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Measurement incompatibility stipulates the existence of quantum measurements that cannot be carried out si-
multaneously on single systems. We show that the set of input-output probabilities obtained from d-dimensional
classical systems assisted with shared randomness is the same as the set obtained from d-dimensional quantum
strategies restricted to compatible measurements with shared randomness in any communication scenario.
Thus, measurement incompatibility is necessary for quantum advantage in communication, and any quantum
advantage (with or without shared randomness) in communication acts as a witness to the incompatibility of the
measurements at the receiver’s end in a semi-device-independent way. We introduce a class of communication
tasks—a general version of random access codes—to witness incompatibility of an arbitrary number of quantum
measurements with arbitrary outcomes acting on d-dimensional systems and provide generic upper bounds
on the success metric of these tasks for compatible measurements. We identify all sets of three incompatible
rank-one projective qubit measurements that random access codes can witness. Finally, we present the generic
relationship between different sets of probability distributions—classical, quantum with or without shared
randomness, and quantum restricted to compatible measurements with or without shared randomness—produced
in communication scenarios.
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I. INTRODUCTION

In quantum theory, a set of quantum measurements is
called incompatible if these measurements cannot be per-
formed simultaneously on a single copy of a quantum system
[1]. The best-known example of quantum incompatibility
pertains to the measurements of position and momentum
of a quantum mechanical particle that cannot be measured
simultaneously with arbitrary precision. The notion of mea-
surement incompatibility is an inherent property of quantum
theory that differentiates it from classical physics. Quantum
measurement incompatibility is at the root of demonstrating
various fundamental quantum aspects such as Bell nonlocality
[2,3], Einstein-Podolsky-Rosen steering [4–8], measurement
uncertainty relations [9–11], quantum contextuality [12,13],
quantum violation of macrorealism [14,15], and temporal and
channel steering [16–18].

Bell violation is the most compelling operational wit-
ness of incompatible measurements since it relies only on
the input-output statistics of bipartite systems [3,19,20].
Measurement incompatibility can also be witnessed through
Einstein-Podolsky-Rosen steering [4,5,7,21,22]. These pro-
tocols, however, rely on entanglement. Recently, witnessing
of quantum measurement incompatibility in the prepare-and-
measure scenario based on a state discrimination task [23]
has been proposed. It is particularly noteworthy that measure-
ment incompatibility is necessary but not sufficient for Bell
violations employing fully untrusted devices [24,25], whereas
incompatibility is shown to be necessary as well as sufficient

in steering with one-sided trusted devices [5,7] and in a state
discrimination task with fully trusted preparations [26] (see,
also, [27–29]).

Nonetheless, the generic link between measurement in-
compatibility and nonclassical correlations in the simplest
prepare-and-measure scenario is still not fully explored. The
present article is motivated towards filling this crucial gap in
the literature. Moreover, the results presented here address
the issue as to whether incompatible quantum measurements
are necessary for probing quantum advantage in any com-
munication scenario. Apart from answering this fundamental
question in the affirmative, this work further aims to pro-
vide an operational witness of incompatibility for any set of
quantum measurements of an arbitrary setting—any set of
arbitrary number of measurements acting on an arbitrary but
finite dimension wherein different measurements have differ-
ent arbitrary number of outcomes.

Specifically, we consider the communication scenario con-
sisting of two players, say, Alice (sender) and Bob (receiver).
Alice and Bob are given inputs such that each player does
not know the input of the other player. Alice, upon receiving
her input, sends classical or quantum communication to Bob.
Bob, upon receiving his input and the communication sent by
Alice, produces the outputs. In this scenario, we show that
the input-output statistics obtained from d-dimensional clas-
sical systems assisted with unlimited shared randomness are
the same as those obtained from the d-dimensional quantum
states and compatible quantum measurements with unlimited
shared randomness. Therefore, any quantum advantage (with
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or without shared randomness) in a communication task in
the prepare-and-measure scenario serves as a tool to witness
measurement incompatibility in a semi-device-independent
way—assuming nothing about the quantum states and mea-
surements except their dimension. Furthermore, we point out
that whenever the figure of merit of any task is a convex
function of the input-output statistics, its maximum value in
classical communication is the same as in quantum communi-
cation with compatible measurements.

Subsequently, we focus on random access codes (RACs),
a specific quantum communication task in the prepare-and-
measure scenario. Based on the operational figure of merit of
this task, we propose a witness of measurement incompati-
bility of a set of arbitrary number of quantum measurements
having arbitrary number of outcomes acting on an arbitrary
but finite-dimensional state. We derive upper bounds (or exact
values in specific cases) of the average success probability of
RACs assisted by the best classical strategy or, equivalently,
the best quantum strategy involving compatible measurements
by the receiver. It follows that given any set of quantum
measurements, if the average success probability of the RAC
involving the given measurements by the receiver exceeds
the above bound, then we can certify that the given mea-
surements are incompatible. Here, it should be noted that
RACs, being one of the fundamental quantum communication
protocols, have been implemented in a series of experiments
[30–35]. Hence, the results presented in this work reveal the
unrecognized fact that measurement incompatibility has been
witnessed in these experiments. Further, we identify all sets
of three incompatible rank-one projective qubit measurements
that can be witnessed by RACs.

Finally, we present the generic relationship between differ-
ent types of input-output statistics—classical, quantum with
shared randomness, quantum without shared randomness,
quantum restricted to compatible measurements with shared
randomness, and quantum restricted to compatible measure-
ments without any shared randomness.

We arrange the rest of this paper as follows. In the next
Sec. II, we introduce the formal definitions of incompatible
quantum measurements. In Sec. III, we show that incompati-
ble measurements by the receiver are necessary for quantum
advantage in any communication task. Next, considering
RACs, we present an operational witness of measurement in-
compatibility of an arbitrary set of quantum measurements in
Sec. IV. Relationships between different types of probability
distributions in communication tasks are depicted in Sec. V.
Finally, we conclude with a short discussion in Sec. VI.

II. QUANTUM MEASUREMENT INCOMPATIBILITY

An arbitrary measurement is conceptualized by some
positive operator-valued measure (POVM) defined as Ey ≡
{Mby|y}by , with Mby|y � 0 for all by and

∑
by

Mby|y = 1. Here, y
corresponds to the choice of measurement and by denotes the
outcomes of measurement y.

A set of measurements, {Ey}y, with y ∈ [n] (here we use
the notation [k] := {1, . . . , k}), is compatible [1] if there exists
a parent POVM {Gκ : Gκ � 0 ∀κ,

∑
κ Gκ = 1} and classical

postprocessing for each y given by {Py(by|κ )} such that

∀by, y, Mby|y =
∑

κ

Py(by|κ )Gκ . (1)

Postprocessing for each y is defined by {Py(by|κ )} such that

Py(by|κ ) � 0 ∀y, by, κ;
∑

by

Py(by|κ ) = 1 ∀y, κ. (2)

We note that the above definition of compatibility is equiv-
alent to the existence of a parent POVM {Gκ} whose
appropriate marginals give rise to all the individual measure-
ment effects {Mby|y}by,y [1].

III. INCOMPATIBILITY IS NECESSARY FOR QUANTUM
ADVANTAGE IN COMMUNICATION TASKS

Now, we will show that incompatible measurements are
necessary for showing quantum advantage in any commu-
nication task. Before proceeding, let us briefly describe a
generic communication scenario consisting of two players—
Alice and Bob. Alice and Bob are given inputs x ∈ [l] and
y ∈ [n], respectively. Further, initially neither player has any
idea about the other player’s input. Alice, upon receiving the
input x, sends a d-dimensional classical or quantum system to
Bob, where d is finite. Bob, upon receiving the input y and
the message (which is d-dimensional classical or quantum
system) sent by Alice, outputs by ∈ [dy], wherein dy is the
number of outcomes for input y. The figure of merit of this
communication task is determined by the set of probability
distributions, {p(by|x, y)}.

In classical communication, they can use unlimited pre-
shared randomness λ with some probability distribution π (λ),
and, therefore, any typical probability can be expressed as

p(by|x, y) =
d∑

m=1

∫
λ

π (λ)pa(m|x, λ)pb(by|y, m, λ) dλ. (3)

Here, {pa(m|x, λ)}, {pb(by|y, m, λ)} are encoding and decod-
ing functions by Alice and Bob, satisfying non-negativity and

∑
m

pa(m|x, λ) =
∑

by

pb(by|y, m, λ) = 1, (4)

while in quantum communication, one can consider the set
of probabilities with or without the preshared classical ran-
domness. Suppose B(Cd ) stands for the space of all operators
acting on d-dimensional complex Hilbert space. In the former
scenario with preshared randomness,

p(by|x, y) =
∫

λ

π (λ)Tr(ρx,λMby|y,λ)dλ,

ρx,λ, Mby|y,λ ∈ B(Cd ), (5)

where {ρx,λ} is the quantum state sent by Alice upon input x
and random variable λ, and {Mby|y,λ} is the measurement exe-
cuted by Bob for his input y and random variable λ. Without
the preshared randomness, the expression of the probabilities
reduces to

p(by|x, y) = Tr(ρxMby|y), ρx, Mby|y ∈ B(Cd ). (6)
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A communication scenario is specified by a set of natural
numbers l, n, and �d = (d1, . . . , dn) such that x ∈ [l], y ∈ [n],
by ∈ [dy]. Given a scenario, we define the set of all probabil-
ities obtainable by d-dimensional classical communication,

Cd := {p(by|x, y)}, (7)

where p(by|x, y) is given by Eq. (3); the set of all probabilities
in d-dimensional quantum communication ,

Qd := {p(by|x, y)}, (8)

where p(by|x, y) is given by Eq. (5); and the set of all prob-
abilities in d-dimensional quantum communication without
randomness ,

Qd := {p(by|x, y)}, (9)

where p(by|x, y) is given by Eq. (6). In this work, we are
interested in another two sets of probabilities. First, the set
of all probabilities in d-dimensional quantum communication
restricted to compatible measurements ,

QC
d := {p(by|x, y)}, (10)

where p(by|x, y) is given by Eq. (5) such that the set of
measurements acting on d-dimensional quantum states used
by Bob, {Mby|y,λ}, is compatible, that is, there exists parent
POVM {Gκ} such that

∀by, y, λ, Mby|y,λ =
∑

κ

Py,λ(by|κ ) Gκ (11)

and

Py,λ(by|κ ) � 0 ∀y, λ, by, κ;
∑

by

Py,λ(by|κ ) = 1 ∀y, λ, κ.

(12)
And second, the set of all probabilities in d-dimensional
quantum communication restricted to compatible measure-
ments without shared randomness ,

QC
d := {p(by|x, y)}, (13)

where p(by|x, y) is given by Eq. (6), such that the set of
measurements, {Mby|y}, is compatible according to (1).

Result 1. Given any scenario specified by (l, n, �d ),

QC
d ⊆ QC

d = Cd . (14)

Thus, measurement incompatibility is necessary for any quan-
tum advantage (with or without shared randomness) over
classical communication.

Proof. The first relation, QC
d ⊆ QC

d , follows from the def-
inition of these two sets. The nontrivial part of this result is
proving the equality.

Consider the case where Bob performs POVM measure-
ments {Gκ}, which is the parent POVM of the measurement
set {Mby|y,λ}. The Frenkel-Weiner theorem [36] implies
that the set of input-output probabilities p(κ|x) with a
single quantum measurement on d-dimensional quantum
states can always be reproduced by a suitable classical
d-dimensional communication in the presence of shared ran-
domness. In other words, ∀ρx,λ there exists classical strategy

π̃ (λ̃), pa(m|x, λ, λ̃), pb(κ|m, λ̃) such that

Tr(ρx,λGκ ) =
d∑

m=1

∫
λ̃

π̃ (λ̃)pa(m|x, λ, λ̃)pb(κ|m, λ̃) dλ̃. (15)

Here, note that in the scenario considered by Frenkel-Weiner
[36], Bob does not receive any input y therein. That is why
Bob’s output κ depends only on the message m sent by Alice
and classical shared randomness λ̃.

Let us now focus on the set of probabilities Cd wherein
(λ, λ̃) is the preshared randomness. Take into account the
following decoding function:

pb(by|y, m, λ, λ̃) =
∑

κ

Py,λ(by|κ )pb(κ|m, λ̃), (16)

where {Py,λ(by|κ )} is the postprocessing defined in (11) and
pb(κ|m, λ̃) is given in (15). One can check that this is indeed
a valid decoding function.

Next, we show that an arbitrary p(by|x, y) ∈ QC
d can always

be reproduced by a suitable classical strategy (3) involving
preshared randomness (λ, λ̃) and the decoding function (16).
With the help of (11), (15), and (16) in a subsequent order, we
find∫

λ

π (λ)Tr(ρx,λMby|y,λ) dλ

=
∑

κ

∫
λ

Py,λ(by|κ )π (λ)Tr(ρx,λGκ ) dλ

=
∑

m

∫
λ

∫
λ̃

π (λ)π̃ (λ̃)pa(m|x, λ, λ̃)

×
[∑

κ

Py,λ(by|κ )pb(κ|m, λ̃)

]
dλ dλ̃

=
∑

m

∫
λ

∫
λ̃

π (λ)π̃ (λ̃)pa(m|x, λ, λ̃)pb(by|y, m, λ, λ̃)dλdλ̃.

(17)

Therefore, an arbitrary probability distribution p(by|x, y) ob-
tainable from a compatible set of measurements can be
reproduced by a suitable classical strategy, implying that
QC

d ⊆ Cd . On the other hand, any classical strategy is always
realized by quantum strategy with compatible measurements,
i.e., Cd ⊆ QC

d . Therefore, these two sets are identical.
Finally, we remark that the figure of merit of any commu-

nication task is some arbitrary function of the probabilities
p(by|x, y); we can infer that any quantum advantage (with or
without shared randomness) in such tasks over classical com-
munication can be attained only if the set of measurements is
incompatible. This completes the proof. �

Note that a weaker version of Result 1, QC
d ⊆ Cd , has been

proposed in Ref. [37]. However, from the arguments presented
therein, it is not clear how their Eq. (4) follows, which raises
questions upon the status of the last paragraph of the proof of
their Theorem 1 presented in Appendix A of [37].

One profound implication of Result 1 is that any com-
munication task can serve as a witness of measurement
incompatibility. However, in general, measurement incom-
patibility is not sufficient for quantum advantage without
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preshared randomness [38]—there exist incompatible qubit
measurements such that the set of probabilities given by (6)
for arbitrary quantum states is within C2 (see Sec. IV A
of [38]).

Another useful implication of Result 1 appears when we
are interested in linear functions of {p(by|x, y)}. Communica-
tion tasks for which the figures of merit are linear functions
of {p(by|x, y)} are widespread due to their practical impor-
tance in quantum communication complexity tasks [39–41],
quantum key distribution [42], quantum randomness genera-
tion [43,44], quantum random access codes [45,46], oblivious
transfer [30,41], and many other applications.

Fact 1. Given any scenario specified by (l, n, �d ), the max-
imum values of any linear function of {p(by|x, y)} obtained

within the three different sets Cd , QC
d , and QC

d are the same.
Proof. To find the optimum value of any linear function

of {p(by|x, y)}, it is sufficient to consider classical strategy
without shared randomness (see Lemma 1 in Appendix B
for a detailed explanation). Now, all probability distributions
{p(by|x, y)}, which are obtained from classical strategy with-

out shared randomness, can always be realized within QC
d .

Upon receiving the input x, Alice sends the quantum state ρx

such that ρx is diagonal in the computational basis. Bob, upon
receiving the input y and the diagonal state ρx, performs a
fixed measurement {Gκ} in the computational basis followed
by some postprocessing depending on y. This observation

together with the relation QC
d ⊆ QC

d = Cd implies the above
fact. �

The generic relation among the sets QC
d ,QC

d ,Qd ,Qd , Cd

is further analyzed in Sec. V. Next, we will propose incom-
patibility witness for an arbitrary set of measurements using
a family of communication tasks, namely, the general version
of RACs [47].

IV. INCOMPATIBILITY WITNESS FOR ANY SET OF
MEASUREMENTS OF ARBITRARY SETTING

Take the most general form of a set of measurements.
There are n measurements, defined by {Mby|y}, where y ∈ [n]
each of which has different outcomes, say, measurement y
has dy outcomes, that is, by ∈ [dy]. These measurements are
acting on d-dimensional quantum states where d is finite
(see Fig. 1). In order to witness the incompatibility of this
set, we introduce the most general form of random access
codes with Bob having this set of measurements. Alice gets
a string of n dits x = x1x2 · · · xn randomly from the set of all
possible strings in which xy ∈ [dy] for all y ∈ [n]. While Alice
communicates a d-dimensional classical or quantum system
to encode the information about the obtained string, the task
for Bob is to guess the yth dit when y is chosen randomly. The
figure of merit is the average success probability defined by
the following linear function:

S(n, �d, d ) = 1

n
∏

y dy

∑
x,y

p(by = xy|x, y), (18)

which is fully specified by n, �d = (d1, d2, . . . , dn), and d .
Since Eq. (18) is a linear function of p(by|x, y), by Fact 1, the

maximum value over Cd , QC
d , and QC

d is the same and denoted

FIG. 1. An unknown measurement set of arbitrary settings,
{Mby |y}by,y, is provided; we only know the dimension (d) on which
this set of measurements acts. Our task is to certify the incompatibil-
ity of this set of measurements. Here, the notation [k] := {1, · · · , k}
for any natural number k.

by Sc(n, �d, d ). Precisely,

Sc(n, �d, d ) = max
{p(by|x,y)}∈Cd

S(n, �d, d )

= max
{p(by|x,y)}∈QC

d

S(n, �d, d ). (19)

Hence, Sc(n, �d, d ) can be evaluated by maximizing the av-
erage success probability either over all classical strategies
or over all quantum strategies involving compatible measure-
ments only.

Whenever a set of measurements in the scenario specified
by n, �d , d gives S(n, �d, d ) > Sc(n, �d, d ) in the above-
introduced general version of RACs, we can conclude that the
measurements are incompatible. Hence, in order to witness
measurement incompatibility, we need to know Sc(n, �d, d ).
Now we present an upper bound on Sc(n, �d, d ) for arbitrary
n, �d, d .

Result 2. The following relation holds true for arbitrary
(n, �d, d ):

Sc(n, �d, d ) � 1

n
× min

{
1 +

∑
i, j
i< j

d

did j
, n − 1 + d∏

y dy

}
.

(20)

This upper bound in Eq. (20) is obtained for QC
d , that is,

by taking the existence of a parent POVM of the measure-
ments {Mby|y}by,y performed by Bob. The proof of this result
is presented in Appendix A. When the outcome of all the
measurements is the same, which is dy = d̃ for all y, the above
bound simplifies to

Sc(n, d̃, d ) � 1

n
× min

{
1 + n(n − 1)d

2d̃2
, n − 1 + d

d̃n

}
.

(21)

Hence, in different types of RACs involving an arbitrary set
of quantum measurements by Bob, if the average success
probability exceeds the aforementioned upper bounds on Sc,
then we can conclude that the measurements by Bob are
incompatible.
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On the other hand, whenever

d � min
y

dy, (22)

we find out the exact value of Sc(n, �d, d ). Say, ki is the num-
ber of sets among [d1], · · · , [dn] such that dit i ∈ [dy]. For
example, consider the RACs with n = 4 and d1 = 2, d2 = 3,
d3 = 4, and d4 = 3. That is, Alice gets a string of four dits,
x = x1x2x3x4, randomly, where x1 ∈ [2], x2 ∈ [3], x3 ∈ [4],
and x4 ∈ [3]. In this case, k1 = 4, k2 = 4, k3 = 3, and k4 = 1.
Also, we denote dmax = maxy dy.

Result 3. If (22) holds, then

Sc(n, �d, d ) = 1

n
∏

y dy

∑⎡
⎣
⎛
⎝dmax∏

j=1

C
α j
n j

⎞
⎠ max

i=1,··· ,d
{ni}
⎤
⎦, (23)

with

α j = k j −
dmax∑

i= j+1

ni, C
α j
n j = α j (α j − 1) · · · (α j − n j + 1)

n j (n j − 1) · · · 1
,

and where the summation is taken over all possible integer
solutions of the following equation:

dmax∑
i=1

ni = n, (24)

such that ni � ki for all i.
Note here that (23) is obtained for Cd by considering classi-

cal strategies. The detailed proof is given in Appendix B. For
a particular case of Result 3 wherein dy = d̃ = d for all y, the
proof is previously given in [45]. Hence, when d � miny dy, a
necessary criteria for a set of measurements to be compatible
is given by

S(n, �d, d ) � Sc(n, �d, d ), (25)

where Sc(n, �d, d ) is given by (23).
For n = 2, dy = d̃ for all y, and d � d̃ , the expression (23)

simplifies to (for details, see Appendix C)

Sc(2, d̃, d ) = 1

2d̃2
(d + 2dd̃ − d2). (26)

And for n = 3, dy = d̃ for all y, and d � d̃ , the expression
(23) simplifies to (for details, see Appendix C)

Sc(3, d̃, d ) = d

3d̃3
[d2 − 1 + 3d̃ (d̃ + 1 − d )]. (27)

The particular case of Result 2 for n = 2 can be found in [46]
and, moreover, it is shown that any pair of rank-one projec-
tive measurements that is incompatible provides advantage in
RACs [11]. In order to showcase the generic applicability of
Results 2 and 3, we consider an arbitrary set of three rank-one
projective qubit measurements, which using some unitary can
be expressed as

Mx1|1 = (1/2)U [1 + (−1)x1σz]U
†,

Mx2|2 = (1/2)U [1 + (−1)x2 (ασz +
√

1 − α2σx )]U †,

Mx3|3 = (1/2)U [1 + (−1)x3 (βσz + γ
√

1 − β2σx

±
√

1 − β2
√

1 − γ 2σy)]U †, (28)

where x1, x2, x3 ∈ [2], the variables α, β, γ ∈ [−1, 1], and U
can be an arbitrary unitary operator acting on C2. We obtain
the following result:

Result 4. The figure of merit (18) of RACs for n = 3, d̃ =
2, d = 2 can witness any set of three incompatible rank-one
projective qubit measurements, except for the sets defined by
(28) with

(α, β, γ ) = {(±1/2,±1/2,−1), (±1/2,∓1/2, 1)}.

This result is proved with the help of numerical optimizations
and the proof is available in Appendix D.

V. GENERIC RELATIONS BETWEEN PROBABILITY SETS

We now point out a few generic relations between the sets
in order to get a generic perspective. It is trivial that Qd �⊂ Cd

since we observe the quantum advantage for S(n, �d, d ). We
also observe the following:

Fact 2. In general, Cd �⊂ Qd and thus QC
d � Cd . In other

words, there exist probabilities that belong to Cd but do not
belong to Qd . Moreover, in general, Qd \ (Cd ∪ Qd ) �= ∅. In
other words, there exists a probability distribution that belongs
to Qd but does not belongs to Cd and Qd .

Proof. Once again, reckon the RAC task and, instead of the
average success probability (18), let us consider the figure of
merit to be the worst-case success probability,

W (n, d̃, d ) = min
x,y

{p(by = xy|x, y)}. (29)

It follows from Yao’s principle that the average success prob-
ability S(n, 2, 2) is the same as W (n, 2, 2) when preshared
randomness is available. See Lemma 1 in [48] for the proof.
Therefore, W (4, 2, 2) in C2 is the same as Sc(4, 2, 2) = 11/16
[48]. However, it was proven that the best value of W (4, 2, 2)

in Q2 is 1/2 [49], implying Cd �⊂ Qd . Moreover, since QC
d is

a subset of both Cd and Qd , it must be a proper subset.
Besides, there exists a quantum strategy in Q2 that achieves

W (4, 2, 2) = 0.74 (Sec. 4.1.2 in [48]). This means that both
Cd and Qd are proper subsets of Qd . �

Next, we present another observation that helps to com-
pletely understand the relationship between different sets of
probability distributions.

Fact 3. In general, (Cd ∩ Qd ) \ QC
d �= ∅. In other words,

there exists a set of probabilities that does not belong to QC
d at

the same time inside both of the sets Cd and Qd .
Proof. In Cd , W (3, 2, 2) = Sc(3, 2, 2) = 3/4 [48]. It is

also well known that there exist two-dimensional quantum
states and measurements that lead to W (3, 2, 2) = 1/2 +
1/(2

√
3) ≈ 0.79, without preshared randomness. An example

of such quantum states is given in Example 2 of Ref. [49]. If
we consider the noisy version of those quantum states νρ +
(1 − ν)1/2 such that ν = √

3/2, then it is easy to see that the
value of W (3, 2, 2) reduces to 3/4. Therefore, W (3, 2, 2) =
3/4 is obtained in both of the sets C2 and Q2. On the other
hand, a numerical analysis using semidefinite programming

shows that W (3, 2, 2) is, at most, 2/3 in QC
2 , which implies

(C2 ∩ Q2) \ QC
2 �= ∅. �
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FIG. 2. Generic relation between different sets of probabilities.
The equivalence between QC

d and Cd is shown in Result 1. There
exist many examples such that Qd is not a subset of Cd . On the other
hand, Fact 2 points out that Cd is not a subset of Qd and both Cd

as well as Qd are proper subsets of Qd . While it is immediate that

QC

d is a subset of both Cd and Qd , Fact 3 shows that QC

d is not the
intersection of these two sets.

Based on the above observations, the generic relationship
between different sets of probabilities can be understood as
depicted in Fig. 2.

VI. CONCLUDING REMARKS

By characterizing the set of quantum correlations in
prepare-and-measure scenarios produced from any set of
compatible measurements, we have shown in this article
that incompatible measurements at the receiver’s end are
necessary to demonstrate a quantum advantage in any com-
munication task. Based on this result, we have presented a
semi-device-independent witness of measurement incompati-
bility invoking generalized random access codes. Further, we
have completely characterized the sets of three incompatible
projective qubit measurements that can be detected using
our proposed witness. The relationship between the classical
probability distributions and different types of quantum prob-
ability distributions produced in an arbitrary communication
task has also been presented.

It might be noted that some of the results derived in [11,46]
appear as natural corollaries of the results obtained here.
It has recently been shown that the measurement statistics
produced in any communication task involving compatible
measurements by the receiver can be reproduced by classical
communication, where the dimension of the classical com-
munication is of the order of the number of outcomes of the
parent POVM [29]. Significantly, our results much further re-
duce the dimension of the classical communication involved.

The importance of the analysis presented here lies in the
fact that the classical bound of the success metric of any com-
munication task becomes an upper bound on the metric of the
task under a compatible set of measurements. Consequently,
violating the classical bound of any communication task can
be used as a sufficient criteria to witness measurement incom-
patibility. These bounds are tight whenever the dimension on
which the measurements act is not larger than the number of
outcomes of any of the measurements. The present study es-
tablishes that measurement incompatibility is the fundamental

quantum resource for nonclassicality in any communication
task or, more generally, in prepare-and-measure scenarios.

Our analysis paves the way for investigations of several
open questions. First, deriving more efficient incompatibil-
ity witnesses based on different communication tasks is
worthwhile for future studies. Second, our results may be
generalized to propose semi-device-independent witnesses for
incompatible quantum channels [50] and quantum instru-
ments [51,52]. Finally, proposing operational witnesses for all
incompatible extremal POVMs [53] is another fundamentally
motivated open problem.
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APPENDIX A: PROOF OF RESULT 2

Proof. For a given set of measurements, {Mby|y}, on Bob’s
side, the maximum average success probability (18) in quan-
tum theory is given by [11]

max
{ρx}

1

n
∏

y dy

∑
x1x2···xn

∑
y

Tr(ρxMby=xy|y)

= 1

n
∏

y dy

∑
x1x2···xn

max
{ρx}

Tr

⎡
⎣ρx

⎛
⎝∑

y

Mby=xy|y

⎞
⎠
⎤
⎦

= 1

n
∏

y dy

∑
x1x2···xn

||χ ||, (A1)

where

χ = Mx1|1 + Mx2|2 + · · · + Mxn|n. (A2)

Here, ||χ || denotes the operator norm of χ , which is sim-
ply the maximum eigenvalue of the operator χ . Our aim is
to obtain an upper bound on expression (A1) when {Mby|y}
are compatible. An alternative definition of measurement in-
compatibility, which is equivalent to the standard one (1), is
associated with the existence of a parent POVM whose appro-
priate marginals give rise to all the individual measurements
[1]. Precisely, if the measurements {Mby|y} are compatible,
then there exists a parent measurement, G ≡ {G(b1, · · · , bn)},
with

∏n
y=1 dy elements from which all the measurement oper-

ators can be reconstructed by taking marginals as follows:

Mxy|y =
∑

b1,··· ,by−1,by+1,··· ,bn

G(b1, · · · , by1 , xy, by+1, · · · , bn),

(A3)
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where ∑
b1,··· ,bn

G(b1, · · · , by1 , by, by+1, · · · , bn) = 1d×d . (A4)

Let us first expand χ in terms of the parent POVM using (A3),

χ =
∑

b2,b3,··· ,bn

G(x1, b2, b3 · · · , bn) +
∑

b1,b3,··· ,bn

G(b1, x2, b3, · · · , bn) + · · · +
∑

b1,b2,b3,··· ,bn−1

G(b1, b2, b3, · · · , bn−1, xn). (A5)

Each term in the above expansion can be split into two terms in the following way:

χ =
∑

b3,b4,··· ,bn

G(x1, x2, b3, b4, · · · , bn) +
∑

b2,··· ,bn
b2 �=x2

G(x1, b2, · · · , bn) +
∑

b1,b4,··· ,bn

G(b1, x2, x3, b4, · · · , bn)

+
∑

b1,b3,··· ,bn
b3 �=x3

G(b1, x2, b3, · · · , bn) + · · · +
∑

b2,b3,··· ,bn−1

G(x1, b2, b3, · · · , bn−1, xn) +
∑

b1,··· ,bn−1
b1 �=x1

G(b1, · · · , bn−1, xn). (A6)

In the above Eq. (A6), there are two sums in each line and there is a total of n lines. Let us denote the first sum and the second
sum in the ith line by S i

1 and S i
2, respectively, where i ∈ {1, · · · , n}. Hence, Eq. (A6) can be expressed as

χ =
n∑

i=1

(
S i

1 + S i
2

)
, (A7)

where

S i
1 =

∑
b1,··· ,bi−1,bi+2,··· ,bn

G(b1, · · · , bi−1, xi, xi+1, bi+2, · · · , bn) (A8)

and

S i
2 =

∑
b1,··· ,bi−1,bi+1,··· ,bn

bi+1 �=xi+1

G(b1, · · · , bi−1, xi, bi+1, · · · , bn). (A9)

Here the index i is taken to be modulo n. Each G(· · · ) in the above sums will be termed as an element.
Let us now make an observation that there is no common element between S i

2 and S i+1
2 . The common element between S i

2

and S j
2 with i, j ∈ {1, · · · , n} and j > i + 1 is

∑
b1,··· ,bn

bi+1 �=xi+1
b j+1 �=x j+1

G(b1, · · · , bi−1, xi, bi+1, · · · , b j−1, x j, b j+1, · · · , bn) �
n∑

k=1
k �=i, j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , b j−1, x j, b j+1, · · · , bn),

(A10)

where the index i, j is taken to be modulo n. Hence, we have

n∑
i=1

S i
2 �

∑
i, j∈{1,··· ,n}

j>i+1

⎡
⎢⎢⎣

n∑
k=1

k �=i, j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , b j−1, x j, b j+1, · · · , bn)

⎤
⎥⎥⎦+ other terms with no common element.

(A11)
Next, let us focus on S i

1. It can be checked that

n∑
i=1

S i
1 =

n∑
i=1

⎡
⎢⎢⎣

n∑
k=1

k �=i,i+1

∑
bk

G(b1, · · · , bi−1, xi, xi+1, bi+2, · · · , bn)

⎤
⎥⎥⎦. (A12)

Replacing S i
2 and S i

1 using (A11) and (A12) in (A7), we have

χ �
∑

i, j∈{1,··· ,n}
i< j

⎡
⎢⎢⎣

n∑
k=1

k �=i, j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , b j−1, x j, b j+1, · · · , bn)

⎤
⎥⎥⎦+ other terms with no common element
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�
∑

i, j∈{1,··· ,n}
i< j

⎡
⎢⎢⎣

n∑
k=1

k �=i, j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , b j−1, x j, b j+1, · · · , bn)

⎤
⎥⎥⎦+

∑
b1,··· ,bn

G(b1, · · · , bn). (A13)

Substituting the above expression into (A1) and employing the triangle inequality for the norm, we find that

Sc(n, �d, d ) � 1

n
∏

y dy

[ ∑
x1,··· ,xn

∑
i, j∈{1,··· ,n}

i< j

∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

k �=i, j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , b j−1, x j, b j+1, · · · , bn)

∣∣∣∣∣
∣∣∣∣∣

+
∑

x1,··· ,xn

∣∣∣∣∣
∣∣∣∣∣
∑

b1,··· ,bn

G(b1, · · · , bn)

∣∣∣∣∣
∣∣∣∣∣
]
. (A14)

Due to (A4), the second term of the above expression can be evaluated as

∑
x1,··· ,xn

∣∣∣∣∣
∣∣∣∣∣
∑

b1,··· ,bn

G(b1, · · · , bn)

∣∣∣∣∣
∣∣∣∣∣ =

∑
x1,··· ,xn

∣∣∣∣∣
∣∣∣∣∣1d×d

∣∣∣∣∣
∣∣∣∣∣ =

n∏
y=1

dy. (A15)

Next, consider the first term in (A14), given by

∑
x1,··· ,xn

∑
i, j∈{1,··· ,n}

i< j

∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

k �=i, j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , b j−1, x j, b j+1, · · · , bn)

∣∣∣∣∣
∣∣∣∣∣ =

∑
i, j∈{1,··· ,n}

i< j

βi, j, (A16)

where

βi, j =
∑

x1,··· ,xn

∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

k �=i, j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , b j−1, x j, b j+1, · · · , bn)

∣∣∣∣∣
∣∣∣∣∣

�
∑

x1,··· ,xn

Tr

⎡
⎢⎢⎣

n∑
k=1

k �=i, j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , b j−1, x j, b j+1, · · · , bn)

⎤
⎥⎥⎦

=
n∑

r=1
r �=i, j

∑
xr

Tr

⎡
⎢⎢⎣∑

xi,x j

n∑
k=1

k �=i, j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , b j−1, x j, b j+1, · · · , bn)

⎤
⎥⎥⎦

=
n∑

r=1
r �=i, j

∑
xr

Tr

⎡
⎣ ∑

b1,··· ,bn

G(b1, · · · , bn)

⎤
⎦

=
n∑

r=1
r �=i, j

∑
xr

Tr(1d×d )

= d
n∏

y=1
y �=i, j

dy. (A17)

Hence, we get the first term in (A14), given by

∑
x1,··· ,xn

∑
i, j∈{1,··· ,n}

i< j

∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

k �=i, j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , b j−1, x j, b j+1, · · · , bn)

∣∣∣∣∣
∣∣∣∣∣ = d

∑
i, j∈{1,··· ,n}

i< j

n∏
y=1

y �=i, j

dy. (A18)
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By substituting the bounds from (A15)–(A18) into (A14), we obtain

Sc(n, �d, d ) � 1

n
∏

y dy

⎡
⎢⎢⎣d

∑
i, j∈{1,··· ,n}

i< j

⎛
⎜⎜⎝

n∏
y=1

y �=i, j

dy

⎞
⎟⎟⎠+

n∏
y=1

dy

⎤
⎥⎥⎦, (A19)

which reduces to the first expression of Eq. (20).
For the other bound, let us use the fact that in (A5), only the term G(x1, x2, · · · , xn) occurs n times and all the other terms can

occur, at most, (n − 1) times to get an upper bound on χ as follows:

χ � G(x1, x2, · · · , xn) + (n − 1)
∑

b1,··· ,bn

G(b1, · · · , bn). (A20)

Replacing this bound into (A4) and employing the triangle inequality for the norm, we get

Sc(n, �d, d ) � 1

n
∏

y dy

⎡
⎣ ∑

x1,··· ,xn

∣∣∣∣∣
∣∣∣∣∣G(x1, · · · , xn)

∣∣∣∣∣
∣∣∣∣∣+ (n − 1)

∑
x1,··· ,xn

∣∣∣∣∣
∣∣∣∣∣
∑

b1,··· ,bn

G(b1, · · · , bn)

∣∣∣∣∣
∣∣∣∣∣
⎤
⎦. (A21)

We already have a bound given by (A15) on the second sum
in the above equation. The first term is bounded by d since

∑
x1,··· ,xn

∣∣∣∣∣
∣∣∣∣∣G(x1, · · · , xn)

∣∣∣∣∣
∣∣∣∣∣ �

∑
x1,··· ,xn

Tr[G(x1, · · · , xn)]

= Tr

⎡
⎣ ∑

x1,··· ,xn

G(x1, · · · , xn)

⎤
⎦

= Tr(1d×d )

= d. (A22)

Therefore, we arrive at

Sc(n, �d, d ) � 1

n
∏

y dy

⎡
⎣d + (n − 1)

∏
y

dy

⎤
⎦, (A23)

which reduces to the second expression of Eq. (20). This
completes the proof. �

APPENDIX B: PROOF OF RESULT 3

In order to provide a detailed proof of Result 3, we first
state a general feature of communication tasks.

Lemma 1. Consider a general form of a linear function of
{p(by|x, y)},

S =
∑
x,y,by

cx,y,by p(by|x, y). (B1)

The maximum value of S within Cd , which we denote by Sc,
is obtained by deterministic strategies and can be written only
in terms of decoding function {pb(by|y, m)}.

Proof. Replacing the expression of p(by|x, y) for classical
communication given by Eq. (3) into (B1), we see that

Sc = max
{pa(m|x,λ)}

{pb(by|y,m,λ)}
{π (λ)}

∑
x

⎡
⎣∑

y,by

cx,y,by p(by|x, y)

⎤
⎦

= max
{pa(m|x,λ)}

{pb(by|y,m,λ)}
{π (λ)}

∫
λ

π (λ)

⎧⎨
⎩
∑

x

⎡
⎣∑

m

pa(m|x, λ)

⎛
⎝∑

y,by

cx,y,by pb(by|y, m, λ)

⎞
⎠
⎤
⎦
⎫⎬
⎭dλ

= max
{pb(by|y,m,λ)}

{π (λ)}

∫
λ

π (λ)

⎡
⎣∑

x

max
m

⎛
⎝∑

y,by

cx,y,by pb(by|y, m, λ)

⎞
⎠
⎤
⎦dλ. (B2)

This is achieved when pa[m∗(λ, x)|x, λ] = 1, where, for each
λ, m∗(λ, x) is defined as follows:∑

y,by

cx,y,by pb[by|y, m∗(λ, x), λ]

�
∑
y,by

cx,y,by pb(by|y, m, λ) ∀ m ∈ [d]. (B3)

Now, the above expression (B2) is a convex sum with respect
to π (λ) and thus we can omit the dependence of λ by taking
the best value of {∑x maxm[

∑
y,by

cx,y,by pb(by|y, m, λ)]} over
different choices of λ as follows:

Sc = max
{pb(by|y,m)}

⎡
⎣∑

x

max
m

⎛
⎝∑

y,by

cx,y,by pb(by|y, m)

⎞
⎠
⎤
⎦. (B4)
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Therefore, it is sufficient to consider deterministic decoding,
that is, pb(by|y, m) ∈ {0, 1}, to achieve Sc. Moreover, given
any decoding strategy {pb(by|y, m)}, the best encoding func-
tion is

pa(m∗|x) = 1 where
∑
y,by

cx,y,by pb(by|y, m∗)

�
∑
y,by

cx,y,by pb(by|y, m) ∀ m ∈ [d]. (B5)

This completes the proof. �
Proof of Result 3. The proof is essentially a generalization

of the proof given in Sec. II A of [45], which was restricted
for the particular case where d = dy for all y. We know from
the above lemma that the optimal encoding and decoding
functions are deterministic. Thus, this can be written in a
functional form as

E (x1 · · · xn) = m if pa(m|x) = 1 (B6)

and

Dy(m) = by if pb(by|y, m) = 1. (B7)

Here, E (x1 · · · xn) is a function whose domain is the set of in-
puts, x = x1 · · · xn, and range is the set of messages, [d]. Also,
Dy(m) is a function whose domain is the set of messages,
[d], and range is the set [dy]. We say the decoding strategy
is “identity decoding,” denoted by {D̃y}, if

∀y, D̃y(m) = m. (B8)

We want to show that without loss of generality, we can
take {D̃y} for the maximum success probability. Consider an
encoding E (x) (B6) and a decoding {Dy} (B7) that may not
be {D̃y}, that is, there may exist y such that Dy(m) �= m. Let
D←

y (by) be the pre-image of by, that is, D←
y (by) = {m ∈ [d] :

Dy(m) = by}.
Subsequently, we consider the following quantity:

D←
1 (b1) · · · D←

n (bn)

= {m1 · · · mn : D1(m1) = b1, · · · , Dn(mn) = bn}, (B9)

which is simply the set of dit-string {m1 · · · mn} that is mapped
to the string b1 · · · bn. We define another encoding function
{Ẽx} as follows:

Ẽ [D←
1 (x1)D←

2 (x2) · · · D←
n (xn)] = m if E (x1 · · · xn) = m.

(B10)

The above definition of Ẽ is not complete since it is not
defined if xi /∈ [d] since D←

y (xi ) ∈ [d]. In those cases, we take
any encoding strategy. Now, we note that Ẽ is a well-defined
encoding function. Also note that Ẽ is a valid encoding for the
random access codes considered by us only if d � miny dy.
That is because if d > dy for some y, then the domain of Ẽ
may have a string of n dits that does not belong to x.

Suppose, for any input pair x1 · · · xn, y so that the encod-
ing E and decoding {Dy} guess the correct dit xy. Hence,
if the encoding strategy is given by E (x = x1 · · · xn) = m,
then the decoding strategy is given by Dy(m) = by = xy.
Therefore, we have D←

y (xy) = m. As a consequence, the
new encoding Ẽx and the “identify decoding” {D̃y} also pro-
vide the correct answer for at least one input pair from

{D←
1 (x1)D←

2 (x2) · · · D←
n (xn)}, y. Hence, the average success

probability for the strategy consisting of the encoding Ẽx and
the identify decoding {D̃y} is greater than or equal to that for
the strategy with encoding E and decoding {Dy}. Therefore,
we can consider identity decoding without loss of generality.

Next, from Eq. (B4), the expression for Sc pertaining to the
random access codes for identity decoding can be written as

Sc = 1

n
∏

y dy

∑
x

max
m

⎡
⎣∑

y

P(by = xy|y, m)

⎤
⎦

= 1

n
∏

y dy

∑
x

max
m

⎛
⎝∑

y

δxy,m

⎞
⎠, (B11)

and for the identity decoding, the best encoding can be deter-
mined from (B5) as follows:

pa(m∗|x) = 1 where
∑

y

δxy,m∗ �
∑

y

δxy,m ∀ m ∈ [d].

(B12)

Hence, the best encoding pertaining to the identity decoding
is just sending the dit that belongs to [d] and occurs maximum
times in the input string x1 · · · xn.

Finally, we provide an expression for Sc for the best clas-
sical strategy derived above. In an input string x1 · · · xn, say,
the dit i occurs ni number of times and the maximum value
of a dit can be maxy dy. Alice sends message m such that
nm = maxi=1,··· ,d ni. As a result, out of n different values of
y, they get success (maxi=1,··· ,d ni ) times. As the total number
of dits is n, the set of values of ni should satisfy

dmax∑
i=1

ni = n, (B13)

where dmax = maxy dy. Moreover, dit i may not belong to all
[dy] and thus ni cannot take all the solutions of the above
equation. Say, ki is the number of sets among [d1], · · · , [dn]
such that dit i ∈ [dy]. Therefore, we are only interested in
those solutions where ni � ki.

Given such a solution of {ni}, there will be many possible
numbers of input dit strings x having that {ni}. Next, let us
evaluate the number of input dit strings x that can have an
arbitrary {ni}. In any input string, at most kdmax number of input
dits can have the value dmax. In the given set of input dit strings
having {ni}, the dit dmax occurs ndmax number of times. Hence,
the dit dmax can be arranged in Ckdmax

ndmax
different possible ways.

Next, in any input string, at most kdmax−1 number of input dits
can have the value (dmax − 1). However, among these kdmax−1

number of input dits, ndmax number of dits have already taken
the value dmax in the case of the given set of input strings.
Also, in the given set of input dit strings having {ni}, the dit
(dmax − 1) occurs ndmax−1 number of times. Therefore, for any
of the above-mentioned arrangements of the dit dmax, the dit
(dmax − 1) can be arranged in Ckdmax−1−ndmax

ndmax−1 different possible
ways. Proceeding in this way, it can be shown that an arbitrary
dit j can be arranged in C

α j
n j different possible ways with

α j = k j −∑dmax
i= j+1 ni for any arrangement of the dits, dmax,

(dmax − 1), · · · , j + 1. Therefore, given any {ni}, there will
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be (
∏dmax

j=1 C
α j
n j ) (with α j = k j −∑dmax

i= j+1 ni) number of input
dit strings having that {ni}. Combining these facts, we obtain
Eq. (23). �

APPENDIX C: DERIVATION OF EQ. (26) AND EQ. (27)

From Result 3, we can write the following for n = 2, dy =
d̃ for all y, and d � d̃:

Sc(2, d̃, d ) = 1

2d̃2

∑
{ni}∈S

[
N{ni} max

i=1,··· ,d
{ni}
]
, (C1)

where N{ni} is the number of input dit strings having a given
{ni} and S denotes the set of {ni} satisfying

d̃∑
i=1

ni = 2, (C2)

such that ni � 2 for all i.
Next, let us characterize the set S . It can be noted that there

are the following two types of {ni} ∈ S:
(1) For each i ∈ [d̃], ni = 2 and n j = 0 for all j �= i and

j ∈ [d̃].
There are d̃ number of such {ni} ∈ S . However,

maxi=1,··· ,d{ni} = 0 for each of those {ni} ∈ S satisfying ni =
2 for any i such that i ∈ {d + 1, · · · , d̃} and nj = 0 for all j ∈
[d̃] and j �= i. Hence, only d number of {ni} ∈ S belonging to
this class contribute to the sum of (C1). It is straightforward
to check that for each of these d number of {ni} ∈ S , N{ni} = 1
and maxi=1,··· ,d{ni} = 2.

(2) For each i, j ∈ [d̃] with i �= j, ni = n j = 1 and nk = 0
for all k /∈ {i, j} with k ∈ [d̃].

There are Cd̃
2 number of such {ni} ∈ S . However,

maxi=1,··· ,d{ni} = 0 for each of those {ni} ∈ S satisfying ni =
n j = 1 for any i, j with i �= j, i, j ∈ {d + 1, · · · , d̃} and nk =
0 for all k ∈ [d̃], k �= i, k �= j. There are C(d̃−d )

2 number of

such {ni} ∈ S satisfying this. Hence, only Cd̃
2 − C(d̃−d )

2 num-
ber of {ni} ∈ S belonging to this second class contribute to
the sum of (C1). It can be checked that for each of these Cd̃

2 −
C(d̃−d )

2 number of {ni} ∈ S , N{ni} = 2 and maxi=1,··· ,d{ni} = 1.
Therefore, we have, from Eq. (C1),

Sc(2, d̃, d ) = 1

2d̃2

[
2d + 2

(
Cd̃

2 − C(d̃−d )
2

)]
= 1

2d̃2
[d + 2dd̃ − d2]. (C3)

Similarly, following the same analysis as above, we can get
the expression for n = 3, dy = d̃ for all y, and d � d̃ ,

Sc(3, d̃, d ) = 1

3d̃3

∑
{ni}∈S

[
N{ni} max

i=1,··· ,d
{ni}
]
, (C4)

where N{ni} is the number of input dit strings with a given {ni}
and S denotes the set of {ni} satisfying

d̃∑
i=1

ni = 3, (C5)

such that ni � 3 for all i. Now there are three cases that satisfy
Eq. (C5):

(1) For each i ∈ [d̃], ni = 3 and n j = 0 for all j �= i and
j ∈ [d̃].

There are d̃ number of such {ni} ∈ S . However,
maxi=1,··· ,d{ni} = 0 for each of those {ni} ∈ S satisfying ni =
3 for any i with i ∈ {d + 1, · · · , d̃} and nj = 0 for all j ∈ [d̃]
and j �= i. Hence, only d number of {ni} ∈ S belonging to this
class contribute to the sum of (C4). For each of these d number
of {ni} ∈ S , we have that N{ni} = 1 and maxi=1,··· ,d{ni} = 3.
Hence, the contribution to the sum is 3d .

(2) For each i, j, k ∈ [d̃] with i /∈ { j, k}, j /∈ {i, k}, k /∈
{i, j}, ni = n j = nk = 1 and nl = 0 for all l /∈ {i, j, k} and
l ∈ [d̃].

There are Cd̃
3 number of such {ni} ∈ S . Moreover,

maxi=1,··· ,d{ni} = 0 for each of those {ni} ∈ S satisfying
ni = n j = nk = 1 for any choice of i, j, k with i, j, k ∈ {d +
1, · · · , d̃}, i /∈ { j, k}, j /∈ {i, k}, k /∈ {i, j} and nl = 0 for all
l ∈ [d̃] and l /∈ {i, j, k}. There are C(d̃−d )

3 number of such

{ni} ∈ S satisfying this. Thus, only Cd̃
3 − C(d̃−d )

3 number of
{ni} ∈ S belonging to this class contribute to the sum of (C4).

It can be checked that for each of these Cd̃
3 − C(d̃−d )

3 number
of {ni} ∈ S , N{ni} = 3! and maxi=1,··· ,d{ni} = 1. Therefore, the

contribution to the sum will be (3!)(Cd̃
3 − Cd̃−d

3 ).
(3) For each i, j ∈ [d̃] with i �= j, ni = 2, n j = 1 and nk =

0 for all k /∈ {i, j} with k ∈ [d̃].
The feasible solutions of Eq. (C5) that contribute to

Eq. (C4) are of two types:
(A) i ∈ [d] and j ∈ [d̃] − {i}. The number of possible such

{ni} ∈ S is given by d (d̃ − 1). Also, for each such {ni}, we
have that N{ni} = 3 and maxi=1,··· ,d{ni} = 2. Therefore, the
contribution to the sum appearing in Eq. (C4) by this case is
6 d (d̃ − 1).

(B) i ∈ {d + 1, · · · , d̃} and j ∈ [d]. The number of possi-
ble such {ni} ∈ S is given by d (d̃ − d ). And for each such
{ni}, we have that N{ni} = 3 and maxi=1,··· ,d{ni} = 1. Hence,
the contribution to the sum appearing in Eq. (C4) for this case
is given by 3 d (d̃ − d ).

Therefore, the total contribution to the sum of Eq. (C4) is
given by 6 d (d̃ − 1) + 3 d (d̃ − d ) = 3 d (3 d̃ − d − 2).

Therefore, we have

Sc(3, d̃, d ) = 1

3d̃3

[
(3!)
(
Cd̃

3 −Cd̃−d
3

)+3 d (3 d̃ − d − 2)+3d
]

= d

3d̃3
[d2 − 1 + 3d̃ (d̃ + 1 − d )]. (C6)

APPENDIX D: PROOF OF RESULT 4

Let us take three arbitrary orthonormal bases {|ψ1
1 〉, |ψ1

2 〉},
{|ψ2

1 〉, |ψ2
2 〉}, and {|ψ3

1 〉, |ψ3
2 〉} in C2 such that Mxy|y =

|ψy
xy〉〈ψy

xy | with xy ∈ [2] for all y ∈ {1, 2, 3}. A unitary can
always be applied to these three measurements. Therefore,
without any loss of generality, we can assume that∣∣ψ1

x1

〉〈
ψ1

x1

∣∣ = 1
2 [1 + (−1)x1σz] with x1 ∈ [2], (D1)∣∣ψ2

x2

〉〈
ψ2

x2

∣∣ = 1
2 [1+(−1)x2 (ασz+

√
1 − α2σx )] with x2 ∈ [2],

(D2)∣∣ψ3
x3

〉〈
ψ3

x3

∣∣ = 1
2 [1 + (−1)x3 (βσz + γ

√
1 − β2σx

±
√

1 − β2
√

1 − γ 2σy)] with x3 ∈ [2], (D3)

where −1 � α, β, γ � 1.
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Due to the same reasoning as for (A1), the maximum
average success probability for the above-mentioned given set
of three rank-one projective qubit measurements is given by

Sc(n=3, d̃=2, d = 2) = 1

24

2∑
x1,x2,x3=1

||Mx1|1+Mx2|2+Mx3|3||.

(D4)
By definition, ||Mx1|1 + Mx2|2 + Mx3|3|| is the maximum

eigenvalue of (Mx1|1 + Mx2|2 + Mx3|3), which can be evaluated
easily. Subsequently, it can be checked that

2∑
x1,x2,x3=1

||Mx1|1 + Mx2|2 + Mx3|3||

= 12 +
√

3 + 2α − 2β − 2αβ − 2γ
√

1 − α2
√

1 − β2

+
√

3 − 2α + 2β − 2αβ − 2γ
√

1 − α2
√

1 − β2

+
√

3 − 2α − 2β + 2αβ + 2γ
√

1 − α2
√

1 − β2

+
√

3 + 2α + 2β + 2αβ + 2γ
√

1 − α2
√

1 − β2.

(D5)

We have found the minimum of the above expression (D5) by
performing numerical optimization. It turns out that

min
α,β,γ∈[−1,1]

⎛
⎝ 2∑

x1,x2,x3=1

||Mx1|1 + Mx2|2 + Mx3|3||
⎞
⎠ = 18. (D6)

In other words,

min
α,β,γ∈[−1,1]

(ξ1 + ξ2 + ξ3 + ξ4) = 6, (D7)

where

ξ1 =
√

3 + 2α − 2β − 2αβ − 2γ
√

1 − α2
√

1 − β2,

ξ2 =
√

3 − 2α + 2β − 2αβ − 2γ
√

1 − α2
√

1 − β2,

ξ3 =
√

3 − 2α − 2β + 2αβ + 2γ
√

1 − α2
√

1 − β2,

ξ4 =
√

3 + 2α + 2β + 2αβ + 2γ
√

1 − α2
√

1 − β2.

In order to prove Result 4, it is sufficient to show
that (ξ1 + ξ2 + ξ3 + ξ4) = 6 only if the three pro-
jective measurements are compatible or (α, β, γ ) =
{(±1/2,±1/2,−1), (±1/2,∓1/2, 1)}.

Since −1 � α, β, γ � 1, we divide the regions of α, β,
and γ into the following subregions:

(i) α, β, γ ∈ [0, 1],
(ii) α ∈ [−1, 0]; β, γ ∈ [0, 1],
(iii) α, β ∈ [−1, 0]; γ ∈ [0, 1],
(iv) α, β, γ ∈ [−1, 0],
(v) α, γ ∈ [0, 1]; β ∈ [−1, 0],
(vi) α, γ ∈ [−1, 0]; β ∈ [0, 1],
(vii) α, β ∈ [0, 1]; γ ∈ [−1, 0],
(viii) α ∈ [0, 1]; β, γ ∈ [−1, 0].

We start by considering the above-mentioned subregion (i),
i.e., α, β, γ ∈ [0, 1]. In this case, we note the following holds
from numerical evaluation:

min
α,β,γ∈[0,1]

(ξ1 + ξ2) = 2 (D8)

and

min
α,β,γ∈[0,1]

(ξ3) � min
α,β∈[0,1]

√
3 − 2α − 2β + 2αβ = 1, (D9)

since the derivative of the above expression is zero at α = 1
or/and β = 1.

Next, we evaluate the maximum as well as minimum of
(ξ1 + ξ2 + ξ3) numerically under the constraint that (ξ1 +
ξ2 + ξ3 + ξ4) = 6. It is obtained that

min
α,β,γ∈[0,1]

(ξ1 + ξ2 + ξ3)

= max
α,β,γ∈[0,1]

(ξ1+ξ2+ξ3) = 3 when ξ1+ξ2 + ξ3 + ξ4 = 6.

(D10)

Therefore, we have that

ξ1 + ξ2 + ξ3 = 3 when ξ1 + ξ2 + ξ3 + ξ4 = 6. (D11)

Hence, the following is implied from (D8), (D9), and (D11):

ξ1 + ξ2 = 2, ξ3 = 1, and ξ4 = 3 when

ξ1 + ξ2 + ξ3 + ξ4 = 6. (D12)

Next, it can be checked that ξ3 = 1 only if α = 1 or/and
β = 1. Now, when α = 1, then ξ4 = 3 implies that β =
1. Similarly, when β = 1, then ξ4 = 3 implies that α = 1.
Therefore, when α, β, γ ∈ [0, 1], then (ξ1 + ξ2 + ξ3 + ξ4) =
6 holds only if α = β = 1.

Next, consider the subregion (iii), i.e., for α, β ∈ [−1, 0];
γ ∈ [0, 1]. We note that if α → −α and β → −β, then the
four expressions ξi interchange among themselves as we can
readily verify, ξ1 → ξ2, ξ2 → ξ1, ξ3 → ξ4, and ξ4 → ξ3. Thus,
following a similar calculation as for subregion (i), we find
that ξ1 + ξ2 + ξ3 + ξ4 = 6 holds only if α = β = −1. Simi-
larly, for subregions (vi) and (viii), one can show that ξ1 +
ξ2 + ξ3 + ξ4 = 6 holds only if −α = β = 1 and α = −β = 1,
respectively.

Next, let us focus on the subregion (iv), i.e., when
α, β, γ ∈ [−1, 0]. In this case, we obtain the following by
performing numerical optimizations:

min
α,β,γ∈[−1,0]

(ξ1 + ξ4) = max
α,β,γ∈[−1,0]

(ξ1 + ξ4) = 2

when ξ1 + ξ2 + ξ3 + ξ4 = 6,

min
α,β,γ∈[−1,0]

(ξ2 + ξ4) = max
α,β,γ∈[−1,0]

(ξ2 + ξ4) = 2

when ξ1 + ξ2 + ξ3 + ξ4 = 6,

min
α,β,γ∈[−1,0]

(ξ1 + ξ3) = max
α,β,γ∈[−1,0]

(ξ1 + ξ3) = 4

when ξ1 + ξ2 + ξ3 + ξ4 = 6,

min
α,β,γ∈[−1,0]

(ξ2 + ξ3) = max
α,β,γ∈[−1,0]

(ξ2 + ξ3) = 4

when ξ1 + ξ2 + ξ3 + ξ4 = 6.
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Hence, we can infer that whenever ξ1 + ξ2 + ξ3 + ξ4 = 6,

ξ1 + ξ4 = ξ2 + ξ4 = 2, ξ1 + ξ3 = ξ2 + ξ3 = 4. (D13)

Therefore, we have ξ1 = ξ2 if ξ1 + ξ2 + ξ3 + ξ4 = 6. Also, it
can be easily checked from the expressions of ξ1, ξ2, ξ3, and
ξ4 that

ξ 2
1 + ξ 2

2 + ξ 2
3 + ξ 2

4 = 12. (D14)

By putting ξ1 = ξ2 = ξ , ξ3 = 4 − ξ , ξ4 = 2 − ξ , we get from
(D14) that

2ξ 2 + (4 − ξ )2 + (2 − ξ )2 = 12. (D15)

The possible solutions of the above equation are ξ = 1 and
ξ = 2.

Before proceeding, let us point out the following observa-
tions that can be checked numerically:

min
α,β,γ∈[−1,0]

(ξ1) = min
α,β,γ∈[−1,0]

(ξ2) = 1. (D16)

First we take ξ = 1. It can be shown that α, β, γ ∈ [−1, 0],
ξ1 = ξ2 = 1 only if α = −1 and β = −1. Next, let us take
ξ = 2. Consequently, we have that ξ1 = ξ2 = 2, ξ3 = 2, ξ4 =
0. It can be checked that the unique solution of these four
equations is given by α = −1/2, β = −1/2, γ = −1.

Next, we remark that for the remaining subregions (ii), (v),
and (vii) wherein the variables α, β, γ changes their signs
with respect to the subregion (iv) where α, β, γ ∈ [−1, 0],
the four expressions ξi interchange among themselves. Thus,
a similar calculation applies to these three regions and, con-
sequently, the solution for ξ1 + ξ2 + ξ3 + ξ4 = 6 is the same
with the appropriate signs.

Finally, let us note that there are, in general, two cases
where we do not observe any advantage. First, α = ±1 and
β = ±1, which implies that the three measurements {Mx1|1},
{Mx2|2}, and {Mx3|3} are compatible. Second, (α, β, γ ) =
{(±1/2,±1/2,−1), (±1/2,∓1/2, 1)}, which are obtained in
subregions (iv), (ii), (v), and (vii), implies that the three mea-
surements are incompatible. This completes the proof.
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