the
overbar denotes averaging over time intervals �t � 1/χn.
The ansatz |G(t )〉 = CG,0(t )|0〉 allows for a closed, self-
consistent solution of Eq. (125):

(|B(t )〉
|G(t )〉

)
=
( −i�

∫ t
0 ds e−i(t−s)HBCG,0(s)|0〉

|0〉 − ��∗|0〉〈0| ∫ t
0 ds e−i(t−s)H�B

∫ s
0 dw e−i(s−w)HBCG,0(w)|0〉

)
. (127)

By taking the derivative with respect to t of the lowest component in the right-hand side of this equation and using Eqs. (103)–
(105) with γL = 0,we get

d

dt
CG,0(t ) = −��∗

∫ t

0
dw〈0|eα(t−w)a†+β(t−w)|0〉CG,0(w) = −��∗

∫ t

0
dw eβ(t−w)CG,0(w). (128)

For t � 1/κ
√

n̄ we get the same lifetime as in first-order time-independent perturbation theory. Specifically, when the shortest
timescale is κ

√
n̄, we can use the Gaussian approximation (114) to obtain dCG,0(t )/dt = −γCG,0(t ), γ = 2��∗/β.

The norm 〈ψ (t )|ψ (t )〉 = 〈G(t )|G(t )〉 + 〈B(t )|B(t )〉 can be computed explicitly, for t � 1/κ
√

n̄, in the regime n̄ � 1, where
κ
√

n̄ � κ n̄1/3. For t � 1/κ
√

n̄ we immediately find 〈G(t )|G(t )〉 = exp(−2γ t ), so the only nontrivial term to compute is
〈B(t )|B(t )〉. By using again Eqs. (103)–(105) and with the change of variable of integration w = t − s, we find

|B(t )〉 = −i�
∫ t

0
dw eα(w)a†+β(w)CG,0(t − w)|0〉. (129)
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Using the approximation CG,0(t ) = exp(−γ t ), we find also

〈B(t )|B(t )〉 = e−2γ t��∗
∫ t

0
dw

∫ t

0
dw′eγ (w+w′ )〈0|eβ∗(w′ )+α∗(w′ )aeβ(w)+α(w)a† |0〉

= e−2γ t��∗
∫ t

0
dw

∫ t

0
dw′eγ (w+w′ )+β∗(w′ )+β(w)+α(w)α∗(w′ ). (130)

When t � κ−1n̄−1/3, this norm decays as exp(−2γ t ), so we recover the first-order result for the survival probability of the state.
The multiscale approximation gives an interesting new behavior for the survival probability of the state at intermediate times:

κ−1n̄−1/3 � t � κ−1n̄−1/2. In this regime, by expanding to quadratic order in w,w′ we find β∗(w′) + β(w) + α(w)α∗(w′) =
−(κ2n̄/8)(w2 + w′2 − 2ww′). The change of variables w = x + y/2, w′ = x − y/2 transforms the integral in Eq. (130) into

∫ t

0
dx
∫ t

−t
dy e2γ x−κ2 n̄y2/8+2β(x)+α(x)α∗(x)+O(y3 ) ≈ 2

κ

√
2π

n̄

∫ t

0
dx e2γ x+2β(x)+α(x)α∗(x). (131)

The expansion of 2β(x) + α(x)α∗(x) begins at order x3 and gives

〈B(t )|B(t )〉 ≈ e−2γ t��∗ 2

κ

√
2π

n̄

∫ t

0
dx e2γ x−κ3n̄x3/12. (132)

Now we are ready to put all together: when κ−1n̄−1/3 � t � κ−1n̄−1/2 the time derivative of the norm of the state is
approximated by

d

dt
〈ψ (t )|ψ (t )〉 = −2γ 〈ψ (t )|ψ (t )〉 + ��∗ 2

κ

√
2π

n̄
e−κ3n̄t3/12. (133)

We can show that d
dt 〈ψ (t )|ψ (t )〉 � 0 as follows. Equation (133) simplifies to

d

dt
〈ψ (t )|ψ (t )〉 = −2γ e−2γ t

[
1 + 2γ

∫ t

0
dx e2γ x−κ3n̄x3/12

]
+ 2γ e−κ3n̄t3/12. (134)

This expression vanishes at t = 0 while at t > 0 is negative because by multiplying the left-hand side of (134) by exp(2γ t ) and
taking its derivative we get

d

dt
exp(2γ t )

d

dt
〈ψ (t )|ψ (t )〉 = −4γ 2e2γ t−κ3n̄t3/12 + 2γ

(
2γ − κ n̄t2

4

)
e2γ t−κ3n̄t3/12 � 0. (135)

VI. EVOLUTION UNDER CONTINUOUS OBSERVATION OF THE UNSHIFTED PHOTON FIELD

In this case the evolution equation is(|B(t )〉
|G(t )〉

)
=
(

e−itHB |B(0)〉 − i�
∫ t

0 ds e−i(t−s)HB |G(s)〉
e−itH�B |G(0)〉 − i�∗ ∫ t

0 ds e−i(t−s)H�B |B(s)〉
)

, (136)

with Hamiltonians

HB = −i
κ

2
c†c + κ

2i

√
n̄(c − c†), H�B = −χc†c + HB. (137)

It is convenient to introduce shifted oscillators a = c − A, b† = c† − B†. They obey canonical commutation relations [a, b†] = 1,
but they are not Hermitian conjugate to each other. By choosing

A = − κ
√

n̄/2i

χ + iκ/2
, B = κ

√
n̄/2i

χ + iκ/2
, (138)

we can diagonalize the Hamiltonian

H�B = −(χ + iκ/2)[b†a − n0], n0 = κ2n̄/4

(χ + iκ/2)2
. (139)
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A basis of linearly independent but not orthogonal eigenvectors of H�B is |n〉 = Cn(b†)n|0〉. We will not need to specify the
constants Cn. Next we write the vector |B(t )〉 as |B(t )〉 = ∑

n CB,n(t )|n〉 and write the term
∫ t

0 ds e−i(t−s)H�B |B(s)〉 in Eq. (136) as∫ t

0
ds e−i(t−s)H�B |B(s)〉 =

∑
n

∫ t

0
ds ei(χ+iκ/2)(n−n0 )(t−s)CB,n(s)|n〉. (140)

In the limit χ → ∞ all terms with n �= 0 in the sum in (140) vanish. When we choose the initial condition |G(0)〉 = |0〉,
|B(0)〉 = 0, we can use as we did earlier the ansatz |G(t )〉 = CG,0(t )|0〉. In the limit χ → ∞ the Hamiltonian HB becomes

HB = −i
κ

2
b†a + κ

2i

√
n̄(a − b†) + O(1/χ ). (141)

By using the same manipulations that we used in Sec. IV, we arrive at the equation[
d

dt
+ i(χ + iκ/2)n0

]
CG,0(t ) = −��∗

∫ t

0
dw〈0|eα(t−w)b†+β(t−w)|0〉CG,0(w)

= −��∗
∫ t

0
dw eβ(t−w)CG,0(w), (142)

with

β(t ) = κ n̄

2

(
1 − i

κ/2

χ + iκ/2

)2[
t + e−κt/2 − 1

κ/2

]
− i

κ2n̄

4

2χ + iκ/2

(χ + iκ/2)2
t = κ2n̄

8
t2 + O(1/χ ). (143)

So, following the computation in Eq. (128) we get, up to terms O(��∗/χ ),

CG,0(t ) = e
t , 
 = −i(χ + iκ/2)n0 −
√

2π

κ2n̄
��∗ = −i

κ2n̄/4

(χ + iκ/2)
−
√

2π

κ2n̄
��∗, (144)

consistent with Eq. (49).

VII. CONCLUSIONS

When atomic fluorescence is conditioned on the ob-
servation of the next quantum jump there appear large
experimentally measurable correlations in the time between
events. We have carried this formalism over to solid-state
systems such as transmon qubits that are dispersively cou-
pled to a readout cavity. When the cavity is treated quantum
mechanically the next photon formalism again yields the pos-
sibility for long dark periods in a driven system, as well
as new correlations for short-time readout. Coupling of a
transmon to a driven cavity also leads to a finite lifetime
of the discrete transmon levels. Single-photon detection has
not been applied to solid-state qubits because this technique
is difficult to implement at microwave frequencies. Instead,
signal acquisition via a heterodyne technique is currently
used. The formulation of a quantum measurement condi-
tioned on heterodyne readout involves assumptions on noise
and timescales which lead to a stochastic Schrödinger equa-
tion which we argue is not fundamental as compared to the
next jump formalism that we develop. The practical realiza-
tion of that approach hinges upon advanced instruments that
are capable of measuring single microwave photons. Progress
in this direction could make the extension of our theory of
fluorescence to solid-state systems feasible. In this case new
measurement correlations such as rapid readout will become
available. Underlying the new class of quantum correlations
which we study is an effective non-Hermitian Hamiltonian
which applies to nonstationary and non-Poissonian quan-
tum systems. Extending the method of [1] we showed
that a density matrix evolving under both nonstationary
drive and null-measurement factors into a product of wave

functions each evolving coherently according to the effective
Hamiltonian.
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APPENDIX A: ON HETERODYNE DETECTION
AND THE SSE, AGAIN

There is an apparent disagreement in the literature regard-
ing which SSE describes heterodyne photodetection. The last
item listed in Sec. III shows that the disagreement is only
apparent. Notably, Eq. (4.18) of Ref. [6] is [using the notation
of Refs. [5,6] where κ = 1 and 〈〈ξ̇ (t )ξ̇ (t ′)〉〉 = δ(t − t ′)]

iχ̇ =
(

i[ξ̇e−iφ + I]c + HA + HR − i

2
c†c

)
χ,

I = (χ, (c + c†)χ )

(χ, χ )
, (A1)

so it differs from our Eq. (71), hence from Eq. (41) of
[5], because it contains a classical drift term proportional
I . The redefinition χ = exp(Bc + iD)ψ transforms Eq. (A1)
into (71) when Ḃ = I + B/2, Ḋ = AB. For t � 1, ψ becomes
proportional to the coherent state |−2iA) so χ becomes equal
to exp(−2iAB + iD)ψ . So the conditioned states obtained
from Eq. (71) and the SSE (A1) are actually the same. More-
over, the expectation values of the quadrature c + c† also
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agree because

I = (χ, (c + c†)χ )
(χ, χ )

= (e−2iAB+iDψ, (c + c†)e−2iAB+iDψ )
(e−2iAB+iDψ, e−2iAB+iDψ )

= (ψ, (c + c†)ψ )
(ψ,ψ )

. (A2)

APPENDIX B: ANOTHER DIGRESSION INTO
CONTINUOUS MEASUREMENT THEORY

This Appendix presents a simple model of photodetection
that applies to the three-level atom. It is meant to show why
we did not need to worry about the detector in [1] and also to
show how to apply the general formalism outlined in Sec. III
to a concrete model of detector, whose resolution time for a
measurement will be denoted by 1/γ .

Consider an atom in interaction with the EM field mon-
itored by a 4π photodetector. The Hamiltonian of the
atom+radiation system is H , while the Hamiltonian of the
photodetector is (in the Schrödinger representation)

HD =
∑

aI

HD Ia,

HD Ia =
∑

Ia

∫
d3x JIa(x, t )[|1〉Ia〈0|IaA+(x) · D + H.c.].

(B1)

The space- and time-dependent coupling constants JIa are
characteristic functions of the region VI × Ta, VI = {x : xi

I −
�/2 < xi < xi

I + �/2}, Ta = {t : ta − T/2 < t < ta + T/2}
(JIa = 1 inside and JIa = 0 outside) or a smooth version
thereof. The constant vector D characterizes the strength of
the interaction and A+ is the positive-frequency part of the
EM vector potential (in Coulomb gauge). Each of the Hamil-
tonians HD Ia describes a pixel of the photodetector, centered
in xI and of size �3. The pixel records the presence of a
photon in the volume VI during the time interval Ta by chang-
ing the state of some recording system from its initial value
|0〉Ia to |1〉Ia. If VI × Ta is sufficiently small, the probability
of erasure or multiple recording can be made arbitrarily small.
What the detector does is that it takes pictures of the regions VI

at times ta and files them away (i.e., it establishes a permanent
record).

We can compute the evolution of the system atom + EM
field + photodetector using first-order time-dependent pertur-
bation theory, starting from a state with no photons and with
the “recorder” (ancilla) Hilbert space set to

∏
Ia |0〉Ia as

|ψ (t )〉 =
∏
Ia

(
1 − i

∫
dt eiHt HD Iae−iHt

)
|ψ (0)〉. (B2)

If there is no detection up to a time tn − T/2, the ancilla
is still in the state

∏
Ia |0〉Ia. So the state of the system is

|ψ (t )〉 = |φ(0)〉∏Ia |0〉Ia, where |φ(0)〉 is the state vector of
atom + EM field. (In interaction representation we factor
out the free Hamiltonian evolution; here “free” means the
complete Hamiltonian without the detector.) The state vector
at time tn + T/2 is then

|ψ (tn + T/2)〉 =
⎡
⎣∏

K

|0〉Kn − i
∑

I

∏
K �=I

|0〉nK |1〉nI

∫ tn+T/s

tn−T/s
dt
∫

d3x JIa(x, t )A+(x, t ) · D

⎤
⎦|φ(0)〉. (B3)

The EM fields are now in the interaction representation [they evolve with exp(iHt )A exp(−iHt )]. We take now � and T
infinitesimal so that Eq . (B3) can be approximated as

|ψ (tn + T/2)〉 =
⎡
⎣∏

K

|0〉Kn − i�3T
∑

I

∏
K �=I

|0〉nK |1〉nI A+(xI, tn) · D

⎤
⎦|φ(0)〉. (B4)

To go back to the Schrödinger picture we must multiply the vector |ψ (tn + T/2)〉 by exp[−iH (tn + T/2)]. The states |0〉Ia, |1〉Ia

are orthonormal so the probability of recording a detection at time tn + T/2 is

P(tn + T/2) = T 2�6
∑

I

[tr A−(xI, t ) · D∗A+(xI, t ) · Dρ(0)], ρ(0) ≡ |φ(0)〉〈φ(0)|. (B5)

We rescale the dipole interaction as D = �−3/2T −1/2d, ap-
proximate the sum over I with an integral, and return to the
Schrödinger representation to write

P(tn + T/2) = T
∫

d3x[tr A−(x) · d∗A+(x) · dρ(tn − T/2)].

(B6)

This formula can be easily generalized to the case of several
dipoles that can be chosen, e.g., to average to a Kronecker

delta d∗ id j → ∑
α d∗ i

α d j
α = δi jγ . By taking T infinitesimal

we can then write formula (B6) as

P(t + dt ) = γ dt
∫

d3x[tr A−(x) · A+(x)ρ(t )]. (B7)

This is exactly the “measurement” term that appears in the
Lindblad operator. The probability of not recording anything
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in the time interval dt is (P + Q = 1)

Q(t + dt ) = Q(t ) − γ dt
∫

d3x[tr A−(x) · A+(x)ρ(t )],

Q(t ) = tr ρ(t ). (B8)

This equation says that the evolution when no photon is
detected by the measurement instrument is governed by the
effective Hamiltonian

Heff = H − i
γ

2

∫
d3x A−(x) · A+(x). (B9)

States with photons are short lived: if their average photon
number is N , their lifetime is 1/Nγ . That of course means
simply that our photodetector cannot resolve times shorter
than 1/γ but it is good at detecting photons over a time longer
than 1/γ . States with no photons can be long lived. Their
lifetime can be computed using time-independent perturbation
theory to second order. Calling P the projection over the zero-
photon state and Q its orthogonal complement and writing
Heff = H0 + HI , with HI the atom-EM interaction term, we
must diagonalize the matrix

Heff 0(E ) = PHeffP − PHI Q(QHeffQ − E )−1QHI P. (B10)

For the three-level atom this was done, e.g., in [1]. The largest
decay width is associated with the transition |B〉 → |G〉. To
lowest order in perturbation theory it is given in terms of the
atomic dipole matrix elements μ as4


B ≡ = Im E = −Im
∫

d−3k
2|k|

|μ|2
|k| − iγ /2 − ωBG

= −
∫

d−3k
2|k|

|μ|2γ /2

(|k| − ωBG)2 + γ 2/4
. (B11)

The usual formula for the decay rate, which was used in [1],
is the limit γ → 0 of Eq. (B11). The change of variables
|k| = γ x/2 + ωBG shows that integral (B11) differs from the
“unobserved” value 
0

B ≡ limγ→0 
B by terms O(
0
Bγ /ωBG).

In conclusion, the presence of the detector does not change
significantly the decay rate, as long as the rate of detection
γ is much smaller than the difference in frequencies between
atomic levels.

4The form factor appearing in this equation has appeared previ-
ously in other papers on continuous measurement, e.g., [25].
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