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We propose a framework for the quantum geometry of expectation values over arbitrary sets of operators and
establish a link between this geometry and the eigenstates of Hamiltonian families generated by these operators.
We show that the boundary of expectation value space corresponds to the ground state, which presents a natural
bound that generalizes Heisenberg’s uncertainty principle. To demonstrate the versatility of our framework, we
present several practical applications, including providing a stronger nonlinear quantum bound that violates
the Bell inequality and an explicit construction of the density functional. Our approach provides an alternative
time-independent quantum formulation that transforms the linear problem in a high-dimensional Hilbert space
into a nonlinear algebro-geometric problem in a low dimension, enabling us to gain new insights into quantum
systems.
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I. INTRODUCTION

Boundedness is a ubiquitous phenomenon in the quantum
realm. One of the most prominent examples is Heisenberg’s
uncertainty principle [1–3], which sets a nonlinear bound
on the expectation values of quadratic position and momen-
tum operators. Another well-known example is the Tsirelson
bound [4] for quantum nonlocality, which limits the ability of
quantum mechanics to violate Bell inequalities [5]. Density
functional theory (DFT) [6] is another notable example, where
two theorems introduced by Hohenberg and Kohn (HK) [7]
state that the system energy is bounded by a unique functional
of the particle density and is uniquely saturated by the ground
state. The HK functional depends only on the interactions,
making it universal and applicable to any electron system.
However, unlike Heisenberg’s uncertainty principle, the exact
form of the HK functional remains unknown [6,8–11] despite
limited efforts of numerical searches [12–14].

Despite many isolated examples of quantum boundedness
regarding expectation values, there is currently no general
framework that unifies these cases into a coherent whole. In
particular, the textbook generalization of Heisenberg’s uncer-
tainty relation is limited to expectation values of two operators
and their commutator, and is therefore incapable of applying
to many other problems. For instance, in the Bell setup, one
needs to examine the expectation values of four nonlocal op-
erators. Furthermore, the particle density in DFT is typically
an infinite set, making the problem even more challenging.

In this research article, we present a comprehensive frame-
work for the quantum geometry of expectation values over an
arbitrary set of operators. Our framework draws inspiration
from a fundamental observation: the singular set of the map-
ping from a Hilbert space to the space of expectation values
of a given set of operators is associated with the eigenstates
of the Hamiltonian family generated by these operators, in
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accordance with the variational principle. In particular, as a
subset of this singular set, the boundary of the expectation
space corresponds to the ground states, which provides a
nontrivial bound of quantum expectations.

We demonstrate Heisenberg’s uncertainty relation as a spe-
cial case of our theory, thereby generalizing the certainty
principle. Furthermore, the geometry of the expectation values
determines time-independent quantum theories completely,
without invoking the quantum state. This potentially leads to
the development of an alternative quantum formulation that
transforms the linear problem in a high-dimensional Hilbert
space into a nonlinear algebro-geometric problem in a lower
dimension.

Section II outlines the general theoretical framework of our
approach. Specifically, in Sec. II A we introduce the expec-
tation moduli space as the space formed by the expectation
values and the singular moduli as its singular subset, and
establish their relations with the eigenstates and the ground
states. In Sec. II B we construct the projective dual of the sin-
gular moduli and connect it to the characteristic polynomial.
In Sec. II C we show that Heisenberg’s uncertainty relation
can be derived directly from our framework, illustrating its
generality and usefulness. Section II D discusses the case of
degeneration and the moduli space of integrable models. We
then discuss the relationship between all moduli spaces in
Sec. II E, arguing that our framework offers an alternative
quantum formulation. In Sec. II F we discuss the classical
counterpart of expectation moduli and demonstrate the semi-
classical construction and its connection to Gutzwiller’s trace
formula. Finally, in Sec. II G we discuss a finite-temperature
analogy of our approach and the potential generalization to
quantum field theory.

Section III presents a range of potential applications of our
framework. Specifically, in Sec. III A we apply our theory
to the study of quantum nonlocality, which leads to a new
quantum bound that is stronger than the Tsirelson bound. In
Sec. III B we provide a detailed examination of how our theory
applies to DFT. Finally, in Sec. III C we apply our theory
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FIG. 1. Mapping ρ from the Hilbert space H (gray domain) to
the moduli space M (dark gray domain). The solid and dashed
curves in H correspond to the ground and excited states, where the
former maps to the boundary ∂M.

to the N-representability conditions for the reduced density
matrices.

II. GENERAL FRAMEWORK

A. Expectation value moduli

Consider a Hilbert space H and the corresponding real
vector space of self-adjoint operators, Ls(H). To simplify
our analysis, we assume that H has a finite dimension N .
Our focus is on a particular operator space O ⊆ Ls(H) of
dimension M + 1, which includes the identity operator I as
one of its elements. We choose a set of linearly independent
basis operators H := {Hi}, and any operator in this space can
be expressed as a linear combination of H. We are interested in
the geometry of the expectation values of H, which motivates
the introduction of a mapping ρ from H to a M-dimensional
real projective space RPM . Specifically, we define

ρ(ψ,ψ†) := (〈ψ |H0|ψ〉, . . . , 〈ψ |HM |ψ〉), (1)

using a set of coordinates (ρ0, . . . , ρM ), where ρi = 〈ψ |Hi|ψ〉
denotes the expectation value of an operator. The moduli
space of expectation values is determined by the image of the
mapping ρ, denoted as M(O) := im(ρ), which is generally a
semialgebraic set. In most of the discussion below, we will
fix the operator space O and omit it from the notation of
M. Figure 1 illustrates the mapping ρ from H to M. It is
noteworthy that the moduli space M is convex. However, we
will not delve into the details of this topic in this paper and
refer the interested reader to our previous work [15].

The mapping ρ is not injective, meaning that a point in
the moduli space M may correspond to multiple ψ ∈ H. To
gain a better understanding of this, we consider the invariant
class of infinitesimal changes ψ → ψ + δψ that keep ρ un-
changed. This condition requires that δρ = 0, or equivalently,

J (ψ,ψ†)

[
δψ

δψ

]
= 0, (2)

where J (ψ,ψ†) is the M + 1 × 2N Jacobian matrix of the
mapping (1), given by

J (ψ,ψ†) := [
ψ†Hi, ψ

t Ht
i

]
, (3)
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FIG. 2. Projection of S2 surface to the line segment [−1, 1] on
the z axis through (θ, φ) → cos φ. The invariant infinitesimal change
0 = δz = − sin φδφ requires δφ = 0 except for the two poles with
φ = 0 or π . Point P, along with points of the same latitude (solid
circle), is projected to a single point P′. The invariant tangent sub-
space δφ = 0 at point P is one-dimensional, represented by the solid
arrow starting from P. In contrast, the invariant tangent subspaces
of the north and south poles (marked by a red square) are two-
dimensional, meaning they map onto the boundaries of the projected
space [−1, 1].

where the square bracket represents the row concatenation for
all 0 � i � M.

Equation (2) shows that the kernel of the Jacobian (3)
corresponds to the invariant tangent subspace at the point
(ψ,ψ ), with dimension dim ker(J ) = 2N − (M + 1) for
generic points. However, singular points, such as the boundary
of M, have extra degrees of freedom [16], i.e., dim ker(J ) >

2N − (M + 1). Figure 2 illustrates a toy example of this argu-
ment. Geometrically, the set of singularities Ms ⊆ M forms
a projective hypersurface, whose physical interpretation will
become clear later. In particular, the boundary ∂M is a subset
of Ms, i.e., ∂M ⊆ Ms.

Moreover, the index theorem states that dim ker(J ) −
dim coker(J ) = 2N − (M + 1), indicating that singularities
correspond to

dim coker(J ) > 0. (4)

Equation (4) implies the existence of a nontrivial cokernel λ

of the Jacobian,

λtJ (ψ,ψ†) = 0, (5)

which corresponds to singular set of the mapping (1).
Equation (5) implies that geometry of singularity set Ms

corresponds to the existence of a cokernel λ for the
Jocobian J .

In the case where M + 1 > 2N , the cokernel condition (5)
is trivially satisfied, which implies that Ms = M. This is
because the operator space has a sufficiently large dimension
that the Hilbert space H can be embedded into RPM without a
boundary, indicating that M is an algebraic variety. However,
for M + 1 � 2N , Eq. (4) becomes nontrivial, and M becomes
a semialgebraic set with Ms being its strict subset, i.e., Ms �

M. Therefore, unless an explicit statement is provided, we
will assume that M + 1 � 2N from now on.
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The cokernel condition in Eq. (5) for the singularity set
Ms has a clear physical interpretation. Consider a family of
systems parameterized by a M-dimensional real vector λ ∈
RPM∗, where each system has a Hamiltonian H (λ) ∈ O. We
express H (λ) as a linear combination of the basis H, such that
H (λ) = ∑

i λiHi. We define the energy functional E [ψ] as the
expectation value of the Hamiltonian, as

E [ψ] = 〈H (λ)〉 = λtρ. (6)

The variational principle suggests that the stationary points of
Eq. (6) correspond to the eigenstates ψ of H , satisfying

0 = λt δρ

δψ
= λtJ , (7)

where J := δρ

δψ
is the Jacobian of the mapping ρ defined

in Eq. (3). Remarkably, this variational equation is precisely
equivalent to the cokernel condition (5). The same conclusion
can also be reached directly from the Schrödinger equation

(λ0H0 + · · · + λMHM )ψ = 0, (8)

where the eigenvalue term has been absorbed by a linear
combination of basis. Rather than solving for the eigenstates
ψ of a fixed parameter set λ, we consider the dual problem
of solving for λ given a fixed ψ . This allows us to rewrite
the Schrödinger equation as λt Hψ = 0. Since λ is real, we
also require its complex conjugate equation, which again re-
covers the cokernel condition (5). Note that the Schrödinger
equation (8) provides a sufficient condition for the cokernel
condition (5). However, it does not necessarily guarantee its
validity.

The analysis presented above indicates that the space Me,
which is formed by the expectation values {〈ψe(λ)|Hi|ψe(λ)〉}
for all eigenstates of ψe(λ) in the Hamiltonian family H (λ),
is a subset of the singular moduli Ms, i.e., Me ⊆ Ms. In
most cases, where there is no extra symmetry, the two are
equivalent. However, there are situations where Me is a strict
subset of Ms, as we will explain in Sec. II D. In the rest of
the paper, we will not distinguish between the two unless an
explicit statement is provided.

To construct the space Ms explicitly, one can compute
the expectation values ρi(λ) := 〈ψe(λ)|Hi|ψe(λ)〉 for a given
parameter set λ and a corresponding eigenstate ψe(λ). This
corresponds to a point (ρ0(λ), . . . , ρM (λ)) in the projective
space RPM . By continuously changing the parameter λ, we
obtain a hypersurface that describes the singular moduli space
Ms, constructed by gluing together expectation values for all
possible eigenstates. For M > 1, the projective nature of the
parameter set λ implies that the lower and upper bounds are
connected, resulting in a single closed boundary. In general,
the moduli of the ith and (M − i)-th eigenstates are connected
for 0 � i � M.

This construction also implies that the boundary ∂M ⊆
Ms, which corresponds to the ground state (and the largest
eigenvalue state) moduli, is a subset of Ms. This is because
the smallest and largest eigenvalues are the global lower and
upper bounds of the energy functional (6). Figure 1 illustrates
the mapping ρ from the Hilbert space H to the moduli space
M. The boundary ∂M provides a natural bound on expecta-
tion values, serving as a generalized uncertainty principle.

The construction above suffers from two drawbacks. First,
it requires solving the Schrödinger equation for all eigenstates
of the entire Hamiltonian family, which is often impossi-
ble. Second, it does not provide an explicit equation for the
hypersurface Me. To overcome these drawbacks and reveal
the algebraic nature of Me, we start with the dual form of
the Schrödinger equation, the cokernel condition (5). To have
the existence of a nontrivial cokernel of the Jacobian J , it is
equivalent to require the vanishing of all (M + 1) × (M + 1)
minors of J , as expressed by the equation

[J ]I,J = 0, (9)

where [J ]I,J represents the determinant of the submatrix of
Jacobian J formed by selecting the rows of the index set I and
columns of the index set J , each with cardinality M + 1. It is
important to note that the minor condition (9) is polynomials
in terms of ψ alone and does not involve the parameter λ. The
zero loci of these polynomials correspond to the eigenstate
space He, which consists of all eigenstates ψe(λ) for the
entire Hamiltonian family. The corresponding singular moduli
Ms = ρ(He) are given by the image of the mapping ρ from
the eigenstate space He.

To determine the explicit equation for the image Ms, we
need to eliminate the variables ψ and ψ∗ in Eq. (9) by sub-
stituting ρi = 〈Hi〉 for 0 � i � M. This process can be carried
out using ideal computation. Formally, we denote the ideal I
over the polynomial ring C[ψ,ψ∗] as the one generated by
the polynomials (9) [17]. The eigenstate space He is given by
the corresponding homogeneous coordinate ring, i.e., He =
C[ψ,ψ∗]/I. We then extend the ring to the polynomial ring
C[ψ,ψ∗, ρ] by including polynomials 〈ψ |Hi|ψ〉 − ρi = 0,
and compute the corresponding ideal. Finally, we project this
extended ideal onto the subspace with ρ alone. This computa-
tion is formally given by

〈[J ]I,J , 〈ψ |Hi|ψ〉 − ρi〉 ∩ C[ρi], (10)

where ∩C[ρi] reduces to the subideal in terms of ρ and elim-
inates ψ and ψ∗. In the end, we obtain a polynomial for the
projective hypersurface Ms as

fpr (ρ0, . . . , ρM ) = 0. (11)

Practically, this elimination can be performed using Buch-
berger’s algorithm with Gröbner basis, a nonlinear version
of Gaussian elimination [18]. We use the “GroebnerBasis”
function in Mathematica with the “EliminationOrder” option
to perform the elimination of Eq. (10). Note that Eq. (11)
corresponds to the Zariski closure of Ms, which may poten-
tially include spurious branches. This is a necessary trade-off
for achieving algebraic completeness. When M + 1 > 2N , the
minor condition (9) is trivially satisfied, and Eq. (10) results
in a set of algebraic equations that determine the variety M =
Ms, as opposed to a single equation (11) for the singular
hypersurface.

The polynomial (11) is homogeneous, which means that
we can replace ρi = 〈ψ |Hi|ψ〉 with 〈Hi〉 = 〈ψ |Hi|ψ〉

〈ψ |ψ〉 . This leads
to fpr (〈H0〉, . . . , 〈HM〉) = 0 in terms of the expectation val-
ues 〈Hi〉. Moreover, 〈Hi〉 are linearly dependent since the
identity operator belongs to the operator space O, i.e., 1 =
〈I〉 = ∑

i αi〈Hi〉. Without loss of generality, we can choose

062207-3



CHAOMING SONG PHYSICAL REVIEW A 107, 062207 (2023)

the coordinate H0 = I , which dehomogenizes Eq. (11) into a
hypersurface in the affine space AM , given by

faff (〈H1〉, . . . , 〈HM〉) := fpr (1, 〈H1〉, . . . , 〈HM〉) = 0. (12)

This equation completely determines the relation between the
expectation values 〈Hi〉 for all eigenstates.

Below we demonstrate our construction for the expectation
values of Pauli matrices H1 = σx and H2 = σy. We start with
the Jacobian

J =

⎡
⎢⎣ψ∗

1 ψ∗
2 ψ1 ψ2

ψ∗
2 ψ∗

1 ψ2 ψ1

iψ∗
2 −iψ∗

1 −iψ2 iψ1

⎤
⎥⎦, (13)

where we set H0 = I , and ψ = (ψ1, ψ2). We compute the mi-
nor condition (9) explicitly for all 3 × 3 minors, and although
there are four equations, they reduce to a single equation,
namely

|ψ2|2 − |ψ1|2 = 0. (14)

We extend the ring by including ρ0 := 〈ψ |ψ〉, ρx :=
〈ψ |σx|ψ〉, and ρy := 〈ψ |σy|ψ〉. This gives us the following
three additional equations:

|ψ1|2 + |ψ2|2 − ρ0 = 0,

ψ1ψ
∗
2 + ψ2ψ

∗
1 − ρ1 = 0,

i(ψ1ψ
∗
2 − ψ2ψ

∗
1 ) − ρ2 = 0. (15)

We notice the identity ρ2
1 + ρ2

2 − ρ2
0 = (|ψ2|2 − |ψ1|2)2 = 0,

which suggests fpr = ρ2
1 + ρ2

2 − ρ2
0 , or equivalently,

faff = 〈σx〉2 + 〈σy〉2 − 1. (16)

As a result, the moduli M of these expectation values form a
unit disk

〈σx〉2 + 〈σy〉2 � 1, (17)

providing the uncertainty relation between σx and σy. The
boundary of this unit disk, ∂M, is a unit circle given by
Eq. (16), corresponding to the ground states of the Hamilto-
nian family H (λ) = λxσx + λyσy + λ−E I , as expected.

B. Dual moduli space

We are not fully satisfied with the construction of Ms

based on Eq. (10). One of the main drawbacks is that it
involves the wave function ψ as an intermediate variable,
which is then eliminated. In this subsection we aim to find an
alternative and more direct definition of Ms, which will allow
us to derive fpr and faff without going through the intermediate
step of eliminating ψ .

Our observation starts with the simplest nontrivial case
with M = 1, where the operator space O is generated by
{I, H}, corresponding to the standard Schrödinger equation,
Hψ = Eψ . In this case, the expectation value 〈H〉 over an
eigenvector gives rise to the corresponding energy E . Conse-
quently, the singular moduli Ms, in terms of 〈H〉, are a set
of isolated points determined by the roots of the characteristic
polynomial of the Hamiltonian H , as

faff (〈H〉) = det (〈H〉 − H ). (18)

The moduli of the expectations M form a line segment
bounded by the minimum and maximum eigenvalues.

The above analysis suggests that the hypersurface equa-
tion (12) generalizes the characteristic polynomial of a single
operator to an arbitrary set of operators. However, a direct
generalization seems difficult. Therefore, we introduce first
the dual singular moduli M∗

s ⊆ RPM∗, determined by

f ∗
pr (λ0, . . . , λM ) := det

(
M∑

i=0

λiHi

)
= 0, (19)

in terms of the dual variables (λ0, . . . , λM ). This equa-
tion gives rise to the constraint of the parameter set λ for any
eigenstates of the Schrödinger equation (8). Additionally, the
Schrödinger equation also requires

λ0ρ0 + · · · + λMρM = 0, (20)

for (ρ0, . . . , ρM ) ∈ Ms and (λ0, . . . , λM ) ∈ M∗
s .

Equation (20) implies the singular moduli Ms are projec-
tively dual to M∗

s [19]. This duality means the points in the
dual hypersurface M∗

s correspond to the tangent space of the
original hypersurface Ms, and vice versa. More specifically,
we have the relation

(ρ0, . . . , ρM ) ∼ (∂0 f ∗
pr, . . . , ∂M f ∗

pr ), (21)

where ∼ denotes the proportionality of the left and right sides.
One may view the projective dual as a geometric version of the
Legendre transformation

f̃pr (ρ) := λ(ρ)tρ − f ∗
pr[λ(ρ)], (22)

where λ(ρ) is the inverse of Eq. (21). In fact, for a point
(ρ0, . . . , ρM ) ∈ Ms, Eqs. (20)–(21) imply f̃pr (ρ) = 0. There-
fore, the singular moduli Ms corresponds to the zero loci of
Eq. (22). However, f̃pr is generally nonalgebraic. To obtain
Zariski closure of f̃pr, that is, the algebraic equation fpr, one
can use Eqs. (20)–(21) to eliminate the dual variable λ. Buch-
berger’s algorithm mentioned in the previous section can be
used for this purpose, but more efficient algorithms exist for
finding fpr based on its dual f ∗

pr [20].
The dual singular moduli f ∗

pr provides valuable information
about fpr. For instance, the degree d of polynomial fpr can be
determined by the degree d∗ = N and singularity sets of f ∗

pr.
In the case of M = 2, where both Ms and M∗

s are projective
curves, the Plücker formula [21] provides a classical result

d = d∗(d∗ − 1) − 2δ∗ − 3κ∗, (23)

where δ∗ and κ∗ represent the number of ordinary double
points and cusps of M∗

s , respectively. Furthermore, the curves
Ms and M∗

s share the same genus g = 1
2 (d − 1)(d − 2) −

δ − κ . For projective hypersurfaces with M � 2, the gener-
alized Plücker formula has been found [22–24].

Below we present an alternative method of deriving fpr and
faff . We start with the dual form of Eq. (21),

(λ0, . . . , λM ) ∼ (∂0 fpr, . . . , ∂M fpr ). (24)

This equation indicates that the parameter set (λ0, . . . , λM )
corresponds to the normal vector of the hypersurface Ms.
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Substituting Eq. (24) into Eq. (19), we obtain

hpr fpr = det

(
M∑

i=1

(∂i fpr )Hi

)
, (25)

where hpr is the polynomial of the proportional factor. In
other words, the right side must divide fpr. Equation (25) has
multiple solutions, and we seek the polynomial solution fpr

with the lowest degree d .
We can also convert Eq. (25) into the affine version.

We observe that ∂i fpr (1, . . .) = ∂i faff (· · · ) for 1 � i � M.
Furthermore, substituting Eq. (24) into Eq. (20), we obtain
∂0 fpr (1, . . .) = −∑M

i=1〈Hi〉∂i faff (· · · ). By substituting these
equations into Eq. (25), we obtain

h faff = det

(
M∑

i=1

∂i faff (〈Hi〉 − Hi )

)
, (26)

where h(· · · ) := −hpr (1, . . .). For M = 1, we recover the
characteristic polynomial (18), with h = ( f ′

aff )N .
We will now use Eq. (26) to rederive faff (〈σx〉, 〈σy〉) of

Eq. (16). Due to rotational symmetry, we can make the
ansatz that faff depends only on 〈σx〉2 + 〈σy〉2. Substituting
this ansatz into Eq. (26), we obtain

h faff = (2 f ′
aff )2 det

⎛
⎝∑

i=x,y

〈σi〉(〈σi〉 − σi )

⎞
⎠, (27)

where the determinant of the right side can be worked out ex-
plicitly as (〈σx〉2 + 〈σy〉2)(〈σx〉2 + 〈σy〉2 − 1). Therefore, we
have recovered Eq. (16) with h = 4(〈σx〉2 + 〈σy〉2).

C. Heisenberg’s uncertainty principle

Our approach can be generalized to infinite-dimensional
Hilbert spaces. For simplicity, we focus primarily on bound
states. The expectation value moduli M and singular moduli
Ms become real semianalytic sets and analytic varieties, re-
spectively. It is worth noting that the operator space O can also
be infinite-dimensional, even uncountable. In the following,
we will illustrate an example that is not only one of the most
prominent examples but also demonstrates the usefulness of
our approach: Heisenberg’s uncertainty principle.

We consider the operator space O generated by
{I, x, x2, p, p2}. The corresponding moduli space M is a four-
dimensional space consisting of the expectation values 〈x2〉,
〈p2〉, 〈x〉, and 〈p〉. To find the corresponding faff , we make
the ansatz that faff depends only on 
x2
p2, where 
x2 :=
〈x2〉 − 〈x〉2 and 
p2 := 〈p2〉 − 〈p〉2. Substituting this ansatz
into Eq. (26), we obtain

h faff = det[2
x2
p2− 
p2(x− 〈x〉)2− 
x2(p − 〈p〉)2] f ′
aff .

(28)

To evaluate the functional determinant, we first diagonal-
ize the operator H = 
p2(x − 〈x〉)2 + 
x2(p − 〈p〉)2. This
can be done by introducing the annihilation operator a =
(2h̄αβ )−1/2[α(x − 〈x〉) + iβ(p − 〈p〉)], which satisfies the
commutation relation [a, a†] = 1. Here the real parameters
α and β are determined by matching H to the diago-
nal form 2h̄αβ(a†a + 1/2) = α2(x − 〈x〉)2 + β2(p − 〈p〉)2,

Δx2

h̄

Δp2

h̄

FIG. 3. Moduli space M for operators 〈x〉, 〈x2〉, 〈p〉 and 〈p2〉 is
represented by the gray domain and bounded by Heisenberg’s uncer-
tainty principle. The solid curve represents the ground-state moduli,
saturating the uncertainty principle. Dashed curves correspond to
excited states.

which indicates that α2 = 
x2 and β2 = 
p2. The eigen-
values can then be computed as En = 2h̄αβ(n + 1/2) =
2
√


x2
p2h̄(n + 1/2). Therefore, the zeros of Eq. (28) are

x2
p2 = [h̄(n + 1/2)]2. To ensure that faff is well de-
fined, an appropriate regularization is required due to the
infinite-dimensional Hilbert space. This regularization can be
absorbed by the factor h and leads to a convergent determinant
faff = ∏∞

n=0(1 − 
x2
p2/[(n + 1/2)h̄)2], or equivalently

faff = cos

(
π
√


x2
p2

h̄

)
. (29)

This suggests that the singular moduli Me is an analytic va-
riety. The smallest root of Eq. (29) gives rise to the boundary
∂M, which leads to Heisenberg’s uncertainty principle [1–3]


x2
p2 � h̄2/4 (30)

for the expectation moduli M, as shown in Fig. 3. The
uncertainty principle (30) provides a nonlinear bound on
the expectation values of physical observables that involve
quadratic forms of position and momentum operators. The
singular moduli Ms correspond to the expectation values of
the eigenstates of the harmonic oscillator H (λ) = λp2 p2 +
λx2 x2 + λp p + λxx + λ−E I , and this bound is saturated by the
ground state, as expected. It is worth noting that Eq. (29)
can also be derived by first calculating the dual f ∗

pr using the
functional determinant of H (λ) in Eq. (19), and then applying
the Legendre transform (22).

We next include the operator 1
2 {x, p} = 1

2 (xp + px) to
the generators of the operator space O. We adopt a similar
approach as above and propose that faff is a function of

x2
p2 − (
xy)2, where 
xy := 1

2 〈x, p〉 − 〈x〉〈p〉. Substi-
tuting this into Eq. (26), we obtain

h faff = det f ′
aff [2(
x2
p2 − (
xy)2) − H], (31)
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where H := 
p2(x − 〈x〉)2 + 
x2(p − 〈p〉)2 − 
xy{x − 〈x〉,
p − 〈p〉}. To diagonalize the operator H , we introduce
the annihilation operator a = [2h̄Re(αβ∗)]−1/2[α(x − 〈x〉) +
iβ(p − 〈p〉)], where the parameters α and β are complex
numbers. Matching H to the diagonal form 2h̄Re(αβ∗)(a†a +
1/2) yields |α|2 = 
x2, |β|2 = 
p2, Im(αβ∗) = 
xy. Note
that Re(αβ∗)2 = |α|2|β|2 − Im(αβ∗)2 = 
x2
y2 − (
xy)2.
The eigenvalues can be computed as En = 2h̄Re(αβ∗)(n +
1/2) = 2

√

x2
y2 − (
xy)2h̄(n + 1/2). Therefore, the ze-

ros of Eq. (28) are given by 
x2
p2 − (
xy)2 = [h̄(n +
1/2)]2, leading

faff = cos

[
π
√


x2
p2 − (
xy)2

h̄

]
. (32)

The lowest root of Eq. (32) gives rise to the Schrödinger-
Robertson uncertainty relation [25,26]:


x2
p2 − (
xy)2 � h̄2/4. (33)

One may apply our analysis to higher-order operators, such
as x4 and p4, by including them in the operator space O,
thereby obtaining an uncertainty relation beyond the quadratic
level. For example, applying the same argument used previ-
ously, we obtain the following inequality:

〈x2n〉〈p2n〉 � η2
n(h̄2n/4). (34)

Here n is a positive integer, and ηn represents the lowest
eigenvalue of the operator (−1)n d2n

dx2n + x2n. Note that η1 = 1
corresponds to Heisenberg’s uncertainty principle (30). One
can show that 21−n � ηn � 21−n(2n − 1). The lower bound
results from Hölder’s inequality, which yields 〈x2n〉 � 〈x2〉n

and 〈p2n〉 � 〈p2〉n, in conjunction with Eq. (30). The up-
per bound is estimated using the trial wave function ψ =

1√
π

e−x2/2. Numerical calculations reveal that η2 ≈ 1.40 and
η3 ≈ 2.95, which are closer to the upper bound values. The
exact values of ηn and their asymptotic behavior merit further
investigation in future studies.

In general, finding an explicit formula by solving Eq. (26)
may be challenging. Nevertheless, our approach offers a
general framework for generalizing Heisenberg’s uncertainty
principle for any set of operators. In the case of continuous
spectra, the set of singular moduli Ms is dense and equivalent
to M. However, it still makes sense to discuss the boundary
geometry ∂M, which corresponds to ground states.

D. Degeneration and integrable system

In this subsection we briefly discuss the case of degeneracy.
When the operator space O degenerates, it can be extended
by central extension, where the center z(O) commutes with
all Hamiltonians. This central extension leads to a nontrivial
symmetry group Z := exp[iz(O)] ⊂ U (N ), implying that the
cokernel of the eigenstate Jacobian J (ψe) typically has a
larger dimension than one, which is stronger than the cokernel
condition (4).

To understand this better, in the presence of extra symme-
try, the Hilbert space H decomposes as a direct sum H =
⊕αH(α), where H(α) are the irreducible Hilbert spaces. For
an eigenstate ψe ∈ H(α), the corresponding irreducible repre-
sentation of the Hamiltonian H (α)(λ) has a smaller dimension

Nα := dim H(α), which often have null vectors

M∑
i=1

λ
(α)
i H(α)

i = 0. (35)

Here λ(α) represents the cokernel of the irreducible Hilbert
space H(α), which reflects the global symmetry and is inde-
pendent of the choice of state. Therefore, the solution λ of
Eq. (5) for a given eigenstate ψe admits a larger solution space
generated by both λ and λ(α), leading to dim cokerJ (ψe) =
1 + dim λ(α).

In this case, the eigenstates moduli Me is a strict subset
of the singular moduli Ms, i.e., Me � Ms. Geometrically,
this implies a stratification of the singular moduli Ms, where
its r-codimensional strata Sr corresponds to the Jacobian with
cokernel dimension r. In particular, the eigenstate moduli Me

corresponds to strata with a smaller dimension.
We now consider the extreme case where all operators

commute, i.e., [H (λ), H (λ′)] = 0. In this case, the dimension
of the center of the operator space z(O) is M, and conse-
quently, the eigenstate moduli Me reduces to a set of isolated
points. To gain better insight into this result, we observe that
it is possible to simultaneously diagonalize all operators with
the same set of eigenstates ψe. As a result, the dual singular
moduli M∗

s in Eq. (19) factorizes as

f ∗
pr (λ0, . . . , λM ) =

∏
e

(
M∑

i=0

λih
e
i

)
, (36)

where he
i is the eigenvalue of operator Hi for the eigenstate ψe.

Equation (36) implies that the dual singular moduli M∗

is a polytope enclosed by the set of faces
∑M

i=0 λihe
i = 0.

The expectation value moduli M is its dual polytope, whose
boundary consists of a set of dual faces, each corresponding to
a vertex of M∗. Conversely, the vertices of M correspond to
the faces in M∗ that satisfy

∑M
i=0 λihe

i = 0, i.e., an eigenstate
in the moduli Me.

When a system is completely integrable, we can iden-
tify a maximal set of N commuting operators. In this case,
the face equations are obtained by taking the inverse of
the coefficient matrix [he

i ], and a detailed construction is
described in Ref. [15]. For 1 + 1-dimensional integrable sys-
tems, the Bethe ansatz provides a way to determine these
equations [27–32]. In particular, Eq. (12) factorizes into the
product of the expectation values of the transfer matrix, eval-
uated at its polynomial roots.

E. Relations between expectation moduli

Up to this point, our focus has been solely on the mod-
uli space M(O) for a fixed operator space O ⊆ Ls(H). In
this subsection we investigate the relationships between all
operator spaces and their moduli spaces. Given two op-
erator spaces O and O′, if O′ ⊆ O is a subspace of O,
there is a natural projection mapping π0 from O to O′.
For example, consider a two-dimensional complex Hilbert
space with the following eight operator spaces: Oxyz :=
Ls(H) = Span(σx, σy, σz, I ), Oxy := Span(σx, σy, I ), Oxz :=
Span(σx, σz, I ), Oyz := Span(σy, σz, I ), Ox := Span(σx, I ),
Oy := Span(σy, I ), Oz := Span(σz, I ), and O0 := Span(I ).
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Oxyz

Oxy Oxz Oyz

Ox Oy Oz

O0

〈σx〉 〈σy〉

〈σz〉

Mxyz

Myz

〈σz〉

〈σy〉

Mz

Mxz

〈σz〉

〈σx〉

Mx

Mxy〈σx〉 〈σy〉

My

M0

FIG. 4. Left: Eight operator spaces are shown for the two-dimensional complex Hilbert space, where the projection from space O to O′

is represented by arrows. Right: The corresponding moduli space Mi = M(Oi ) is depicted, with the same projection relation. The arrow is
hidden for ease of readability.

The possible projections between these subspaces are de-
picted by arrows in the left panel of Fig. 4.

We can lift a projection mapping π0 from an operator space
O to its subspace O′ to a projection from the moduli space
M(O) to M(O′). This can be illustrated by the following
commutative diagram:

O M(O)

O′ M(O′)

π0 π

Here π denotes the pullback induced by the projection map
π0 : O′ → O, which maps an element of M(O) to its corre-
sponding element in M(O′). The commutativity arises from
the fact the mapping ρ is linear in terms of operators, i.e.,
ρ(aH1 + bH2) = aρ(H1) + bρ(H2), and π0 is a linear pro-
jection. This means that if two operator spaces O and O′
are related by O′ ⊆ O, then there exists a well-defined linear
projection π between their moduli spaces M(O) and M(O′).

As any operator space O is a subspace of the real vector
space consisting of all self-adjoint operators Ls(H), the corre-
sponding moduli M(O) can be constructed via the projection
π from the moduli M[Ls(H)]. For a N-dimensional complex
Hilbert space H, any operator A ∈ Ls(H) can be decomposed
as A = ∑

i, j Ai je(i j) in terms of N2 basis e(i j), where e(i j) is the
matrix with a unit in the (i, j) position and zeros elsewhere.
It is worth noting that the expectation value 〈e(i j)〉 = ψ∗

i ψ j

satisfies a set of quadratic equations known as Veronese em-
bedding [16], given by

〈e(i j)〉〈e(kl )〉 = 〈e(il )〉〈e(k j)〉, (37)

for any set of indices 1 � i, j, k, l � N , which determines
completely the moduli M[Ls(H)] as a projective variety.

Introducing the operator matrix e = [e(i j)] with e(i j) as its ele-
ment at position (i, j), Eq. (37) is equivalent to the vanishing
of all 2 × 2 minors of the density matrix 〈e〉 = |ψ〉〈ψ |, since
it has rank one.

Consider the previous example with N = 2. In this case,
the operator matrix is given by e = 1

2 [ I2 + σz σx + iσy

σx − iσy I2 − σz
]. To

make the 2 × 2 minors of the density matrix 〈e〉 vanish, we
require det〈e〉 = 0. This leads to

〈σx〉2 + 〈σy〉2 + 〈σx〉2 = 1, (38)

which suggests that M[Ls(H)] is a three-dimensional unit
sphere. The expectation moduli of any operator subspace can
be constructed directly from the projection of Eq. (38), as
shown in the right panel of Fig. 4. For instance, for the sub-
space Oxy generated by σx and σy, the projection leads to a
unit disk, recovering our earlier result of Eq. (16).

To gain a deeper understanding of the moduli space for
many-body systems, below we consider a scenario where the
Hilbert space HAB is the tensor product of two Hilbert spaces,
HA and HB, i.e., HAB = HA ⊗ HB. This defines a tensor
product of the moduli spaces M[Ls(HA)] ⊗ M[Ls(HB)] :=
M[Ls(HAB)]. This tensor product can be induced through the
tensor product of the density matrix,

〈eAB〉 = 〈eA ⊗ eB〉, (39)

which defines the moduli M[Ls(HAB)] via Eq. (37), without
requiring information about the original Hilbert spaces HA

and HB.
Now let’s consider the tensor product of subspaces

M(OA) ⊗ M(OB) := M(OA ⊗ OB), where OA ⊆ Ls(HA)
and OB ⊆ Ls(HB). As we discussed earlier, there exist
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linear projections πa : M[Ls(HA)] −→ M(OA) and πb :
M[Ls(HB)] −→ M(OB). Their tensor product πa ⊗ πb :
M[Ls(HAB)] −→ M(OA ⊗ OB) induces a linear projection
from M[Ls(HAB)], which uniquely determines the tensor-
producted moduli M(OA) ⊗ M(OB).

This construction enables us to study quantum entangle-
ment using only the moduli spaces and their tensor products.
Notably, some of the 2 × 2 minors in Eq. (39) involve el-
ements from both systems A and B, leading to nontrivial
constraints on the tensor-product moduli space. This is distinct
from the expectation moduli of separable states, as we will
demonstrate in Sec. III A.

We can formally express our analysis above using the
language of category theory. Given a Hilbert space H and
the real vector space Ls(H) of self-adjoint operators, we
introduce the category of operator spaces, denoted Op. The
objects in this category are subspaces O ⊆ Ls(H), including
the identity operator I ∈ O. The morphisms in Op are inclu-
sions between subspaces. All relevant physical information is
contained within the category Op, which has an initial object
IOp = Ls(H) and a terminal object TOp = {I}. We can also
introduce the category of expectation value moduli, denoted
Ev. The objects in this category, M(O), represent moduli of
expectation values of O. The morphisms in Ev are linear pro-
jections between objects. There exists a natural functor from
the operator category Op to the expectation value category
Ev.

As we demonstrated above, constructing Ev does not nec-
essarily require introducing the Hilbert space H. To see this,
we first need to construct the initial object IEv = M[Ls(H)],
which can be defined by Eq. (37) for finite-dimensional cases.
For infinite-dimensional cases, one may construct IEv using
a similar argument as the finite-dimensional one. An object
Ei in Ev is determined by the linear projection πi from the
initial object IEv to it. All physical measurements are di-
rectly read from Ev, either from the geometry of an object
(ground state expectations) or the morphism from IEv to it
(eigenstate expectations). Thus, the category Ev contains all
time-independent physics without involving the Hilbert space
H, potentially providing a new time-independent quantum
formulation. Building on our earlier discussion, we can fur-
ther introduce the tensor product of two moduli categories,
which yields a monoidal category of moduli categories.
This will be useful for future investigations of quantum
entanglement.

F. Classical moduli space

In this subsection we will discuss the moduli space Mcl

as the classical counterpart of the proposed quantum moduli
space M. We start with a 2n-dimensional symplectic space
R2n

q,p equipped with the canonical symplectic form ω = dq1 ∧
d p1 + · · · + dqn ∧ d pn, and consider a M-dimensional real
vector space Ocl of classical physical observables, generated
by a set of basis {H (cl)

1 (q, p), . . . , H (cl)
M (q, p)}. To define the

classical moduli space Mcl, we introduce a mapping ρcl from
the orbit space � of R2n

q,p to the M-dimensional real affine
space AM , given by

ρcl(γ ) := (〈
H (cl)

1

〉
γ
, . . . ,

〈
H (cl)

M

〉
γ

)
, (40)

where γ = (q(t ), p(t )) denotes an orbit, and

〈
H (cl)

i

〉
γ

:= 1

Tγ

∫
γ

H (cl)
i (q, p) dt (41)

represents the classical expectation value over the orbit γ ,
where Tγ is the period for periodic orbits, or Tγ → ∞ for
quasiperiodic or chaotic orbits. We define the classical moduli
space Mcl as the image of the mapping ρcl.

The geometry of Mcl itself provides little information, as
moduli Mcl are typically simple. For instance, in the case of
quadratic forms x, x2, p, and p2, it reduces to 
x2

cl � 0 and

p2

cl � 0. By contrast, the quantum moduli space M given by
the uncertainty principle (30) provides a tighter and nontrivial
bound.

On the other hand, the singular set of the mapping ρcl

offers more interesting information, leading to the so-called
reciprocal Maupertuis principle [33], given by

δ
1

Tγ

∫
γ

H (cl)(q, p) dt = 0, (42)

where H (cl)(q, p) = ∑M
i=1 λiH

(cl)
i (q, p). Equation (42) repre-

sents the classical limit of the quantum variational principle,

δ
〈ψ |H |ψ〉
〈ψ |ψ〉 = 0. (43)

Solving Eq. (42) yields the classical equation of motion.
Therefore, similar to the quantum version, the singular set of
the mapping ρcl corresponds to the orbits γ under the classical
Hamiltonian flow.

Our discussion above suggests a potential “quantiza-
tion” from the classical moduli space to the quantum ones.
However, since the classical energy spectrum is dense, the
corresponding singular set has the same geometry as Mcl.
To obtain the appropriate classical counterpart of singular
moduli Ms, we need to employ the semiclassical quantiza-
tion. One way to accomplish this is by using the saddle point
approximation of the path integral employed by Gutzwiller to
derive his famous semiclassical trace formula [34]. As a re-
sult, the semiclassical approximation of the quantum spectral
determinant det(E − H ) leads to the Voros-Gutzwiller zeta
function [35],

ζsc(E ; H (cl) ) = exp

⎡
⎣−

∑
p

∞∑
n=1

1

n

ein(ETp−νpπ/2)

|�p|n/2
(
1 − �−n

p

)
⎤
⎦, (44)

summing over all primary periodic orbits p, with νp and �p

denoting the corresponding Maslov index and the dominant
eigenvalue of the stability matrix, respectively. By combining
Eq. (19), we obtain the semiclassical equation for the dual
singular moduli M(cl)∗

s ,

f ∗
sc(λ0, . . . , λM ) := ζsc

(
−λ0;

M∑
i=1

λiH
(cl)
i

)
, (45)

where we set H0 = I and λ0 = −E . The Legendre transfor-
mation (22) can then be used to determine the semiclassical
equation fsc for the singular moduli M(cl)

s . By continuously
varying the classical Hamiltonian H (cl) with the parameter
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set (λ1, . . . , λM ), periodic orbits undergo continuous de-
formation, potentially resulting in rich geometry such as
bifurcations. Exploring the connection between this geometry
and the semiclassical singular moduli M(cl)

s will be the focus
of future investigations.

G. Finite temperature

In this subsection we consider the finite temperature case.
We begin by setting H0 = I , λ0 = −βE and defining the par-
tition function as

Z (λ1, . . . , λM ) := tr exp

(
−

M∑
i=1

λiHi

)
. (46)

The free energy, given by

W (λ1, . . . , λM ) := − lnZ, (47)

plays a role similar to the dual f ∗
pr defined in Eq. (19). In

fact, they are closely related since the partition function Z
is the Laplace transform of the density of states g(E ) =
1
π

Im∂E ln f ∗
pr (−E − i0−, . . .).

We introduce the thermal expectation

Hi = ∂iW (λ), (48)

and the Legendre transformation in analogy to Eq. (22), given
by

�(H ) := W [λ(H )] − λ(H )t H , (49)

where λ(H ) is the inverse of Eq. (48). The dual variable is
now given by

λ = −∂i�(H ). (50)

We can generalize this approach to quantum field theory
via path integrals, where the partition function is defined as

Z (λ1, . . . , λM ) :=
∫

exp (−S[φ|λ])D[φ], (51)

with the action functional S[φ|λ] a linear superposition in
terms of the parameter set λ. Equations (47)–(50) follow
sequentially. One of the most notable examples of this frame-
work is the Luttinger-Ward functional [36], where

S = S0 +
∫

φi(x)†λ(x, x′)φ j (x
′) d4x d4x′. (52)

Here the parameter set λ0 = 1, and λ(x, x′) is now an uncount-
able set. The corresponding thermal expectation (48) is

δW [λ]

δλ
= φ(x)†φ(x′) ≡ G(x, x′), (53)

which is the Green’s function. The functional � defined in
Eq. (49) is known as the Baym-Kadanoff functional [37]. By
subtracting the noninteracting term, we obtain the Luttinger-
Ward functional.

III. APPLICATIONS

A. Quantum nonlocality

In this subsection we utilize our theory to investigate
quantum nonlocality, starting with two possible measurements
performed by Alice (A0 and A1) and Bob (B0 and B1) standing

in widely separated locations. For all subsequent discussions,
we set A0 = σ a

z , A1 = σ a
x , B0 = − 1√

2
(σ b

x + σ b
z ), and B1 =

1√
2
(σ b

x − σ b
z ). The celebrated Bell inequality [38],

|〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉| � 2, (54)

sets an upper limit for local hidden-variable theory. How-
ever, quantum mechanics can violate Bell inequalities, and the
maximum violation is determined by the Tsirelson bound [4],

|〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉| � 2
√

2. (55)

Notably, the inequality (55) saturates when (〈A0B0〉, 〈A0B1〉,
〈A1B0〉, 〈A1B1〉) = 1√

2
(1, 1, 1,−1), corresponding to the Bell

state ψ = 1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉).

The inequality (55), however, provides only an upper
bound, i.e., not all expectation values that satisfy this equa-
tion are allowed quantum mechanically. To determine all
possible quantum domains, we need to determine the moduli
M of the operator space O = Span(A0B0, A0B1, A1B0, A1B1).
This system has a nontrivial center as the operator σ a

y σ b
y

commutes with O. By applying the approach through
Eqs. (9)–(10), we obtain

faff = 〈A0B0〉2 + 〈A0B1〉2 + 〈A1B0〉2 + 〈A1B1〉2

−(〈A0B0〉〈A1B1〉 − 〈A0B1〉〈A1B0〉)2 − 1,
(56)

which provides a nonlinear bound faff � 0 for the quantum
expectations. It is important to note that Eq. (56) contains
spurious branches. To remove these unphysical branches and
establish a direct connection with the Tsirelson bound (55), it
is enlightening to rewrite Eq. (56) in terms of the following
nonalgebraic form:√

(〈A0B0〉 − 〈A1B1〉)2 + (〈A0B1〉 + 〈A1B0〉)2

2

+
√

(〈A0B0〉 + 〈A1B1〉)2 + (〈A0B1〉 − 〈A1B0〉)2

2
�

√
2,

(57)

where the left side is expressed as a sum of two
quadratic means (QM). The Tsirelson bound (55)
follows directly as 1

2 |〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 −
〈A1B1〉| � 1

2 (|〈A0B0〉 − 〈A1B1〉| + |〈A0B1〉 + 〈A1B0〉|) �√
(〈A0B0〉−〈A1B1〉)2+(〈A0B1〉+〈A1B0〉)2

2 �
√

2. The first inequality
follows from the triangle inequality, the second follows
from the AM-QM inequality, and the third from Eq. (57).
Moreover, Eq. (57) provides the best bounds, in the sense
that any set of 〈AiBj〉 values that satisfy it are allowed
quantum mechanically, and any 〈AiBj〉 values that violate it
are disallowed.

It is noteworthy that the boundary ∂M is mostly saturated
by entangled states. Inquisitively, one might wonder about the
expectation bounds for separable states. Using Eq. (17), one
can obtain 〈A0〉2 + 〈A1〉2 � 1 and 〈B0〉2 + 〈B1〉2 � 1, which
implies that

〈A0B0〉2
ss + 〈A0B1〉2

ss + 〈A1B0〉2
ss + 〈A1B1〉2

ss � 1. (58)

Here 〈AiBj〉ss := 〈Ai〉〈Bj〉 denotes the expectation values for
separable states. In comparison to Eq. (57), Eq. (58) provides
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Bell bound

Tsirelson bound

〈A0B0〉 − 〈A1B1〉

〈A0B1〉 + 〈A1B0〉
(0, 2)

(2, 0)

FIG. 5. Moduli space M for operators 〈A0B0〉, 〈A0B1〉, 〈A1B0〉
and 〈A1B1〉, intersected with the hyperplanes 〈A0B0〉 + 〈A1B1〉 =
0 and 〈A0B1〉 − 〈A1B0〉 = 0, represented by the light gray disk
[Eq. (57)]. The dark gray disk [Eq. (58)] represents the allowed
domain for separable states. The dashed line corresponds to Bell
bound, while the solid line corresponds to Tsirelson bound.

a much weaker bound. Specifically, we can infer the Bell
inequality (54) as 1

4 |〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉| �√
〈A0B0〉2

ss+〈A0B1〉2
ss+〈A1B0〉2

ss+〈A1B1〉2
ss

4 � 1/2. The first inequality
follows from the AM-QM inequality, while the second arises
from Eq. (58). In other words, the Bell bound establishes an
upper limit for the expectation of separable states, while the
Tsirelson bound sets an upper bound for the expectation of
entangled states.

Figure 5 illustrates a two-dimensional intersection of the
moduli space M based on Eqs. (57)–(58) and compares it
with Eqs. (54)–(55). We find that the Bell and Tsirelson
bounds provide tangential lines of the moduli space for sep-
arable and entangled states, as expected. While our approach
does not involve wave unctions, the analysis above demon-
strates its suitability for examining quantum nonlocality and
entanglement. We leave the possibility of generalizing our
method to other systems for future investigation. We argue
that a theory that predicts equivalent expectation moduli for
all physical observables is indistinguishable from quantum
mechanics, as discussed in Sec. II E.

B. Density functional theory

In this subsection we apply our approach to DFT for sys-
tems of particles subjected to an external potential V . The
corresponding Hamiltonian is given by

H[V ] = H0 +
∫

V (r)n̂(r), (59)

where H0 represents the Hamiltonian containing the kinetic
and pair interaction terms, and n̂(r) and V (r) are the density
operator and external potential at position r, respectively. Sim-
ilar to the Luttinger-Ward functional discussed in Sec. II G,
Hamiltionian (59) is parameterized by an uncountable set of
parameters, λ0 = 1, and λ(r) = V (r), over the operator space
O = Span(H0, n̂(r)). Note that the identity operator has been
included as the particle number operator N̂ = ∫

n̂(r) dr.

The moduli M of the expectation values F := 〈H0〉 and
n(r) := 〈n̂(r)〉 is an infinite-dimensional space. The cor-
responding singular moduli Ms are associated with the
eigenstates of Eq. (59), satisfying

fpr(F, n(r)) = 0. (60)

Therefore, F [n] can be viewed as an implicit functional of
n(r) and depends only on H0. By substituting Eq. (6), we
obtain the energy functional

E [n] = F [n] +
∫

V (r)n(r), (61)

which is bounded and uniquely saturated by the moduli
boundary ∂M that corresponds to the ground state. Thus,
our analysis provides a constructive proof of Hohenberg and
Kohn’s (HK’s) theorems [7], where F [n] is precisely the HK
functional, and Eq. (60) provides an explicit construction of
the HK functional. Note that one may also rewrite Eq. (61) as

F [n] = E [V [n]] −
∫

V [n](r)n(r) dr, (62)

which provides the Legendre transform (22) of the dual func-
tional E [V ], where V [n] is determined from the Eq. (21), as

n(r) = δE [V ]

δV (r)
. (63)

Below we demonstrate how our approach can be used to
compute the exact density functional F [n]. For simplicity, we
consider a system of n identical particles with a single-particle
Hilbert space H1 in a discrete space with a total of q states.
The system’s Hilbert space is denoted as H± = Sym± ⊗n

H1, with dimensions N = ( q+n−1
n ) and ( q

n ) for bosons and
fermions, respectively. Our Hamiltonian is given by

H = H0 +
∑

i

Vin̂i, (64)

where

H0 =
∑

i j

(−ti ja
†
i a j + Ui j n̂in̂ j ). (65)

Here a†
i and ai are creation and annihilation operators, and

n̂i := a†
i ai. Since

∑
ni = nI , the energy term E is absorbed

into the parameter set by Vi → Vi − E/n. The corresponding
parameter set λ = (1,V1, . . . ,Vq) and operator space O =
Span(H0, n1, . . . , nq ) with M = q. The corresponding Jaco-
bian is given by

JDFT(ψ,ψ†) :=

⎡
⎢⎢⎣

ψ†H0, ψ t Ht
0

ψ†n̂1, ψ t n̂t
1

. . . , . . .

ψ†n̂q, ψ t n̂t
q

⎤
⎥⎥⎦. (66)

By using ideal computation of Eq. (10), we obtain the explicit
form of Eq. (60) as a homogeneous polynomial,

fpr (F, n1 . . . , nq ) =
∑

d0+...+dq=d

cd0,...,dq nd1
1 · · · n

dq
q F d0 , (67)

where d is the degree of the polynomial, and cd0,...,dq are
real constants depending only on H0. To demonstrate a
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FIG. 6. (a) Density functional F [n] in unit of t for the two-boson system for a fixed U/t = 1 and U ′/t = 0. Curves are determined by
Eq. (67), where colors correspond to three different eigenstates. Gray scatter points sample the moduli space M, which is bounded by F [n].
The black arrow represents the normal vector (2,V1 − V2). (b) F and n1 − n2 as a function of V1 − V2 for the first excited state.

concrete example of this construction, we set ti j = t for
off-diagonal elements, Ui j = U and U ′ for diagonal and
off-diagonal elements, respectively, and analytically solve
Eq. (10) for small (n, q)-systems for fixed parameters t , U ,
and U ′.

We present a simple example of our approach by con-
sidering a system of n = 2 bosons in a discrete space with
two states (q = 2), resulting in N = 3 eigenstates. In this
case, Eq. (67) has a degree of d = 6 [see Eq. (S1) in the
Supplemental Material [39]]. The density functional F [n] is
a one-dimensional function since the total number of particles
is fixed (n1 + n2 = 2). Figure 6(a) illustrates the behavior of
F [n] by plotting it as a function of the difference 
n = n2 −
n1. The plot shows three disconnected curves, corresponding
to the three eigenstates of the system, where the normal vector
corresponds to (2,V1 − V2). Note that the ground state and the
highest excited state are smoothly connected, as expected.

To test our theory, we randomly generate the wave func-
tion ψ over 100 000 instances and numerically calculate the
corresponding expectation values. This approach enables us
to sample the moduli space M numerically, as depicted by
the gray scatter points in Fig. 6. Our findings reveal that the
moduli space M is precisely bounded by the ground-state
moduli (blue curve), which is in agreement with our theo-
retical predictions. Furthermore, we use exact diagonalization
of Hamiltonian (64) to compute eigenfunctions directly and
find that the result is consistent with the curves generated by
Eq. (67).

To better understand the ground-state moduli, we find that
the lowest functional

F0 = U − 1
2 [
U +

√

U 2 + (4t )2], (68)

with 
U = U − U ′ occurs at n1 = n2, corresponding to the
normal vector (1,0), i.e., V1 = V2. Increasing V1 or V2 drives
the ground state to a higher value of F [n]. Expanding F [n]
around F0 in terms of the power series of n1n2, we obtain

F [n] = F0 + F1n1n2 + O[(n1n2)2], where

F1 = 4t2
√


U 2 + 16t2

16t2 − 2
U (
√


U 2 + 16t2 − 
U )
. (69)

For weak coupling 
U/t � 1, we have F1 = −t2 − 
U/2 +
O(
U 2). This can be interpreted as the kinetic and the
mean-field interaction terms. However, the exact interaction
expectation 〈Û 〉 = U1 − 
U 〈n̂1n̂2〉 has a different prefactor,
reflecting the underlying correlation 〈n̂1n̂2〉 �= 〈n̂1〉〈n̂2〉.

The excited state exhibits a more complex geometry than
the ground state, as depicted by the green curve in Fig. 6(a).
The central cusp at n1 = n2 corresponds to the limiting
cases V1 → ∞ or V2 → ∞. To gain further insight into the
cusps at two sides, we plot F and n1 − n2 as functions of
the normal vector V1 − V2 in Fig. 6(b), which reveals that
both quantities peak at V1 − V2 = 
Vc ≈ 1.2. By expanding
δF = 1

2 F ′′(
Vc)δV 2 + 1
6 F ′′′(
Vc)δV 3 + O(δV 4) and δ
n =

1
2
n′′(
Vc)δV 2 + 1

6
n′′′(
Vc)δV 3 + O(δV 4) around 
Vc,
we obtain the standard cusp equation y2 = x3, where x and
y are linear combinations of δF and δ
n.

We now extend our analysis to a system of n = 3 particles.
By following a similar approach as before, we obtain Eq. (67)
with a d = 12 degree polynomial [see Eq. (S2) in the Sup-
plemental Material [39]]. Figure 7 illustrates the behavior of
the functional F [n] by plotting it as a function of n2 − n1. In
this system, there are four eigenstates, each corresponding to
the colored segments of the F (n) curve. Notably, the ground
state and the highest excited state are connected, and the two
middle excited states are also connected due to their projec-
tive nature. Moreover, these two excited states exhibit more
singularities than the n = 2 case, with six cusps and three
crunodes. The top four cusps occur when both F and n1 − n2

reach their maximum values simultaneously, similar to the left
and right cusps observed in the q = 2 case. The bottom two
cusps occur at the limiting case when V1 or V2 diverges. This is
also the case when these two excited states degenerate and the
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FIG. 7. Density functional F [n] for the three-boson system for a
fixed U/t = 1 and U ′/t = 0.

two corresponding curves join together. The middle crunode
appears when the excited state has n1 = n2 while V1 �= V2. The
exchange of V1 and V2 leads to the same functional F [n], due
to the symmetry. The other two crunodes occur when different
excited states share the same values of F and n1 − n2.

Finally, we apply our analysis to a system of q = 3 states,
where the density functional F [n] is a two-dimensional sur-
face depicted in Fig. 8, since there are two free variables.
The domain enclosed by the yellow surface is quantum me-
chanically allowed, where the ground states correspond to the
bottom surface. Notably, as Vi → ∞ and ni = 0 for state i,
the high-dimensional density functional reduces to the low-
dimensional case depicted in Fig. 6(a), which imposes a
marginal constraint on F [n]. For a general framework of this
projection, readers can refer to Sec. II E. Our observation sug-
gests a potential possibility to reconstruct F [n] approximately
from the low-dimensional margins as an optimal transport

F

n1

n2

FIG. 8. Moduli space M(F, n1, n2) for the q = 3 state system for
a fixed U/t = 1 and U ′/t = 0. The marginal case n1 = 0 or n2 = 0
is equivalent to the moduli space shown in Fig. 6(a).

problem [40], given an appropriate cost function. We leave
this possibility for future investigation.

The above analysis provides illustrative examples of how
our approach can be utilized to derive exact density function-
als, potentially offering insight into the intricate geometry of
density functionals, which is reflected in the explicit formula
even for the two-site case. Although lattice-type models may
not perfectly represent real-space DFT problems, they provide
a valuable opportunity to investigate the deviation of existing
DFT approximations from the exact solution. Our approach
allows us to explore the contributions of nonlocal terms, of-
ten not fully understood in existing approximations, thereby
guiding the design of improved approximations for problems
in continuous space.

On the other hand, the complexity of the geometry of den-
sity functions increases rapidly with system size, as finding
the exact density functional is generally an NP-hard problem.
While our current naïve algorithm is limited to very small
systems, there are no fundamental restrictions on our con-
struction. Similar to exact diagonalization, it is possible to
develop numerical algorithms capable of handling reasonably
small-sized systems. We will explore such opportunities in
future research.

The Plücker formula (23) implies that the degree of fpr

decreases with the number of singularities on its dual hyper-
surface M∗. Thus, if M∗ possesses a large set of symmetries,
i.e., a significant number of singularities, then the complex-
ity of fpr can be greatly reduced. However, the symmetry
of DFT is limited by the chosen H0 operator, resulting in
a complex geometric structure. To overcome this issue, one
possible solution is to expand the Hamilton family with extra
symmetries. A potential approach is to replace the particle
density with two-particle reduced density matrices (2-RDMs),
as most physically relevant problems involve only two-body
interactions. This approach eliminates the dependence on a
specific H0 operator, allowing the geometry of F [n] to be
transferred to the geometry of RDMs, which hopefully has
a simpler structure [41–43]. We will discuss this further in the
next subsection.

C. N-representability conditions

In this subsection we briefly discuss the moduli space
of the reduced density matrices, also known as the N-
representability conditions, which we explain in detail below.
We begin with the general many-body Hamiltonian that in-
volves m-body interactions, defined as

H (h(m) ) =
∑

i1···im; j1··· jm

h(m)
i1···im; j1··· jm

a†
i1

· · · a†
im

a j1 · · · a jm , (70)

where a and a† are the annihilation and creation operators,
respectively, and the m-particle reduced Hamiltonian h(m)

is self-adjoint. Practically, m = 2 is sufficient since most
systems involve only pairwise interactions. The problem of
finding an N-particle ground energy of Eq. (70) can be trans-
formed into a low-dimensional optimization problem of the
following energy functional [41–43]:

E [ρ (m)] := 〈ψ |H |ψ〉 = tr(h(m)ρ (m) ), (71)
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where ρ (m) is m-particle reduced density matrix (m-RDM),
defined as

ρ
(m)
i1,...,im; j1,..., jm

:= 〈ψ |a†
i1

· · · a†
im

a j1 · · · a jm |ψ〉. (72)

In Eq. (71) the trace is taken over the reduced Hilbert space
with m-particles, which simplifies significantly the original
many-body problem (70). However, the space of all m-RDMs
often has a highly nontrivial geometry. Direct optimization of
Eq. (71) without considering this geometry typically results
in finding the wrong ground state. Therefore, determining the
conditions necessary for all possible m-RDMs, namely, the
N-representability conditions, becomes a challenging prob-
lem in computational quantum chemistry [43–49].

Our general framework suggests that the space of all m-
RDMs is the moduli space M(m) of expectation values as
defined in Eq. (72), and the N-representability conditions can
be translated into finding corresponding fpr and ∂M(m). We
can choose a set of self-adjoint bases such that the coefficient
of h(m) is real. Below we present our results mainly in a
coordinate-free form, so the choice of the basis will not affect
our findings.

Using equation (19), the dual singular moduli can be writ-
ten explicitly as

f ∗
pr (h

(m) ) = det[H (h(m) )], (73)

where the reduced Hamiltonian h(m) is the dual variable, and
the determinant is taken over the many-body particle Hilbert
space. Although finding the dual to Eq. (73) may seem as
difficult as solving the original many-body problem (70), at
least for the case of m = 1, the singular moduli M(1)

e can be
determined by a simple relation,

fpr (ρ
(1) ) = det(ρ (1) ) = 0, (74)

where the determinant is taken over the one-particle reduced
Hilbert space. This suggests that M(1) is the space of all non-
negative definite matrices. In other words, any nonnegative
definite matrix can be a single-particle RDM.

To prove Eq. (74), we need to show only that the dual trans-
formation of Eq. (74) vanishes Eq. (73). Using Eq. (24), we
find that h(1) is proportional to the adjoint matrix of ρ (1), i.e.,
h(1) ∼ adj(ρ (1) ). Equation (74) implies that ρ (1) has at least
corank one. If its corank is greater than one, then adj(ρ (1) ) =
0, which vanishes Eq. (73) trivially. If it has corank one,
then its adjoint matrix adj(ρ (1) ) has rank one. This implies
h(1) = |v〉〈v|, for some complex vector |v〉. Substituting into
Eq. (70), we find H (h(1) ) = ã†ã, where ã := ∑

i viai, which
vanishes the determinant in Eq. (73) for systems with more
than one state. This completes our proof of Eq. (74).

While an explicit expression for f (m)
pr is currently unknown

for m > 1, it may be possible to derive it computationally
for small systems using our approach. However, as the N-
representability conditions are known to be NP-hard [50], the
degree of fpr will grow rapidly with the system size, making it
increasingly difficult to obtain explicit expressions for larger
systems. Nevertheless, it is possible that observations of small
systems may provide valuable insights into the structure of
f (m)
pr and guide the search for a general expression, perhaps

analogous to the simple relation for m = 1 in Eq. (74). Alter-
natively, one could explore connections between our approach

and existing techniques such as tensor decompositions of a
set of model Hamiltonians [51], which provides sequential
linear approximations to M(2). We leave the pursuit of these
possibilities to future research.

IV. CONCLUSION

Understanding the nature of quantum theory has been a
fundamental and critical question since its inception. Var-
ious quantum formulations have been proposed to answer
this question, each providing different perspectives on this
subject. In this paper we offer a different perspective on time-
independent quantum theory by shifting the focus from the
quantum states in Hilbert space to the quantum geometry of
expectation values. We develop a general framework for quan-
tum geometry over an arbitrary set of physical observables
and establish its connection to eigenstates. Moreover, these
geometries can be viewed as a “quantization” of their classical
counterparts.

One of the key findings of our theory is that the boundary of
expectation value moduli provides a natural quantum bound to
physical observables, with the Heisenberg uncertainty relation
being one of its special cases. This result opens up a vast gen-
eralization of the uncertainty principle, providing an exciting
direction for exploring the foundations of quantum theory.

Our approach leaves many challenges and opportunities
for future research. For example, extending our framework
to a time-dependent theory would complete our alternative
formulation of quantum theory. There are several possible
avenues to pursue this extension. The simplest way is to
connect to the path-integral method proposed in Sec. II G,
although this may come at the cost of losing the elegance of
our geometric approach. Another option is to model the time
evolution of expectation value moduli as a time-dependent
projection, as discussed in Sec. II E. Alternatively, we could
explore the possibility of generalizing our approach using the
time-dependent variation principle [52]. Moreover, an impor-
tant question is whether Hilbert space can be reconstructed
from the proposed expectation value category. This question is
closely related to the recently developed geometrical quantum
formulation [53,54].

In addition to the challenges posed, our framework presents
numerous opportunities for application in diverse fields.
To showcase its versatility, we present several applications.
Notably, we derive a new nonlinear quantum bound that vi-
olates the Bell inequality, which is stronger than the existing
Tsirelson bound. Additionally, we demonstrate that our frame-
work encompasses density functional theory by providing an
explicit construction of the HK functional. We derive analyt-
ical forms of exact density functionals in small systems and
analyze their associated geometries. These results offer in-
sights into the exact density functional, potentially leading to
a better design for future density functional approximations.
Furthermore, we discuss how our theory connects to the long-
standing challenge of determining the geometry of reduced
density matrices, known as the N-representability conditions
in computational quantum chemistry.

Moreover, we want to briefly mention another application
of our theory to understanding quantum criticality, which
is not discussed in this paper. We have discovered that the
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quantum critical point corresponds to the zero curvature
of the moduli boundary, which provides an intriguing con-
nection between quantum criticality and moduli geometry.
Readers can find more details in Ref. [15]. Overall, our
approach offers a different perspective on quantum theory

with potential implications in diverse fields, such as quantum
entanglement, strongly correlated systems, and quantum com-
putational chemistry. We hope that our work will stimulate
further research in these areas, leading to new insights into
the nature of quantum theory.
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