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Thermalization of open quantum systems using the multiple-Davydov-D2 variational approach
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Numerical implementation of an explicit phonon bath requires a large number of oscillator modes in order to
maintain oscillators at the initial temperature when modeling energy relaxation processes. An additional ther-
malization algorithm may be useful in controlling the local temperature. In this paper we extend our previously
proposed thermalization algorithm [M. Jakučionis and D. Abramavičius, Phys. Rev. A 103, 032202 (2021)] to be
used with the numerically exact multiple-Davydov-D2 trial wave function for simulation of relaxation dynamics
and spectroscopic signals of open quantum systems using the time-dependent Dirac-Frenkel variational principle.
By applying it to the molecular aggregate model, we demonstrate how the thermalization approach significantly
reduces the numerical cost of simulations by decreasing the number of oscillators needed to explicitly simulate
the aggregate’s environment fluctuations while maintaining correspondence to the exact population relaxation
dynamics. Additionally, we show how the thermalization can be used to find the equilibrium state of the excited
molecular aggregate, which is necessary for simulation of the fluorescence and other spectroscopic signals. The
thermalization algorithm we present offers the possibility to investigate larger system-bath models than was
previously possible using the multiple-Davydov-D2 trial wave function and local heating effects in molecular
complexes.

DOI: 10.1103/PhysRevA.107.062205

I. INTRODUCTION

Open-quantum-system models are widely used to de-
scribe properties of molecular aggregates [1,2]. The system
usually consists of molecular electronic states. Intramolec-
ular vibrational degrees of freedom (DOFs), which play a
major role in the relaxation process of the systems of in-
terest, can also be included in the quantum-system model.
The rest of the DOFs are treated as an environment of
a constant temperature: the bath. The bath is modeled as
a collection of quantum harmonic oscillators (QHOs) and
is characterized by a continuous-fluctuation spectral density
function [2–5]. Separation into the system and the bath parts
is mostly a formality as the system-bath coupling has to
be included to account for molecular environment-induced
decoherence and temperature effects; hence the quantum dy-
namics penetrates into the bath and the bath also changes its
state.

When using wave-function-based simulation approaches,
it can be challenging to maintain a precise representation
of the bath as a constant temperature thermostat, because
energy exchange between the system and the bath can alter
thermal properties of the bath. Generally, a large number
of explicitly modeled QHO modes have to be included to
minimize the negative effects of thermal energy accumulation
in the bath, but this is numerically expensive. Therefore, one
always has to balance between the size of the model, the
accuracy of the chosen numerical method, and the method’s
numerical cost. Alternatively, one could numerically change
the wave-function variables during its time evolution in a way
so as to prevent accumulation of the thermal energy in the
bath and to maintain it at a desired temperature, i.e., perform
thermalization.

It is challenging to accurately simulate the dynamics of
quantum systems that exchange energy and (quasi)particles
with their surroundings, i.e., of the open quantum systems
[6,7], because the numerical cost needed to propagate the
corresponding dynamical equations in time increases ex-
ponentially with the number of DOFs. The wave-function
approach based on the multiple-Davydov-D2 trial wave func-
tion (multiple-Davydov-D2 Ansatz) [8–12], along with the
time-dependent variational principle, has been shown to be
an excellent tool for accurately simulating the dynamics
of system-bath models [8,13–19] and spectroscopic signals
[10,18–21]. Despite relying on an adaptive time-dependent
state basis set, the problem of rapidly growing numerical costs
remains.

In a previous study we proposed the thermalization algo-
rithm [22] to be used with the Davydov-D2 Ansatz [13,23–
28], which restricts QHOs to their lowest uncertainty states:
coherent states [29,30] with Gaussian wave packets in their
coordinate-momentum phase space. We demonstrated how
the thermalization algorithm regulates the temperature of the
environment and enables the electronically excited molec-
ular system to relax into its equilibrium state at a given
temperature [31–33] even when using a reduced number
of bath oscillators, which greatly reduces numerical costs.
The characteristics of the resulting equilibrium state are
essential for modeling fluorescence, excited-state emission,
excited-state absorption, and other spectroscopic signals [1].
However, the Davydov-D2 Ansatz is a crude approximation
of the actual system-bath model eigenstates and thus is un-
able to completely capture electronic population relaxation
dynamics [10].

Meanwhile, the system-bath dynamics obtained using the
multiple-Davydov Ansätze is consistent with the results from
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other state-of-the-art methods, such as hierarchical equa-
tions of motion [9–11], the quasiadiabatic path integral [14],
and the multiconfiguration time-dependent Hartree method
[15,34], even when the number of bath oscillators is large.
Due to the more complicated wave-function structure of the
multiple-Davydov-D2 ansatz, straightforward application of
the D2 Ansatz thermalization algorithm is not possible. In
this work we extend the thermalization algorithm for the
multiple-Davydov-D2 Ansatz by introducing an additional
state projection algorithm and adopting the coarse-grained
scattering approximation.

In Sec. II we describe the thermalization algorithm for
the multiple-Davydov-D2 Ansatz. In Sec. III we provide a
theoretical description of its application to simulating the flu-
orescence spectra. In Sec. IV we demonstrate its capabilities
by simulating the excitation relaxation dynamics of an H-type
molecular aggregate and its fluorescence spectrum. In Sec. V
we discuss changes made to adapt the thermalization algo-
rithm of the D2 Ansatz for the multiple-Davydov-D2 Ansatz.

II. THERMALIZATION OF THE
MULTIPLE-DAVYDOV-D2 ANSATZ

We consider a molecular aggregate model, where each
molecule n = 1, 2, . . . , N couples to its own local reservoir
k = 1, 2, . . . , N , each of which consists of q = 1, 2, . . . , Q
QHO modes. The model is given by the Hamiltonian Ĥ =
ĤS + ĤB + ĤSB with the system, the bath, and the system-
bath coupling terms defined as

ĤS =
N∑
n

εnâ†
nân +

n �=m∑
n,m

Jnmâ†
nâm, (1)

ĤB =
N,Q∑
k,q

ωkqb̂†
kqb̂kq, (2)

ĤSB = −
N∑
n

â†
nân

Q∑
q

ωnqgnq(b̂†
nq + b̂nq), (3)

with the reduced Planck’s constant set to h̄ = 1. Here εn is
the nth molecule electronic excitation energy, Jnm denotes
the resonant coupling between the nth and mth molecules,
ωnq denotes the frequency of the qth QHO in the kth local
reservoir, and gnq is the coupling strength between the qth
oscillator in the nth local reservoir and the nth molecule. The
operators â†

n and ân represent the creation and annihilation op-
erators for electronic excitations, respectively, while b̂†

nq and

b̂nq represent the creation and annihilation bosonic operators
for QHOs.

In addition, we implicitly couple the system-bath model
to the secondary bath characterized by a fixed temperature T .
The coupling between the secondary and primary baths occurs
via the scattering events that allow the system-bath model to
exchange energy with the secondary bath and thermalize local
reservoirs, as is described below.

The state of the system-bath model is given by the
multiple-Davydov-D2 wave function

|�(t )〉 =
M,N∑
i,n

αi,n(t )|n〉 ⊗ |λi(t )〉, (4)

where αi,n(t ) is the ith multiple complex amplitude associated
with a singly excited electronic state |n〉 localized on the nth
molecule, |n〉 = â†

n|0〉el. Here |0〉el is the electronic ground
state. The complexity and accuracy of the multiple-Davydov-
D2 Ansatz can be adjusted by varying the multiplicity number
M. The states of the QHO modes are represented by multidi-
mensional coherent states

|λi(t )〉 = exp
N,Q∑
k,q

[λi,kq(t )b̂†
kq − λ�

i,kq(t )b̂kq]|0〉vib, (5)

where λi,kq(t ) is the ith multiple complex displacement
parameter and |0〉vib = ⊗k,q|0〉k,q is the global vibrational
ground state of all QHOs.

The multiple-Davydov-D2 wave function describes a state
of the system-bath model as a superposition of M multidi-
mensional coherent state terms, which allows it to represent
a wide range of system-bath model states beyond the
Born-Oppenheimer and Gaussian approximations. The ther-
malization algorithm for the multiple-Davydov-D2 Ansatz is
realized by stochastic scattering events [35,36] during time
evolution of the wave function. These events change the mo-
menta pkq of all the qth QHO modes of the kth local reservoir
at once. We assume that the scattering probability Pk (θ, τsc)
of θ scattering events occurring per time interval τsc with a
scattering rate νk is given by a Poisson distribution

Pk (θ, τsc) = 1

θ !
(τscνk )θe−τscνk . (6)

Numerically, Poisson statistics are realized by simulating
Bernoulli processes [37,38] in the limit of τsc → 0 while
maintaining the condition that νkτsc � 1. To simulate the
scattering events, we divide wave-function propagation into
equal time length τsc intervals

ti = (iτsc, (i + 1)τsc], i = 0, 1, . . . . (7)

At the end of each interval, for each local reservoir, we flip
a biased coin with the probability νkτsc of landing heads for
all local reservoirs. If the kth coin lands heads, we change
the momenta of all oscillator modes of that kth reservoir;
otherwise, no changes are made. A list of scattering moments
at which the numerical simulation is paused to perform the
scatterings can be precomputed prior to starting the simulation
by drawing probabilities for all local reservoir and all time
intervals ti from Eq. (6).

We assume that during the scattering event the local
bath, which experiences the scattering, acquires thermal-
equilibrium kinetic energy. Such a state is given by a single
coherent state for one specific QHO. In order to set the new
momentum values of the scattered reservoir oscillator modes,
we first project the multiple-Davydov-D2 wave function of
Eq. (4) to its single-multiple Davydov-D2 form

|ψ (t )〉 =
N∑
n

βn(t )|n〉 ⊗ |λ̃(t )〉, (8)

where βn are the projected complex electronic amplitudes
and |λ̃(t )〉 is the projected multidimensional coherent state,
which is defined later. This follows the decoherence idea [39],
where the macroscopic environment performs a collapse of
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the wave function into a set of preferred states, in our case,
the electronic-vibrational states |n〉 ⊗ |λ̃(t )〉. The projected
complex electronic amplitudes are equal to

βn(t ) =
M∑
i

αi,n(t )〈λ̃(t )|λi(t )〉, (9)

while the projected multidimensional coherent state

|λ̃(t )〉 = exp
N,Q∑
k,q

[λ̃kq(t )b̂†
kq − λ̃�

kq(t )b̂kq]|0〉vib (10)

is defined in terms of the complex displacements

λ̃kq(t ) = 1√
2

[xkq(t ) + ipkq(t )], (11)

where xkq(t ) and pkq(t ) are QHO coordinate and momentum
expectation values

xkq = 1√
2

M,M,N∑
i, j,n

α�
i,nα j,n〈λi|λ j〉

N,Q∑
k,q

(λ�
i,kq + λ j,kq ), (12)

pkq = i√
2

M,M,N∑
i, j,n

α�
i,nα j,n〈λi|λ j〉

N,Q∑
k,q

(λ�
i,kq − λ j,kq ) (13)

calculated from the multiple-Davydov-D2 Ansatz, where
〈λi|λ j〉 is the overlap of two coherent states

〈λi|λ j〉 = exp
N,Q∑
k,q

[
λ�

i,kqλ j,kq − 1

2
(|λi,kq|2 + |λ j,kq|2)

]
. (14)

This completes the projection operation of the multiple-
Davydov-D2 state, given by Eq. (4), into its simplified D2

form in Eq. (8).
Once the projected wave function is deduced, we mod-

ify the momenta of the scattered oscillators by sampling the
QHO diagonal density operator distribution in the coherent
state representation at temperature T , known as the Glauber-
Sudarshan distribution [14,40–42]

P (λ̃kq) = Z−1
kq exp[−|λ̃kq|2(eωkq/kBT − 1)]. (15)

For scattered modes, we set the momentum values in
Eq. (11) to

pkq(t ) =
√

2Im
(
λ̃P

kq

)
, (16)

where λ̃P
kq is a sample drawn from the Glauber-Sudarshan

distribution. In addition, Z−1
kq and ωkq are partition func-

tions and frequencies of the QHO, respectively, and kB is
the Boltzmann constant. During the scattering events, coordi-
nates xkq of both the scattered and nonscattered modes remain
unchanged. Notice that the local baths, which do not experi-
ence scattering, remain unaffected by the scattering of other
modes.

Now that the wave function of the system-bath model
after scattering is known [given by Eq. (8)] we rewrite it in
the multiple-Davydov-D2 wave-function form of Eq. (4) by
populating amplitudes and displacements of the first multiple

i = 1 as

α1,n(t ) = βn(t ), (17)

λ1,kq(t ) = λ̃kq(t ). (18)

The amplitudes of the unpopulated multiples are set to
α j=2,...,M,n(t ) = 0, while the unpopulated displacements are
positioned in a layered hexagonal pattern around the popu-
lated coherent state [18]

λ j=2,...,M,kq(t ) =λ1,kq(τ )

+ 1
4 [1 + 	β( j)
]ei2π[β( j)+(1/12)	β( j)
], (19)

where β( j) = ( j − 2)/6 is the coordination function and 	x

is the floor function. The exact arrangement of displacements
of the unpopulated multiples is not critical as long as the
distance in the phase space to the populated multiple coherent
state is not too large; otherwise, the initially unpopulated
multiples will not contribute to further dynamics [16,43].

Once the scattered multiple-Davydov-D2 wave function
is determined and the scattering event is finalized, fur-
ther simulation of multiple-Davydov-D2 dynamics according
to equations of motion (EOMs) proceeds. This procedure
generates a stochastic wave-function trajectory, where the
system-bath model at each time moment is described by a
pure state, which is a single member of a statistical ensem-
ble [14,41]. The thermalized model dynamics is obtained by
averaging observables over an ensemble of wave-function
trajectories γ , which differ by their initial amplitudes αi,n(0),
initial coherent state displacements λi,kq(0), and a sequence
of scattering events. Ensemble averaging is performed in a
parallelized Monte Carlo scheme.

III. THERMALIZED FLUORESCENCE SPECTRA

Wave-function trajectories allow calculation of an arbitrary
observable. Calculation of the equilibrium fluorescence spec-
trum requires us to know the thermally equilibrated state of
the excited model. The presented thermalization procedure
allows us to obtain such a state and calculate the fluorescence
spectrum.

In general, the frequency-domain spectrum of a quantum
system can be written as a Fourier transform

F (ω) = Re
∫ ∞

0
dt eiωt S(t ) (20)

of the corresponding time-domain response function S(t ).
The fluorescence response function Sfl(t ) is a specific case of
the more general time-resolved fluorescence (TRF) response
function [1,44]

STRF(τeq, t ) = 1

�

�∑
γ=1

〈�G(0)|γ μ̂−V̂†
E(τeq + t )μ̂+

× V̂G(t )μ̂−V̂E(τeq)μ̂+|�G(0)〉γ , (21)

where V̂E and V̂G are the excited- and ground-state system-
bath propagators

V̂A(t1)|�A(t2)〉 = |�A(t1 + t2)〉, (22)
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μ̂+ = ∑N
n (e · μn)â†

n and μ̂− = ∑N
n (e · μn)ân are the excita-

tion creation and annihilation operators of the system [18],
respectively, μn is the electronic transition dipole moment
vector, e is the external field polarization vector, and |�G(0)〉γ
is a model ground state with an initial condition of the γ th
trajectory. The EOMs for propagating the multiple-Davydov-
D2 wave function, as well as the approach to solving them, are
described in detail in Refs. [18,43].

Here STRF(τeq, t ) is a function of two times: the equi-
libration time τeq and the coherence time t . During the
equilibration time, the system evolves in its excited state and,
due to the system-bath interaction, relaxes to an equilibrium
state. After this, during the coherence time, spontaneous emis-
sion occurs.

We will apply thermalization during the equilibration time
to facilitate the relaxation of the system-bath model into
the lowest-energy equilibrium state by removing excess ther-
mal energy from local reservoirs. We denote by ĜE,γ the
excited-state propagator V̂E but with thermalization. Then the
thermalized TRF (TTRF) response function can be written as

S̃TRF(τeq, t ) = 1

�

�∑
γ=1

〈�G(0)|γ μ̂−Ĝ†
E,γ (τeq)V̂†

G(t )μ̂+

× V̂G(t )μ̂−ĜE,γ (τeq)μ̂+|�G(0)〉γ . (23)

By considering the equilibration time to be long enough to
reach the equilibrium state of the system-bath model, we
define the fluorescence response function as

Sfl(t ) = lim
τeq→∞ STRF(τeq, t ) (24)

and the thermalized fluorescence (TF) response function as

S̃fl(t ) = lim
τeq→∞ S̃TRF(τeq, t ). (25)

The spectra obtained using the fluorescence response function
without and with thermalization will be compared in the next
section. For the numerical simulation, the required equilibra-
tion time interval has to be deduced by increasing τeq until the
resulting fluorescence spectra converge.

IV. RESULTS

To investigate the thermalization algorithm for the
multiple-Davydov-D2 Ansatz, we will analyze the linear
trimer model, which we previously used to study
thermalization of the Davydov-D2 Ansatz [22]. The model
consists of N = 3 coupled molecules, with excited-state
energies εn being equal to 0, 250, and 500 cm−1, forming
an energy funnel. The nearest-neighbor couplings are set to
J1,2 = J2,3 = 100 cm−1 and J3,1 = 0. The electronic dipole
moment vectors of molecules are μn = (1, 0, 0) in the
Cartesian coordinate system. This classifies the trimer as the
H-type molecular aggregate [45].

The QHOs of local molecular reservoirs are characterized
by the super-Ohmic [46] spectral density function
C′′(ω) = ω(ω/ωc)s−1 exp(−ω/ωc) with an order parameter
s = 2 and a cutoff frequency ωc = 100 cm−1. The QHO
frequencies are ωkq = ω0 + (q − 1)�ω, where the frequency
offset is ω0 = 0.01 cm−1. The reorganization energy of

each local reservoir is �k = ∑
q ωkqg2

kq = 100 cm−1.
The scattering time step size is set to τsc = 0.01 ps. Finally, the
ensemble consists of 900 wave-functions trajectories, which
we found to be sufficient to obtain the converged model
dynamics. The multiple-Davydov-D2 Ansatz multiplicity
M = 5 is used as the results with a higher multiplicity
quantitatively match the M = 5 case.

We will be considering three bath models: the dense bath
model, where the spectral density function C′′(ω) is dis-
cretized into Q = 75 oscillators per local reservoir with a step
size of �ω = 10 cm−1; the sparse bath model, where the
number of modes is reduced by a factor of 5 to just Q = 15
oscillators per local reservoir with �ω = 50 cm−1; and the
sparse bath with thermalization model, where C′′(ω) is dis-
cretized according to the sparse bath model and thermalization
is used.

In the absence of the bath, the system has three single-
excitation stationary exciton states with energies E exc

1 ≈
−37.23 cm−1, E exc

2 = 250 cm−1, and E exc
3 ≈ 537.23 cm−1,

satisfying the time-independent Schrödinger equation

ĤS�
exc
n = E exc

n �exc
n , (26)

with the system Hamiltonian given by Eq. (1). The exciton
eigenstates [2,4] �exc

n have their excitations delocalized over
multiple molecules [41]. Therefore, it is convenient to analyze
molecular aggregate excitation relaxation dynamics in terms
of excitons as they are natural quasiparticles of the aggregate.
We define the probability of finding the aggregate in its nth
excitonic state as the population, given by

ρexc
n (t ) =

∑
k,l,i, j

(
�exc

k

)�

n〈α�
i,k (t )α j,l (t )Si, j (t )〉th

(
�exc

l

)
n, (27)

where 〈· · · 〉th is the averaging over an ensemble of wave-
function trajectories. Using the multiple-Davydov-D2 Ansatz,
we proceed with the following analysis.

First, we study the electronic excitation dynamics. The
initial excitonic-state populations correspond to the optically
excited highest-energy states ρexc

3 = 1 and ρexc
1,2 = 0, while

the initial QHO displacements λi,kq(0) are sampled from the
Glauber-Sudarshan distribution in Eq. (15) to account for the
initial temperatures of Tk = 77 K.

In Fig. 1 we display the trimer model exciton-state pop-
ulations ρexc

n (t ) and average temperatures [47] Tk (t ) of local
reservoirs for all three bath models. The aggregate en-
vironment causes dephasing between excitonic states and
induces irreversible population relaxation [1,2]. The popula-
tion dynamics of the dense bath models exhibits a sequential
relaxation from the initially populated highest-energy exci-
tonic state to the lowest-energy state via the intermediate state.
Eventually, the population distribution reaches the equilib-
rium state. The majority of the excitation energy is transferred
to oscillators of local reservoirs. We observe an increase of
temperatures [47–49] due to the finite number of oscillators in
local reservoirs. An infinite number of oscillators would have
to be included to maintain a constant temperature at the initial
value. The initial rapid rise in temperature is due to oscillator
reorganization in the aggregate’s electronic excited-state man-
ifold, while the following slow rise is due to energy transfer
from the system to local reservoirs.
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FIG. 1. Exciton-state populations ρexc
n (t ) and the average temper-

atures Tk (t ) of local reservoirs of the trimer in (a) and (b) the dense
bath model, (c) and (d) the sparse bath model, and (e) and (f) the
sparse bath model with thermalization.

In the sparse bath model, we observe that if the number
of vibrational modes is reduced, the population dynamics
become skewed due to an insufficiently dense representation
of the spectral density function. Furthermore, the temperature
increase is higher than that for the dense bath model, which
further changes the characteristics of the resulting equilibrium
state.

When the thermalization algorithm is applied to the sparse
bath model with a scattering rate νk = 1.25 ps−1, the pop-
ulation dynamics is restored and qualitatively matches that
of the dense model. Although the initial temperatures of the
local reservoirs exceed those of the dense bath model, they
gradually decrease due to thermalization, and this rate can be
adjusted by changing the scattering rate.

Next we turn our attention to simulating the fluorescence
spectrum of the linear trimer with the dense bath model with
scattering rate νk = 1 ps−1. The initial excitonic-state popula-
tion distribution is now calculated in terms of the system-field
interaction, as described in Ref. [18].

FIG. 2. The (a) TRF and (b) TTRF spectra of the trimer in the
dense bath model, simulated with increasing equilibration time τeq.
The absorption spectrum is also shown. Vertical dashed lines show
energies E exc of the excitonic states.

In Fig. 2 we compare the TRF and TTRF spectra with
increasing equilibration times τeq. When τeq = 0, both the
TRF and TTRF spectra are equivalent and exactly match
the absorption spectrum, which consists of three peaks due
to a transition involving the combined excitonic-vibrational
(vibronic) states and cannot be regarded as purely exci-
tonic. For reference, vertical dotted lines indicate energies
E exc of excitonic states. These do not match the three peak
energies exactly due to the system being coupled to the
environment.

By allowing equilibration to occur, τeq > 0, both the TRF
and TTRF spectra show a peak intensity shift towards lower
energies as excitation relaxes towards the equilibrated state
during the equilibration time. After equilibrating for τeq =
2 ps, we find that both spectra have converged and do not
change with longer τeq. Therefore, the TRF and TTRF spectra
at τeq = 2 ps can be considered as the fluorescence and TF
spectra of the trimer model as defined in Eqs. (24) and (25).

Both spectra exhibit their highest intensities at the ener-
gies of the lowest vibronic states. However, the fluorescence
spectrum also has considerable intensities at energies of the
intermediate and highest vibronic states. Surprisingly, the
higher-energy peak is more intense than the intermediate
peak. The TF spectrum intensities at these energies are negli-
gible, which indicates that the thermalization allows the trimer
model to reach a lower-energy equilibrium state, which is no

062205-5
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FIG. 3. Comparison of the fluorescence spectra of the trimer with
the dense bath model obtained without thermalization, with thermal-
ization, and using the optimization approach. The equilibration time
is τeq = 2 ps. The absorption spectrum is also shown. Vertical dashed
lines show energies E exc of the excitonic states.

longer hindered by the excess thermal energy accumulation in
QHOs of local reservoirs.

In Fig. 3 we also compare the obtained fluorescence and
TF spectra with the fluorescence spectrum simulated using
a previously proposed excited-state numerical optimization
approach [19,50,51]. It relies on finding the model’s lowest-
energy excitonic state in terms of the multiple-Davydov-D2

Ansatz parameters and then applying thermal fluctuations to
effectively generate the model in a lowest-energy equilibrium
state at a temperature of 77 K. We see that all three methods
produce a similar lowest vibronic peak, but the TF spectrum
has a higher-intensity tail towards the low-energy side and
almost no intensities at energies of the intermediate and the
highest vibronic states, while the fluorescence spectrum sim-
ulated using the optimization approach has a low intensity at
the energy of the intermediate vibronic states. The optimiza-
tion approach spectrum more closely resembles that of the
thermalized model than the nonthermalized spectrum.

V. DISCUSSION

Starting from an arbitrary nonequilibrium initial condition,
a closed quantum system will not equilibrate due to energy
conservation. The thermalization procedure is necessary to
guarantee proper thermal equilibrium in the long run for all
bath oscillators. This requires introducing the concept of
primary and secondary baths. In our model the primary bath
is a part of explicit quantum DOFs, while the secondary bath
is a thermal reservoir with infinite thermal capacity, i.e., it
maintains a constant temperature in any energy exchange
process. In this case, the secondary bath cannot be described
by mechanical equations; only statistical or thermodynamical
concepts apply. Our statistical algorithm performs energy
exchange between the primary and secondary baths using the
statistical scattering idea: The primary bath state is reset to
the thermally equilibrated state, thus giving up excess energy
to or drawing additional energy from the secondary bath. This
is a major extension of the explicit quantum time-dependent

variational principle (TDVP) theory: The extended model
covers a broader range of phenomena, i.e., local heating and
cooling, as well as bath oscillator dynamic localization, which
are not available in the standard TDVP theory.

In order to adapt the Davydov-D2 Ansatz thermalization
algorithm for the multiple-Davydov-D2 Ansatz, several exten-
sions were made. During the time evolution of the system-bath
model, the multiple-Davydov-D2 Ansatz multiples become
correlated, leading to a non-Gaussian bath wave function. It
becomes impossible to represent a new Gaussian wave func-
tion of scattered QHO modes, sampled from Eq. (15), without
changing the wave function of the rest of the nonscattered
oscillators at the same time. Therefore, we chose to project
the multiple-Davydov-D2 Ansatz into the Davydov-D2 Ansatz
whenever scattering occurred, allowing us to correctly repre-
sent the newly sampled Gaussian wave function of scattered
oscillators. This idea requires consideration of a few aspects.

The projected Davydov-D2 wave function accurately
maintains average coordinates and momenta of the
multiple-Davydov-D2 Ansatz QHO states, while variances
and higher-order moments are affected. This causes variation
of excitation relaxation dynamics compared to the standard
multiple-Davydov-D2 Ansatz. However, system-bath models
mostly rely only on the linear coupling between the system
and average coordinates of QHO modes; therefore, as seen
in Fig. 1, the discrepancy is minimal. The higher-order
couplings become necessary when anharmonic vibrational
modes or changes to their frequencies upon excitation are
considered [19,52].

To maintain the close correspondence to the standard
multiple-Davydov-D2 Ansatz, the projection should not occur
too often. This is because, after scattering, it takes time for
the wave function to again become correlated between its
many multiples, i.e., to take advantage of the unpopulated
multiple-Davydov-D2 Ansatz multiples after projection. If the
repopulation time is shorter than the time between projection
operations, the model population dynamics becomes similar
to that of the Davydov-D2 Ansatz, even though the multiple-
Davydov-D2 Ansatz is being used. The average time interval
between projection operations is determined by the scattering
rate νk , a property of the physical system, while the scattering
time τsc is a parameter of the model and must be as small as
necessary to ensure the Bernoulli-to-Poisson statistics transi-
tion condition νkτsc � 1.

To increase the average time between projection op-
erations, we adopt a coarser scattering approach for the
multiple-Davydov-D2 Ansatz compared to the Davydov-D2

Ansatz. Instead of considering scattering events of individual
oscillators, we consider events where all oscillators of certain
local reservoirs are scattered at once, requiring only a single
projection operation to scatter many oscillators at once. This
approach allows the multiple-Davydov-D2 Ansatz to continue
utilizing all its multiples for the improved accuracy over the
Davydov-D2 Ansatz while reducing the number of explicitly
modeled oscillators needed to maintain the local reservoirs’
temperatures close to initial values, thereby reducing the nu-
merical cost.

Using the multiple-Davydov-D2 Ansatz to simulate the
population dynamics of the trimer model, it took an average
of 166 min per trajectory using the dense bath model, but
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only 1.3 min using the sparse bath model and 2 min using
the sparse bath model with thermalization. The computational
overhead of thermalization is small compared to the overall
time savings when switching from using the dense bath to
the sparse bath. The numerical cost reduction is also greater
for the multiple-Davydov-D2 Ansatz than for the Davydov-D2

Ansatz in Ref. [22], because the multiple-Davydov-D2 Ansatz
EOMs constitute an implicit system of differential equations,
which require a more involved two-step numerical approach
to find a solution [18,43]. By considering fewer oscillators in
each local reservoir, simulations of the dynamics and spec-
troscopic signals of aggregates made up of more molecules
become possible.

Computing a single trajectory of the TTRF response func-
tion in Eq. (23) with an equilibration time of τeq = 2 ps took
an average of 79 min. The previously proposed optimization
method [19] for simulating fluorescence spectra does not re-
quire propagation during the equilibration time interval of the
TRF response function and has to be computed only once, but
it takes 193 min. In general, we find that the computation of
TTRF is more reliable and numerically stable. The optimiza-
tion approach struggles to consistently find the lowest-energy
excitonic state of the model due to its heuristic nature, requir-
ing many attempts to find the solution and eventually having
to choose the lowest-energy one. This is particularly apparent
when a wide range of oscillator frequencies are included.

For elementary system-bath models without Hamiltonian
parameter disorder, the optimization approach can be a

good starting point for fluorescence spectra simulation.
However, a more accurate spectrum most likely will
be obtained using the TTRF approach. For models with
Hamiltonian disorder, e.g., static molecule excitation energy
disorder [53–55], the optimization approach would require
finding the model’s lowest-energy excitonic state for each
realization of the Hamiltonian, negating its advantage
of having to perform the optimization procedure only
once.

In conclusion, the thermalization algorithm presented for
the numerically exact multiple-Davydov-D2 Ansatz allows us
to reduce the numerical cost of system-bath model simula-
tions by having to explicitly include fewer bath oscillators
while maintaining a correspondence with the exact relaxation
dynamics. The thermalization algorithm efficiently controls
molecular heating effects due to the reduced number of os-
cillators. Furthermore, the application of thermalization to
the simulation of fluorescence spectra demonstrates a lower
computation time, greater numerically stability, and higher
accuracy compared to the numerical optimization approach.
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[18] M. Jakučionis, A. Žukas, and D. Abramavičius, Modeling
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tional damping effects on electronic energy relaxation in
molecular aggregates, Chem. Phys. 515, 193 (2018).
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[55] O. Rancova, M. Jakučionis, L. Valkunas, and D. Abramavicius,
Origin of non-Gaussian site energy disorder in molecular aggre-
gates, Chem. Phys. Lett. 674, 120 (2017).

062205-8

https://doi.org/10.1063/1.4921575
https://doi.org/10.1063/5.0140002
https://doi.org/10.1103/PhysRevA.103.032202
https://doi.org/10.1103/PhysRevB.82.014305
https://doi.org/10.1039/c0cp00663g
https://doi.org/10.1016/j.chemphys.2018.07.018
https://doi.org/10.1021/acs.jpca.1c06115
https://doi.org/10.1088/0031-8949/20/3-4/013
https://doi.org/10.1016/0167-2789(91)90243-3
https://doi.org/10.1103/RevModPhys.62.867
https://doi.org/10.1103/PhysRevA.41.2301
https://doi.org/10.1103/PhysRevB.85.115412
https://doi.org/10.1103/PhysRevE.86.061132
https://doi.org/10.1063/1.5141519
https://doi.org/10.1021/acs.jctc.1c00859
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/PhysRevLett.125.150403
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1039/C5CP06871A
https://doi.org/10.1088/1751-8121/aa5a65
https://doi.org/10.1103/PhysRevB.101.174315
https://doi.org/10.1063/1.4928281
https://doi.org/10.1021/acs.chemrev.7b00581
https://doi.org/10.1021/jp405094p
https://doi.org/10.1039/C8CP00682B
https://doi.org/10.1103/PhysRevLett.88.097905
https://doi.org/10.1038/nphys2515
https://doi.org/10.21105/joss.00615
https://doi.org/10.1109/TSMCB.2009.2015956
https://doi.org/10.1063/1.4985910
https://doi.org/10.1103/PhysRevB.68.245203
https://doi.org/10.1103/PhysRevLett.105.137402
https://doi.org/10.1016/j.cplett.2017.02.056

