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The formalism of generalized probabilistic theories (GPTs) was originally developed as a way to characterize
the landscape of conceivable physical theories. Thus, the GPT describing a given physical theory necessarily
includes all physically possible processes. We here consider the question of how to provide a GPT-like
characterization of a particular experimental setup within a given physical theory. We show that the resulting
characterization is not generally a GPT in and of itself, rather, it is described by a more general mathematical
object that we introduce and term an accessible GPT fragment. We then introduce an equivalence relation, termed
cone equivalence, between accessible GPT fragments (and, as a special case, between standard GPTs). We give
a number of examples of experimental scenarios that are best described using accessible GPT fragments, and
where moreover, cone-equivalence arises naturally. We then prove that an accessible GPT fragment admits of a
classical explanation if and only if every other fragment that is cone equivalent to it also admits of a classical
explanation. Finally, we leverage this result to prove several fundamental results regarding the experimental
requirements for witnessing the failure of generalized noncontextuality. In particular, we prove that neither
incompatibility among measurements nor the assumption of freedom of choice is necessary for witnessing
failures of generalized noncontextuality, and moreover, that such failures can be witnessed even when using
arbitrarily inefficient detectors.
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I. INTRODUCTION

The framework of generalized probabilistic theories
(GPTs) [1–3] was developed to study conceivable theories
of nature within a single landscape of possible theories.
The framework is built on a minimal set of operational
principles, based primarily on the fact that any physical
theory must, at a minimum, make probabilistic predictions
about the outcomes of experiments. It should be noted that
for single systems (including infinite-dimensional ones) the
framework has a much longer history; see, for example,
Ref. [4]. However, since the emergence of quantum in-
formation theory, the focus shifted to (finite-dimensional)
composite systems, which brought renewed interest in the
subject. It now is employed, for example, in the study
of thermodynamics [5–8], interference [9–14], decoherence
[15–18], computation [19–25], cryptography [26–31], infor-
mation processing [2,32–38], correlations [39–45], and more
[46–62]. See Refs. [44,63,64] for recent reviews of the
framework.

In this work, we address the question of how one can
describe the particular states and effects that are accessible by
a fixed experimental scenario within a given GPT. As we will
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show, the mathematical structure that describes these accessi-
ble states and effects is not necessarily itself a GPT, but rather
something that we term an accessible GPT fragment. These
are more general than standard GPTs since (i) the accessible
states and accessible effects in a given experimental setup
need not be tomographically complete for each other,1 and
since (ii) there may be accessible states which are subnormal-
ized and yet whose normalized counterparts are not included
in the fragment.2

Because accessible GPT fragments include all and only
the states and effects accessible in a given experimental
scenario, they are ideally suited to describing relationships be-
tween different experimental scenarios. We give two specific

1Note that Gitton and Woods [65] introduced a notion of a “re-
duced space” based on quotienting relative to an equivalence relation
wherein states are equivalent relative to the accessible effects and
wherein effects are equivalent relative to the accessible states. This
“reduced space” characterization of an experimental scenario is quite
distinct from ours and their resulting notion of classicality is quite
distinct from generalized noncontextuality.

2This latter point is similar to how in noncausal GPTs [3,66] there
are states that do not have a normalized counterpart [3], but it occurs
for a different reason, namely, the fact that a given experiment may
not have access to repeat-until-success preparations.
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applications of this idea: (i) to describe scenarios in which one
measurement constitutes an inefficient version of another;3

and (ii) to describe scenarios in which one measurement is
a flag-convexification of another. (Flag-convexification, intro-
duced in Refs. [67,68], is a process by which measurement
settings are turned into measurement outcomes.) Moreover, as
discussed in detail in Sec. VI, we expect accessible GPT frag-
ments to be a valuable tool for theory-agnostic tomography
[69–71]. We also expect accessible GPT fragments to be crit-
ical for the development of a resource theory of generalized
contextuality.4

Next, we introduce an interesting equivalence relation that
may hold between accessible GPT fragments (or, as a special
case, between GPTs). We term this cone equivalence. Two
accessible GPT fragments are said to be cone-equivalent if
their state spaces define the same cone of states and their effect
spaces define the same cone of effects.

In both of the applications of accessible GPT fragments
that we develop herein, cone equivalence plays a natural role.
(i) In scenarios in which a given measurement device is im-
plemented inefficiently, it follows that the accessible GPT
fragments describing the original scenario and its inefficient
counterpart are cone-equivalent. (ii) In scenarios where a mea-
surement device is flag-convexified, it also follows that the
accessible GPT fragments describing the original scenario and
its flag-convexified counterpart are cone-equivalent.

This concept of cone equivalence has also appeared in-
directly in past work. For instance, recognizing this fact
explicitly allows us to restate one of the results of Ref. [72]
as follows: A given GPT has a Gleason-like theorem (or
equivalently, satisfies the no-restriction hypothesis for states)
if and only if it is the unique GPT with the given state space
which satisfies the full no-restriction hypothesis, or one that
is cone-equivalent to that GPT.5

The notion of cone equivalence also plays an important
role in understanding which GPTs and which accessible GPT
fragments are classically explainable. We will now discuss
the classical explainability of GPTs and accessible GPT frag-
ments and then we will describe the role that cone equivalence
plays.

One of the central questions in quantum foundations is
how to make precise the senses in which our world cannot be
explained classically. In our view, the best foundational notion
of classicality is the existence of a generalized-noncontextual

3That is, for each possible outcome of the original measurement,
its inefficient counterpart has a nonzero probability of performing as
expected, and a probability of failure (which is nonzero for at least
one outcome), in which case it returns a “null” outcome.

4Indeed, it was for this purpose that we originally conceived of
them.

5Strictly, the GPTs that are cone-equivalent to an unrestricted [3]
GPT correspond to the noisy-unrestricted GPTs of Ref. [72], while
their theorem singled out the slightly broader class of almost noisy-
unrestricted GPTs which are those for which closure of the cones
are equivalent to an unrestricted GPT. We will not focus on this
distinction here as there is no operational distinction between the two
classes.

ontological model.6 This principle can be motivated by
a useful methodological principle for theory construction
dating back to Leibniz [74]. Additionally, the existence
of a generalized-noncontextual ontological model for an
operational theory coincides with two other independently
motivated notions of classicality arising naturally in the
study of GPTs [75–77] and quantum optics [75,77,78].
Generalized noncontextuality also emerges in the limit of
sufficient decoherence [79] or noise [80,81]. Furthermore,
other key indicators of nonclassicality, such as violations
of local causality [82] or observations of anomalous weak
values under some conditions [83,84], are also instances of
generalized contextuality. Finally, generalized contextuality
has been proven to be a resource for information processing
[85–89], computation [90], state discrimination [91], cloning
[92], and metrology [93].

The notion of generalized noncontextuality is most nat-
urally defined within a framework of operational theories
distinct from GPTs [94], wherein laboratory procedures that
are operationally equivalent are not strictly equal. Such pro-
cedures are said to differ (only) by their context. Generalized
noncontextuality, then, is the principle that an ontological
representation of one’s processes should be independent of
their context. Because the GPT that is associated to a given
operational theory is obtained from it by quotienting with
respect to operational equivalences [77,95], it follows that
there are no contexts in a GPT, and hence no possibility of
allowing for context-dependence.7

It turns out [75], however, that when mapping an opera-
tional theory to a GPT by quotienting relative to operational
equivalences, the constraint of explainability by a generalized-
noncontextual ontological model is mapped to the constraint
of explainability by an ontological model. Furthermore, it was
shown in Ref. [75] that whether or not a GPT satisfies this con-
straint is determined by whether or not it satisfies a geometric
criterion termed “simplex-embeddability.” In particular, the
state and effect spaces of such a GPT must be embeddable
in those of a strictly classical (i.e., simplicial) GPT, that is,
one whose state space is a simplex and whose effect space is
its dual.

The fact that there is an equivalence between the existence
of a generalized noncontextual ontological model for an oper-
ational theory, and the existence of a simplex embedding for
the associated GPT, means that every motivation for taking
generalized noncontextuality as one’s notion of classicality
for operational theories is just as much a motivation for tak-
ing simplex-embeddability as one’s notion of classicality for
GPTs. Naturally, then, we endorse it as the notion of classical
explainability for GPTs.

Often, however, what one seeks to assess is not whether
a particular operational theory admits of a generalized-

6In fact, it is the slightly more general notion of Leibnizianity
introduced in Ref. [73], but the distinction between the two will not
be important here.

7Indeed, one cannot even consider contexts in the sense of the
Kochen-Specker theorem to be part of the fundamental structure of
a GPT; see Appendix A of Ref. [77] for a more detailed justification
of this claim.
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noncontextual model, but whether a particular operational
scenario or experiment does. Because such scenarios are bet-
ter described by accessible GPT fragments, this raises the
question of which accessible GPT fragments are classically
explainable. It can be shown [96] (as a slight generalization
of the results of Ref. [75]) that the geometric criterion implied
by generalized noncontextuality for accessible GPT fragments
is simply a version of the condition of simplex embeddability,
adapted slightly so that it applies to accessible GPT fragments.

In this work, we prove a useful result relating simplex em-
beddability and cone equivalence. In particular, we prove that
two accessible GPT fragments which are cone-equivalent are
either both simplex-embeddable, or neither is. In other words,
two cone-equivalent accessible GPT fragments are either both
nonclassical or neither is.

This result allows us to apply the notions of accessible
GPT fragments and cone equivalence thereof to clarify the
fundamental requirements for experimentally witnessing non-
classicality. In particular, we show that there exists proofs of
the failure of generalized noncontextuality with the following
features:

(1) There is only a single measurement, and hence
(a) all measurements in the scenario are compatible,

and
(b) no assumption of freedom of choice is required

(i.e., no assumption that one can choose one’s measure-
ment setting in a manner that is independent of the choice
of preparation and the hidden variable which in a puta-
tive classical model of the scenario mediates between the
preparation and the measurement).8

(2) One’s measurement detectors have arbitrarily low (but
nonzero) efficiency.

It is straightforward to see each of these facts, given
the preparatory work above. Consider first item 1. For any
scenario with multiple measurements, one can apply the
flag-convexification procedure of Ref. [67] to turn the mea-
surement settings into measurement outcomes, so that the
resulting scenario has only a single measurement. As we
will prove, this flag-convexified scenario is cone-equivalent
to the original scenario, and hence either both are classically
explainable, or both are not. Hence, this logic can be applied
to any proof of contextuality to obtain an alternative proof in
the context of a new scenario with only a single measurement.
This result can be viewed as the generalization of the result
of our companion paper, Ref. [67], to arbitrary proofs of
contextuality in arbitrary GPTs.

Items 1(a) and 1(b) are immediate corollaries of Item 1.
Nonetheless, they are conceptually significant, insofar as they
show a precise sense in which the experimental requirements
and theoretical assumptions required to witness the failure of
generalized noncontextuality are weaker than those required
for witnessing the failure of Bell locality or Kochen-Specker
noncontextuality.

Finally, Item 2 follows from the fact that, as we will
prove, a given prepare-measure scenario is cone-equivalent

8We take this to be the natural generalization (to prepare-measure
scenarios) of the freedom of choice assumption commonly consid-
ered in Bell scenarios [97].

to a second scenario wherein the original measurements are
implemented inefficiently; hence, either both are classically
explainable, or both are not. Again, then, this logic can be
applied to any proof of contextuality to obtain an alterna-
tive proof in the context of a new scenario with detectors
with arbitrarily low (but nonzero) efficiency. Unlike for ex-
periments that aim to test Bell locality or Kochen-Specker
noncontextuality, in experiments that aim to test generalized
noncontextuality, then, there is no loophole involving detector
inefficiency and hence no possibility of salvaging generalized
noncontextuality via this loophole.

Moreover, we also show that proofs of the failure of gen-
eralized noncontextuality can be found in which there is a
single source (as well as a single measurement). This shows
that proofs of contextuality are possible where there are no
setting variables at all; rather, such proofs rely only on passive
observation of outcomes.

II. PRELIMINARIES

The basis for this work is the framework of GPTs. This
framework enables one to describe a broad range of potential
physical theories, based on the principle that ultimately any
physical theory must be able to make probabilistic predictions
about the outcomes of experiments. The GPT framework ac-
commodates quantum theory and classical theory as special
cases, but also allows for alternative physical theories such as
quantum mechanics over the real numbers [98], boxworld [2],
or (the convex closure of) Spekkens’ toy theory [99].

We will follow the diagrammatic approach to GPTs de-
veloped in Refs. [3,100]. In this approach, a given GPT G
consists of a collection of physical systems, which are dia-
grammatically denoted by wires, e.g.,

(1)

The style of the wire denotes the type of system being repre-
sented. Systems which describe classical degrees of freedom
(e.g., those representing the controls and outcomes of experi-
ments) are denoted by thin wires, e.g.,

(2)

where the labels A and X are taken to be a (finite) set of
possible classical states of the system, while systems which
describe generic GPT systems are denoted by thick wires.

The GPT G also describes a collection of processes such as

(3)
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which describe the evolution of the physical systems. Pro-
cesses can be wired together to form diagrams, such as

(4)

which themselves describe other processes within the GPT.
Processes with no inputs are known as states, and those

with no outputs are known as effects. These are (respectively)
depicted as

(5)

Processes with neither inputs nor outputs correspond to
probabilities, e.g.,

(6)

Note, for example, that this means that the composition of a
state with an effect, such as

(7)

is equal to a probability, namely, that of observing the effect e
given the state s of system S.

Each system comes with a specified discarding effect,
termed the unit effect, denoted by uS and depicted as

(8)

The unit effect represents ignoring a particular physical sys-
tem (e.g., in quantum theory this would correspond to the
operation of tracing out a system).

Note that a process that is deterministic, i.e., can be im-
plemented without postselection, must satisfy the condition9

(9)

9This condition was highlighted in Ref. [3], where it is referred to
as the “causality” condition. We do not endorse this terminology for
the reasons espoused in Ref. [73].

All processes within the GPT must satisfy10

(10)

which represents the case of processes that may only hap-
pen with some nonunit probability, such as the outcomes of
measurements. For such a probabilistic process, there exists
another process

(11)

such that

(12)

is a valid deterministic process [i.e., it satisfies Eq. (9)].
Any system S within the GPT has an associated space of

states, denoted �S , which can be characterized as a convex set
spanning11 some finite-dimensional real vector space, which
(with slight abuse of notation) we also denote as S. We will
take the set �S to contain both normalized and unnormalized
states for the system S, where the set of normalized states is
defined as

(13)

Geometrically, �S is the convex hull of the set of normalized
states and the origin (i.e., the state of normalization 0).

Any system S within the GPT will also have an associated
convex space of effects, denoted ES , living in the dual vector
space to S (that is, in the space of linear functionals on S),
denoted S∗. We will also require a notion of duality for convex
sets, which we will also denote by ∗ (following a standard
abuse of notation). Specifically, if �S is a convex set, then the
dual set �∗

S is defined as the set of effect vectors in the dual
vector space that are logically possible in the sense that they
yield valid probabilities for all states

�∗
S := {e|0 � e(s) � 1,∀s ∈ �S}. (14)

Clearly therefore, ES ⊆ �∗
S . When this inclusion relation is

an equality, the GPT G is said to satisfy the no-restriction
hypothesis for effects [3]. Both the origin of S∗, termed the
“zero” effect and the unit effect uS must be elements of ES .

Similarly, we can define the space of logically possible
states as vectors in S which yield valid probabilities for all
effects

E∗
S := {s|0 � e(s) � 1,∀e ∈ ES}. (15)

10This order on effects is defined by e � f if and only if there exists
an effect e′ such that e + e′ = f .

11Recall that the span of a set of vectors in a real vector space is
defined as Span[X ] := {∑i λixi|xi ∈ X, λi ∈ R}.
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Clearly we also have that �S ⊆ E∗
S . When this inclusion

relation is an equality, the GPT G is said to satisfy the no-
restriction hypothesis for states [72].

Probabilities are computed using the bilinear evaluation
map

BS : S∗ × S → R (16)

:: (e, s) �→ e(s), (17)

where if e ∈ ES and s ∈ �S , we have that

(18)

An arbitrary system within a GPT has associated to it a
tuple (�S, ES, BS, uS ). This tuple is itself often referred to as
a GPT, even though a full generalized probabilistic theory
should also describe the possibilities for parallel composi-
tion of systems and transformations on systems. We will,
for simplicity, make use of this terminology here since the
remainder of the article focuses only on prepare-measure sce-
narios with no parallel composition. It should be clear from
context whether by “GPT” we are referring to this tuple or to
the full compositional theory in which it lives. Note also that
the separate specification of the evaluation map and the unit is
redundant since the unit effect is uniquely determined by the
prediction map. We only included it for ease of comparison
with the more general notion of accessible GPT fragments that
we will introduce below.

A. The notion of classicality for GPTs

As discussed in the Introduction, a generalized prob-
abilistic theory is classically explainable if it is simplex-
embeddable, a concept first introduced in Ref. [75]. The
following is a mild generalization of the definition appearing
therein, the purpose of which is to incorporate subnormalized
states. (This generalization does not change the relationship
between simplex embeddability and classical explainability,
i.e., generalized noncontextuality.)

Definition 1. Simplex embeddability of standard GPTs. A
GPT GS = (�S, ES, BS, uS ) is said to be simplex-embeddable
if there exists some vector space dimension n and a pair of
linear maps ι : S → Rn and κ : S∗ → Rn∗, such that for all
s ∈ �S and e ∈ ES one has

ι(s) ∈ �n
sub, (19)

κ (e) ∈ �n
sub

∗
, (20)

κ (e)[ι(s)] = BS (e, s), (21)

κ (uS ) = 1n, (22)

where �n
sub is the simplex consisting of the convex hull of the

zero vector and the standard basis vectors [those of the form
(1, 0, . . . , 0), (0, 1, . . . , 0) etc.], �n

sub
∗ is the dual convex set,

and 1n is the vector (1, 1, . . . , 1) of n 1’s.
Note that the dimension n of the simplex may be larger

than the dimension of the given GPT system S. An explicit

example of the necessity of this dimension mismatch is given
for the case of standard GPTs in Appendix D of Ref. [75].

As motivated in the Introduction, an operational theory is
classically explainable if and only if it admits of a generalized-
noncontextual representation. However, as discussed in detail
in Ref. [75], it does not make sense to ask if a general-
ized probabilistic theory (i.e., a quotiented operational theory
[3,77]) admits of a generalized-noncontextual representa-
tion since processes in a GPT do not have any contexts
on which one’s representation could possibly depend. How-
ever, Ref. [75] shows that an operational theory admits of
a generalized-noncontextual ontological model if and only
if the GPT which is obtained from it by quotienting can be
embedded within a simplicial GPT via a linear map.

Hence, every motivation for taking realizability by a
generalized noncontextual ontological model as one’s no-
tion of classical explainability for operational theories (like
those listed in the Introduction) is also a motivation for
taking simplex-embeddability as one’s notion of classical
explainability for GPTs. Furthermore, this notion of simplex-
embeddability can be independently motivated as a notion
of classical explainability since simplicial GPTs are those
wherein all possible measurements are compatible (and so are
universally agreed to represent classical theories). Thus, the
two notions of classical explainability mutually support one
another.

In this work, we are not primarily interested in assessing
the classicality of a GPT in its entirety. Rather, we are inter-
ested in assessing the classicality of the statistics that arise
within that GPT for a particular prepare-measure scenario
and so (in Definition 4) we will adapt the definition of simplex
embeddability appropriately.

We now introduce the scenarios of interest in more detail.

B. Prepare-measure scenarios

We now give a description of prepare-measure scenarios in
generalized probabilistic theories.

Such scenarios are described by a set of sources and a set
of measurements on some system S. We index the possible
sources by the set X and label the classical outcome of the
source by A:

(23)

In a given run of the experiment, the source generates a clas-
sical outcome and a physical state of the system S, where one
can think of the classical outcome as a flag which labels what
preparation was done on S. (Note that a preparation procedure
is a special case of a source where the classical output is
unary.) We index the set of measurements by the set Y and
label the classical outcome of the measurement by B:

(24)
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These compose to give a set of joint distributions over
source-and-measurement outcomes (A and B), indexed by the
possible choices of sources and measurements (X and Y ):

(25)

For our purposes, however, it is more convenient to com-
bine the set of sources together into a single process and
to combine the set of measurements together into a single
process. That is, instead of working with a set of sources, we
instead work with a single multisource

(26)

which recovers each of the sources in the set by suitably
choosing the setting variable, that is,

(27)

for all x ∈ X . Similarly, instead of working with a set of
measurements, we work with a single multimeter

(28)

which recovers each of the measurements in the set by suitably
choosing the setting variable; that is,

(29)

for all y ∈ Y . The composition of these yields a single stochas-
tic map (or equivalently, a single conditional probability
distribution)

(30)

which gives the conditional probability p(ab|xy) of the pair of
outcomes given the pair of inputs, where a (or b, x, y) denotes
the value that the classical variable A (or B, X,Y respectively)
takes. This switch in perspective from sets of distributions to a
single conditional distribution was also used within the sphere
of Bell correlations, see Ref. [101].

C. Incompatibility of measurements

A set of measurements (in our case, the set realized by
a given multimeter) is said to be compatible if there exists
a single measurement that can simulate the statistics of any
measurement in the set [102], otherwise the set is said to
be incompatible. This can be expressed simply in terms of
the multimeter which realizes the measurements in the set, as
follows.

Definition 2. Compatibility. A set of measurements
{My}y∈Y is said to be compatible if there exists a measurement
M with some outcome set Z and a controlled postprocessing
P of Z such that

(31)

Note that a set comprised of a single measurement (hence,
where Y is the singleton set {∗}) is necessarily compatible;
one can simply take M = M = M∗ and P = 1.

III. ACCESSIBLE GPT FRAGMENTS

Typically, the GPT state and effect spaces associated to a
given system are taken to include all states and effects that
can be physically realized on the system according to the
theory. In contrast, we here want to describe only those states
and effects that can be realized within a given multisource-
multimeter scenario. In this section, we formalize the latter
notion and term the resulting object an accessible GPT frag-
ment. We will refer to GPTs that incorporate all states and
effects as standard GPTs when contrasting them with acces-
sible GPT fragments.

Note that a standard GPT is a special case of an acces-
sible GPT fragment wherein the multisource and multimeter
are able to access all physically possible states and effects.
The additional generality in the notion of an accessible
GPT fragment will be critical for our later results, e.g., for
describing physical situations involving flag-convexification
(Sec. IV A) and detector inefficiency (Sec. IV B). (We also
expect it to be useful for defining the relevant notion of re-
sourcefulness in the resource theory of failures of generalized
noncontextuality.)

Recall that a GPT system S has convex state space �S and
convex effect space ES . A given multisource P will only be
able to prepare some convex subset of the states in �S , namely,
those of the form

s

S

= P
X

A

S

c , (32)

where c is some substochastic comb, defined as follows.
For some arbitrary classical system Z , c can be decomposed
as a bipartite subnormalized distribution q over X and Z ,
composed with some bipartite response function r over A
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and Z:

X

A

c =
X

A

Z

q

r

. (33)

We will refer to the set of such objects as SubStochComb,
or, in the case where X is trivial, as SubStochEff.

Typically, the convex set of states a multisource P can
prepare will be a strict subset of �S , and it may even be a
lower-dimensional convex set. For example, one could have
a multisource on a qubit that can only prepare the convex
set corresponding to mixtures of the states |0〉 and |1〉. It
will therefore be convenient to view the state space for the
accessible GPT fragment as living in the vector space spanned
by the accessible states rather than the original GPT vector
space. We denote this span by

(34)

Taking this view requires introducing two maps which
have little physical significance, but are useful for proper
bookkeeping. Since SP is a subspace of S, one may define a
projection map S → SP and an inclusion map SP → S. We
denote these diagrammatically by

P

S

SP :S→SP ::
v

S �→ P
SP

v

S , (35)

S

SP

P :SP →S ::
u

SP �→
S

P

u

SP . (36)

Note that the inclusion map followed by the projection map is
the identity

P

P

SP

SP

S =
SP

, (37)

and the projection map followed by the inclusion map is the
identity on the accessible states

P

X

A
S

P
S

P

SP

= P

X

A

S

S

.

(38)

Hence, we define the state space for the accessible GPT
fragment as

(39)

It is not hard to see that this definition of the state space
implies constraints on the geometry of the set �P. Figure 1
provides an illustrative example and some discussion of these
constraints.

We now turn to the effects. The effects in ES which can be
achieved using the multimeter M are those of the form

e

S

= M
B

Y
S

d , (40)

where d is a substochastic comb. Again, these will form a
convex subset of ES which will span a subspace of S∗. We
denote the subspace spanned by this set as S∗

M , and we define
a (contravariant) projection map

S

SM

M :S∗→S∗
M :: v′

S
�→

v′

S

SM

M

, (41)

and a (contravariant) inclusion map

S

SM
M :S∗

M →S∗ ::
u′

SM
�→

u′

SM

S
M

, (42)

where these are read top-to-bottom, as we view these as acting
contravariantly (i.e., on the dual spaces). The inclusion map
followed by the projection map is the identity

M

M

SM

SM

S =
SM

. (43)

Furthermore, the projection map followed by the inclusion
map is the identity on the accessible effects

M

B

Y
S

M

S

M

SM

= M

B

Y

S

S

.

(44)
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We can then define the effect space for the accessible GPT
fragment as

EM :=
e

SM

=
M

B

Y

d

M
S

SM

∣∣∣∣∣∣∣∣∣∣
d∈SubStochComb

(45)

It is not hard to see that this definition of the effect space
implies constraints on the geometry of the set EM , analogous
to those on the state spaces (illustrated in Fig. 1).

We can now observe the first key formal distinction be-
tween accessible GPT fragments and GPTs in the traditional
sense: the vector space SP associated to the state space is not
necessarily the same as the vector space SM associated to the
effect space. In a traditional GPT, these two vectors spaces
are equal, as follows from the assumption that the states are
tomographically complete for the effects and vice versa. This
can fail to be the case for an accessible GPT fragment because
we are not requiring that the multisource and multimeter need
to be tomographically complete for one another.

Given that the states and effects are no longer associated
to the same vector space, we can no longer compute proba-
bilities simply by composition, as in Eq. (18). In general, the
sequential composition of

e

SM

∈EM and
s

SP ∈ΩP (46)

is not even defined, as their types do not always match. To
compute probabilities, then, one first embeds each system type
(SP and SM) back into S using their respective inclusion maps,
and then one computes the probability using the probability
rule in the original GPT.

Explicitly, the probability rule for an accessible GPT frag-
ment is given by the bilinear map

BPM : S∗
M × SP → R, (47)

::

⎛
⎜⎝ e

SM

,
s

SP

⎞
⎟⎠ �→

M

e

SM

S

P

s

SP

. (48)

where if e ∈ EM and s ∈ �P we have that

BPM (e,s)=
M

e

SM

S

P

s

SP

∈ [0,1]. (49)

Finally, the unit effect uM for the accessible GPT fragment
is defined as the unit uS for the GPT system S preceded by
projection into the subspace SM . Note that uM is the effect
that is realized for any deterministic use of the multimeter M,
wherein one coarse-grains over all outcomes B (and chooses
the value of Y according to any normalized probability distri-
bution p). In other words, one has

SM

:=

M

S

SM

= M

M

p

B

YS

SM

.
(50)

This last equality follows from the fact that, using Eq. (9),

M

p

B

YS

=
p
YS

=
S

. (51)

Note that in an accessible GPT fragment (just as in a
standard GPT), it holds that for any effect e ∈ EM , there exists
another effect e⊥ ∈ EM such that

e + e⊥ = uM . (52)

This is proven in Appendix A.
Definition 3. Accessible GPT fragment. We call the tu-

ple GPM := (�P, EM , BPM , uM ) (whose elements are defined
above) the accessible GPT fragment associated to the
multisource-multimeter pair (P, M ).

The second key formal distinction between standard GPTs
and accessible GPT fragments is that the latter may contain
subnormalized states whose normalized counterparts are not
contained in the accessible GPT fragment. This happens every
time a given state appears only in the context of multisources
with more than one outcome arising with nonzero probability.
In a standard GPT, by contrast, the normalized version of
every subnormalized GPT state is also a physically valid state
(and hence included in the GPT). This is because, for every
subnormalized state in one’s GPT state space, it is physically
possible to generate a normalized version of that state, e.g.,
by repeat-until-success preparation procedures [3].12 Such
procedures are not possible within a multisource-multimeter
scenario, which is why accessible GPT fragments may ex-
clude the normalized counterparts of some subnormalized
states in the fragment. One can see this in the example we
depict in Fig. 1.

12The fact that there is no such repeat-until success procedure
for measurements leads to an interesting asymmetry for standard
GPTs, namely, that satisfaction of the no-restriction hypothesis for
effects implies satisfaction of the no-restriction hypothesis for states,
while the converse is not true. For accessible GPT fragments, the
implication does not hold in either direction.
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a=0

a=0

a=1
a=0

a=1

x=0 x=2x=1

a∈{0,1}
x∈{0,1,2} x∈{0,1,2}

e∈SubStochEff
c∈SubStochComb

P

x

a

X

A
S

P

x

a

X

A
S

P

x

e

X

A
S

P
X

A

c

S

(a)

(b) (c) (d)

FIG. 1. A series of figures illustrating how the state space of an accessible GPT fragment arises from its associated multisource P. In these
examples, the gray region demarcates the full set of normalized states in the underlying GPT within which the fragment is embedded. In (a),
we depict the atomic preparations, namely, the state vectors describing the output of the multisource for a fixed setting value x ∈ X and a fixed
outcome a ∈ A of the multisource. In this example, setting x = 0 leads to two possible outcomes, with the two associated (subnormalized)
state vectors depicted in red; similarly for x = 1 in green. Setting x = 2 has only a single outcome, so the corresponding state vector (depicted
in blue) is normalized and lies in the gray region. (b) We show all of these atomic preparations on a single picture. (c) Even for a fixed setting
value, one can access more general preparations by considering outcomes described by a generic effect e; that is, by considering outcomes
arising from arbitrary postprocessings of the atomic outcomes. In doing so, one can access all the state vectors in the red (for x = 0), green
(for x = 1), and blue (for x = 2) regions. Mathematically, these regions are zonotopes. (A zonotope is a convex set constructed by taking some
set of vectors vi and then taking the set of all vectors that can be reached by linear combinations of the form

∑
i αivi such that αi ∈ [0, 1].)

Note that every such zonotope has a single vector in the underlying normalized state space (the gray region), and that this vector is generated
by the corresponding diagram when e is the unit effect (so that one effectively ignores the outcome of the multisource). (d) The most general
states that are achievable for a given multisource can be accessed by considering arbitrary pre and postprocessings, depicted here by the comb
c in the diagram. The accessible GPT fragment’s state space corresponds to the displayed polytope, which is the convex hull of the zonotopes
from (b). This example is illustrative of the generic case. That is, the accessible state space is always given by the convex hull of a set of
zonotopes each contained within the full state space, where the maximal element of each zonotope lies in the hyperplane of normalized states.
Note, moreover, that any such geometry can be realized by some multisource within the full GPT. Similarly, the accessible effect space is the
convex hull of a set of zonotopes each contained within the full effect space where, in this case, the maximal elements are all simply the unit
effect. Again we find that any such geometry can be realized by some multimeter within the full GPT. Note that in this example, the subset of
normalized states in the fragment forms a strict subset of the normalized states in the fundamental underlying GPT.

The notion of classicality for accessible GPT fragments

As discussed in Sec. II A, a GPT is classically explainable
if and only if it is simplex-embeddable. Similarly, an accessi-
ble GPT fragment is classically explainable if and only if it is
simplex-embeddable. In the latter case, however, the notion
of simplex-embeddability must be adapted from that given
in Ref. [75] (or above, in Definition 1) for standard GPTs

to the appropriate notion for accessible GPT fragments. In
particular, it must be defined for subnormalized state spaces
(rather than for normalized state spaces, as in Ref. [75]).

Simplex-embeddability of accessible GPT fragments is de-
fined as follows.

Definition 4. Simplex-embeddability of accessible GPT
fragments. Consider a given multisource-multimeter pair
(P, M ) and the associated accessible GPT fragment
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GPM = (�P, EM , BPM , uM ). GPM is said to be simplex-
embeddable if there exists some n and a pair of linear maps
ι : SP → Rn and κ : SM

∗ → Rn∗ such that for all s ∈ �P and
e ∈ EM , one has

ι(s) ∈ �n
sub, (53)

κ (e) ∈ �n
sub

∗
, (54)

κ (e)[ι(s)] = BPM (e, s), (55)

κ (uM ) = 1n, (56)

where �n
sub is the simplex consisting of the convex hull of the

zero vector and the standard basis vectors [those of the form
(1, 0, . . . , 0), (0, 1, . . . , 0) etc.], �n

sub
∗ is the dual convex set,

and 1n is the vector (1, 1, . . . , 1) of n 1’s.
Note that the dimension n of the simplex may be larger than

the dimension of the given accessible GPT fragment.
Note that if a GPT GS is simplex-embeddable in the

sense of Definition 1, then any multisource-multimeter pair
(P, M ) in GS defines an accessible GPT fragment GPM that is
simplex-embeddable in the sense of Definition 4. It follows
that if a given multisource-multimeter pair (P, M ) in GS is not
classically explainable, then one can infer that the GPT GS

fails to be classically explainable.

IV. CONE-EQUIVALENT ACCESSIBLE GPT FRAGMENTS

We now introduce a kind of relationship between acces-
sible GPT fragments (or between standard GPTs), which we
term cone equivalence. Our definition draws inspiration from
the idea of noisy unrestricted GPTs from Ref. [72], and we
recently were made aware that the analogous concept of pro-
jective equivalence has been used, for example, in the proofs
of Ref. [103]; to our knowledge, however, cone equivalence
has not previously been studied in its own right. After defining
the notion, we will give two distinct experimental scenarios in
which cone-equivalent accessible GPT fragments arise. (The
cone equivalence in these two examples will then be central
to proving our results about witnessing nonclassicality.)

Definition 5. Cone-equivalent accessible GPT fragments.
A pair of accessible GPT fragments with the same probability
rule and unit, G = (�, E, B, u) and G′ = (�′, E ′, B, u), are
said to be cone equivalent if and only if

Cone[�] = Cone[�′], (57)

Cone[E] = Cone[E ′], (58)

where the cone associated to some set of vectors X is defined
as

Cone[X ] := {λx|x ∈ X, λ ∈ R+}. (59)

Figure 2 shows a simple example of two cone-equivalent
accessible GPT fragments.

In the next two subsections, we will give two physically
motivated scenarios in which cone-equivalent accessible GPT
fragments arise naturally. This fact is then central to all of the
results that we derive regarding noncontextuality.

Remark 6. One can also define a broader notion of cone
equivalence which, in particular, does not limit the scope

(a)

(c)

(b)

FIG. 2. Here we depict two distinct three-dimensional accessible
GPT fragment state spaces which define identical cones. (a) The first
is the inner polytope in dark violet-gray constructed in Fig. 1. (b) The
second is the polytope in orange, which happens to contain the dark
violet-gray one. (c) The cones defined by these two state spaces
coincide. The extremal rays of the cone common to both polytopes
are depicted by the protruding red arrows. As in Fig. 1, the gray
region demarcates the convex set of normalized states for the full
GPT. The black triangle lies within this region, as it corresponds to
the set of normalized states in the inner polytope.

to accessible GPT fragments with the same probability rule
and unit. This is done by leveraging the natural notion of
equivalence for accessible GPT fragments. (As an exam-
ple, (�, E, B, u) is equivalent to (T (�), T ′(E ), B ◦ T ′−1 ×
T −1, T ′(u)) for any reversible linear maps T and T ′.) That is,
one can define a pair of accessible GPT fragments to be cone-
equivalent if the pair is equivalent to a cone-equivalent pair
as per Definition 5. Our main technical result (Theorem 8)
holds under this more permissive notion of cone equivalence.
However, this level of generality is unnecessary for any of
our examples or key corollaries and hence we omit it for
simplicity.

As discussed in the Introduction, the notion of cone-
equivalence can be used to shed light on the results of
Ref. [72]. Another example of this is the following.

Remark 7. As a simple extension of arguments in
Ref. [72], one can show that all cone-equivalent accessible
GPT fragments have the same space of logically possible
states and have the same space of logically possible ef-
fects. This fact disproves a common belief that whenever
one shrinks the effect space of a given GPT, the space of
logically possible states will necessarily grow. This is because
if one shrinks the effect space by merely rescaling some of
the effects, the cone defined by the effect space is unchanged,
and the space of logically possible states depends only on this
cone.
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A. Example 1: Flag-convexified scenarios

Our first example of cone-equivalent accessible GPT frag-
ments arises from a process that we call flag-convexification
[67,68]. Suppose that we have a prepare-and-measure sce-
nario described by a multisource and multimeter as in
Eq. (30). Now consider a new scenario in which one does not
directly choose the setting variables, but rather allows each
setting’s value to be selected probabilistically according to
some fixed, full-support distribution μ (for the multisource)
or ν (for the multimeter). These random variables are more-
over each copied to some flag variable which is treated as an
additional output to the multisource (or multimeter).

More formally, flag-convexification of the multisource and
multimeter gives a new scenario with a single source and a
single meter (the white dot represents a copy operation)

Pμ

AS X

:= P

X

AS

μ

X

X

X

, and
(60)

Y

Mν

B

S

:=
Y

ν

Y

Y

Y

M

B

S

,

(61)

to obtain the flag-convexified source-meter pair

⎛
⎜⎜⎝ Pμ

AS X

,

Y

Mν

B

S

⎞
⎟⎟⎠. (62)

The accessible GPT fragment GPμMν =
(�Pμ, EMν , BPμMν , uMν ) realized by this flag-convexified
source-meter pair is defined by

ΩP μ :=
s

SP μ =

Pμ
A X

c′P μ

S

SP μ

c′∈SubStochEff (63)

EMν :=
e

SMν

=
Y

Mν
B

d′

Mν

S

SMν

d′∈SubStochEff , (64)

BPμMν : SMν
∗ × SPμ → R,

::

⎛
⎜⎝

s

SP μ ,
e

SMν

⎞
⎟⎠ �→

Mν

e

SMν

S

P μ

s

SP ν

, (65)

and
uMν =

SMν

:=

Mν

S

SMν

.

(66)

There is then a close relationship between the accessi-
ble GPT fragment GPM = (�P, EM , BPM , uM ) characterizing
the original scenario and the accessible GPT fragment
GPμMν := (�Pμ, EMν , BPμMν , uMν ) characterizing any flag-
convexification of this scenario.

Proposition 1. The accessible GPT fragment GPμMν re-
alized by a flag-convexified source-meter pair is cone-
equivalent to the accessible GPT fragment GPM realized by
the original multisource-multimeter.

Proof. This result is formally proved in Appendix C.
This result can be seen quite intuitively by viewing

the procedure of flag-convexification as a form of classi-
cal postprocessing, after which the states and effects in the
flag-convexified accessible GPT fragment are proportional (as
vectors) to those in the original accessible GPT fragment, but
scaled down by some strictly positive real numbers.

We also show (in Appendix D) that the flag-convexified
fragment is a subfragment of the original fragment, by which
we mean that �Pμ ⊆ �P and that EMν ⊆ EM . This fact, how-
ever, is not relevant to any of our following results.

B. Example 2: Detector inefficiencies

Consider a multisource-multimeter scenario which is de-
scribed by some accessible GPT fragment G. Contrast this
with a new scenario in which the multisource is unchanged,
but the multimeter is realized using inefficient detectors. In
this case, the accessible GPT fragment describing the scenario
with inefficient detectors is cone-equivalent to the original
accessible GPT fragment.

To see this formally, we first model detector inefficiency
as a particular kind of postprocessing of a multimeter, which
maps a multimeter with outcome set B to one with outcome
set B′ := B ∪ {∗}, where the additional outcome is called the
null outcome. For each measurement y ∈ Y in the multimeter,
an outcome b ∈ B for that measurement has probability αby

to get flipped to the null outcome, and probability 1 − αby

to remain unchanged. We let the probabilities 1 − αby be
arbitrary weights in (0,1], where we excluded the case of
zero efficiency. Notice that an effect appearing in two distinct
measurements y and y′ may therefore have different weights.
Notice also that the probability of obtaining the null outcome
(the detectors not firing) can depend on the state of the system.
In this sense, we have a maximally general model of detector
inefficiencies.

More explicitly, consider a multimeter M with setting Y
and outcome B. An inefficient version of this detector can
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always be described as a classical postprocessing of M, de-
noted Eα , which results in a new multimeter Mα ,

Y

Mα

S

B′

=
Y

M
B

S

Eα

B′

Y

(67)

with setting Y and outcome set B′ = B ∪ {∗}, where ∗ is the
null outcome. In particular, the postprocessing Eα is defined
by

Y

B

Eα

B′

Y

=
∑

b∈B,
y∈Y

y
Y

b

B

y

Y

αby ∗
B′

+(1−αby) b

B′

,
(68)

for some αby ∈ [0, 1).
We thereby obtain the following result.
Proposition 2. Consider a multisource-multimeter sce-

nario (P, M ) and the accessible GPT fragment G associated
with it. The accessible GPT fragment Gα which arises if the
multimeter is implemented in an inefficient manner from the
scenario (P, Mα ) is cone-equivalent to the original accessible
GPT fragment.

This can be formally established by a proof analogous to
the proof in Appendix C. Intuitively, the result follows from
the fact that for every effect in the original measurement, the
corresponding inefficient version of the measurement con-
tains an effect that is proportional to it, but rescaled by a
value in (0,1].

It is worth explaining the distinction between processings
of a measurement that add inefficiency and those that add
noise. A standard model for adding noise to a measurement
is to imagine that, with some probability, the outcome that is
returned is the one obtained in the original measurement, and
otherwise the outcome is sampled uniformly at random. More
generally, this probability can depend on the outcome as well
as on the measurement. Formally, this can be described as a
postprocessing of a given multimeter as in Eq. (67), but where
the postprocessing is given not by Eq. (68), but rather by

Y

B

Eβ

B

Y

=
∑

b∈B,
y∈Y

y
Y

b

B

y

Y

βby u

B
+(1−βby) b

B

,
(69)

for some βby ∈ (0, 1], where u is the uniform distribution over
the outcomes B.

In an inefficient implementation of a measurement M, the
GPT effects for each nonnull outcome are proportional to
the GPT effects for the corresponding outcome of M. In a

Inefficiency Noise

(a) (b) (c)
Cone-equivalent Cone-inequivalent

FIG. 3. (a) The effect space arising if the measurement whose
effect space is shown in (b) is implemented inefficiently. (b) The
effect space corresponding to a given measurement. (c) The effect
space arising if the measurement from (b) is implemented noisily.
The cones defined by each effect space are are the regions whose
boundaries are denoted by black arrows. Clearly, the effect spaces
in (a) and (b) define the same cone, which is distinct from the one
defined by the effect space in (c).

noisy implementation of a measurement M, this proportion-
ality does not hold for one or more effects.

In Fig. 3 we depict a given effect space together with an
inefficient and a noisy implementation thereof to illustrate the
difference between the two

C. Classicality of cone-equivalent GPTs

We now turn to the main technical result which underlies
the conceptual results of our paper.

Theorem 8. If the accessible GPT fragments G and G′ are
cone-equivalent, then G′ is simplex-embeddable if and only if
G is simplex-embeddable.

Proof. See Appendix B. �
Hence, given any two cone-equivalent accessible GPT

fragments, either both are classically explainable or neither
is. Since we have shown that cone-equivalent accessible GPT
fragments arise in a number of natural experimental scenarios,
this result is a useful tool for assessing nonclassicality in these
scenarios.

Note also that Theorem 8 holds even with the more permis-
sive notion of cone equivalence discussed in Remark 6.13 This
follows directly from Theorem 8 together with the fact that if
a GPT is simplex-embeddable, then so too is any equivalent
GPT. Furthermore, in Appendix E we prove a slightly stronger
version of this theorem using a slightly weaker notion of
simplicial-cone embedding.

V. APPLICATIONS TO WITNESSING NONCLASSICALITY

The following is a simple but powerful corollary of the
results we have proven so far.

Proposition 3. Quantum correlations that are not clas-
sically explainable can arise in prepare-measure scenarios
without measurement settings or source settings.

Proof. Consider a scenario with a single multisource and
a single multimeter, where the accessible GPT fragment is
not classically explainable by virtue of not being simplex-
embeddable. From this, define a flag-convexified scenario by
flag-convexifying both the multisource and the multimeter.
By Proposition 1, the resulting accessible GPT fragment is

13Furthermore, the proof does not actually use the full geometric
structure of accessible GPT fragments but only that of a “GPT
fragment,” see Ref. [104].
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cone-equivalent to the original accessible GPT fragment. The-
orem 8 then states that the flag-convexified accessible GPT
fragment is not simplex-embeddable. But the flag-convexified
multisource and flag-convexified multimeter have no input
settings, so it follows that GPT scenarios can fail to ad-
mit of a classical explanation even in scenarios where both
the measurements and the preparations have no external
inputs. �

Next, we recall that an operational prepare-measure sce-
nario admits of a generalized-noncontextual ontological
model if and only if the associated accessible GPT fragment is
simplex-embeddable [96]. It follows that one can find opera-
tional prepare-measure scenarios which have no measurement
settings or source settings, and yet which do not admit of any
noncontextual model. One can generate explicit examples by
taking any proof of contextuality involving a multisource and
a multimeter (or equivalently, a set of preparations and a set
of measurements) and flag-convexifying these.14

We now state two immediate but conceptually nontrivial
corollaries of Proposition 3.

Since measurement incompatibility is only possible if one
actually has multiple measurements, our proofs of contextu-
ality without measurement settings implies the following.

Corollary 8.1. Proofs of the failure of generalized noncon-
textuality do not require any incompatible measurements.

Additionally, since one’s choice of measurements and
preparations can only be correlated with hidden variables if
one actually has multiple measurements and preparations,
our proofs of contextuality without measurement settings and
without preparation settings implies the following.

Corollary 8.2. Proofs of the failure of generalized noncon-
textuality need not have freedom of choice as an assumption.

Finally, consider a scenario wherein one is aiming to
implement some multisource-multimeter pair (e.g., to tar-
get particular operational equivalences and corresponding
noncontextuality inequalities [69,80,105]), but wherein one’s
measurements are, in fact, inefficient, in the sense defined in
Sec. IV B. As argued in Sec. IV B, the accessible GPT frag-
ment associated with the targeted multimeter-multisource pair
and the one associated to the inefficient counterpart thereof are
cone-equivalent. Assuming that the accessible GPT fragment
of the targeted multisource-multimeter pair is not simplex-
embeddable, Theorem 8 then guarantees that the accessible
GPT fragment of its inefficient counterpart is not simplex-
embeddable either, no matter how inefficient one’s detectors.

It follows that:
Corollary 8.3. Proofs of the failure of generalized non-

contextuality are possible for any degree of inefficiency of
detectors; therefore, there is no detector loophole for exper-
imental tests of generalized noncontextuality.

If one’s detectors are too noisy (as opposed to ineffi-
cient, where the distinction between the two is described in
Sec. IV B), then there is no possibility of a failure of simplex-
embeddability and hence no possibility of a proof of the
failure of generalized noncontextuality. This was discussed at

14One can generate an even broader set of examples by considering
sources and meters which are merely operationally equivalent to the
flag-convexified multisource and multimeter.

length in Refs. [80,81]. (It is moreover clear why our proof
technique does not apply in the case of overly noisy detectors:
the accessible GPT fragment associated with a multimeter
and the one associated to a noisy version thereof are not
cone-equivalent, and so Theorem 8 cannot be applied.)

VI. THEORY-AGNOSTIC TOMOGRAPHY USING
ACCESSIBLE GPT FRAGMENTS

The framework of GPTs allows one to analyze experi-
mental data without presuming the correctness of quantum
theory. The notion of GPT tomography for states and effects
in an experiment was first used in Ref. [69], consolidated in
Ref. [70], and further developed in Ref. [71].

In Ref. [69], it was noted that if one has demonstrated
that certain normalized states exist within the GPT govern-
ing one’s experiment, then all convex mixture of these are
known to exist. Similarly, if one has demonstrated that certain
effects exist within the GPT governing one’s experiment, then
one has also demonstrated the existence of every effect in
the convex hull of (i) this set of effects, (ii) the set of their
complements, and (iii) the zero effect and the unit effect.
Consequently, when looking for a set of states and effects that
demonstrate the nonclassicality of what was realized experi-
mentally, e.g., by violating a noncontextuality inequality, one
need not use the states and effects that were actually realized
in the experiment. One can instead use secondary states and
effects whose existence can be inferred from those that were
actually realized. The accessible GPT fragment describing a
given experiment includes all of these secondary states and
effects, and thus characterizes all of the states and effects that
are known to exist in the GPT by virtue of those that were, in
fact, realized in one’s experiment.

Although previous experimental works considered prepa-
ration procedures that yielded normalized states, in certain
experiments it is natural to consider states that are never
realized deterministically in the experiment, but only with
a certain probability, flagged by some outcome variable. In
such cases, states are naturally understood as arising from a
probabilistic source. A standard example of this is when the
preparations of a system are achieved by “steering,” i.e., when
the preparations of one’s system are achieved by preparing
that system jointly with another and then implementing a
measurement on the latter system.

If one wishes to analyze the data from an experiment that
involves one or more probabilistic sources, then the sources
can be modeled by the state space of an accessible GPT frag-
ment (see again Fig. 1). Insofar as accessible GPT fragments
allow for the possibility of modeling probabilistic sources,
they supplement the techniques described in Refs. [69,70,71].
Indeed, only if one allows the sort of state space depicted
in Fig. 1 does one have the parametric freedom to describe
not only the states appearing in a given source but also the
probabilities with which they appear.

Given that one can conceptualize an arbitrary set of sources
and set of measurements as a single multisource and a single
multimeter, it follows that the most general prepare-measure
experiment constitutes a multisource-multimeter pair, and this
is precisely what defines an accessible GPT fragment.
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It should be noted that prior experiments performing
theory-agnostic tomography had detector inefficiencies, but
did not aim to quantify these and thus opted merely to im-
plement GPT tomography on the effects that were realized by
postselecting on obtaining a nonnull outcome. If, however, an
experimentalist is interested in quantifying the probability of
obtaining a null outcome, then they simply incorporate a null
outcome in the set of GPT effects to which they are fitting. If
we are in the special case in which the null outcome contains
no information about the system (i.e., when a detector has
the same probability of failing to fire regardless of the state
impinging upon it), then the set of nonnull effects form a
resolution of a subnormalized version of the unit effect.

Subnormalized versions of the unit effect are analogous
to the subnormalized states discussed above and being in-
terested in the probability of the null outcome is analogous
to being interested in the probabilities with which different
states appear in a source. In both cases, by refraining from
implementing any postselection in the analysis of the data, one
has the possibility of fitting to these probabilities.

Incorporating parameters for these probabilities can, in
principle, change the values of the parameters defining the
states and the effects which achieve the best overall fit to the
data. That is, the best-fit states and effects one obtains using
the nonpostselected data can, in principle, be slightly different
from those one would obtain using postselected data. The
nonpostselected fits are to be preferred insofar as the model
allows a parametric freedom that is closer to the true freedom
that is present in the experimental setup. As such, we expect
the theoretical tools introduced herein to be useful for GPT
tomography.

VII. CONCLUSION AND OUTLOOK

In this work we addressed the question of when particular
accessible GPT fragments admit of a classical explanation:
an embedding into a strictly classical (i.e., simplicial) GPT
of some dimension. One could alternatively study the ques-
tion of which particular accessible GPT fragments admit of
a quantum explanation: an embedding into a quantum GPT
of some dimension. In the special case of unrestricted GPTs,
this question was comprehensively answered in Ref. [106],
which showed that unrestricted GPTs that admit of a quantum
explanation are necessarily described by Euclidean Jordan
Algebras. The more general cases (i.e., GPTs which do not
satisfy the no-restriction hypothesis and accessible GPT frag-
ments which are not themselves GPTs) remain to be studied.
This question can be simplified using the fact that quantum
explainability will depend only on the cone equivalence class
rather than on the specific accessible GPT fragment being
considered. This follows from our proof of Theorem 8, but
where one replaces the simplicial cone with the quantum cone
of positive-semi-definite operators.

We also expect the notion of accessible GPT fragments
to be useful in the development of a resource-theoretic
approach to quantifying failures of generalized noncontex-
tuality in prepare-measure scenarios. As we noted in the
Introduction, questions about generalized noncontextuality
in an operational theory map to questions about simplex
embeddability for the corresponding GPT. In particular, a

multisource-multimeter pair in the operational theory fails to
admit of a generalized-noncontextual model if and only if the
accessible GPT fragment associated to it fails to be simplex
embeddable. Given Theorem 8, the distinction between an
accessible GPT fragment that is simplex-embeddable, and
therefore free within the resource theory, and one that is
not simplex-embeddable, hence nonfree, depends only on the
cone-equivalence class of the fragment. We address this prob-
lem in forthcoming work by showing that this perspective
reduces testing for freeness to a linear program.
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APPENDIX A: PROOF OF EQ. (52)

We now prove Eq. (52), namely, that in an accessible GPT
fragment (just as in a standard GPT) it holds that for any effect
e ∈ EM , there exists another effect e⊥ ∈ EM such that

e + e⊥ = uM .

Consider some substochastic comb de that realizes effect e
as

e

SM

= M

M

B

Y
S

de

SM

,

(A1)

with

B

Y

de =
Y

B

Z

q

r

. (A2)

Now, for any subnormalized probability distribution q on the
classical variables Y, Z , there exists another subnormalized
probability distribution q′ on Y, Z such that the distribution
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q̃ := q + q′ is normalized. Similarly, for every response func-
tion r on the classical variables B, Z , there exists a response
function r′ on B, Z such that r̃ := r + r′ = 1B×Z , the unit
effect on B × Z . Therefore, on the one hand,

Y

B

Z

q̃

r̃

=
Y

B

Z

q̃

=

p

B

Y

(A3)

where p is the marginal of q̃ on Y and hence is necessarily
normalized, and, on the other hand,

Y

B

Z

q̃

r̃

=
Y

B

Z

q

r

+
Y

B

Z

q

r′

+
Y

B

Z

q′

r

+
Y

B

Z

q′

r′

.

(A4)
Equating these two expressions and identifying the bracketed
part of the second as d⊥

e we have that

p

B

Y

=
Y

B

Z

q

r

+
B

Y

d⊥e . (A5)

The substochastic comb d⊥
e then realizes the effect e⊥, which

we can easily check satisfies e + e⊥ = uM via

e

SM

+
e⊥

SM

= M

M

B

Y
S

de

SM

+ M

M

B

Y
S

d⊥e

SM

(A6)

Eqs.(A2)&(A5)
= M

M

p

B

YS

SM

(A7)

=

SM

.
(A8)

APPENDIX B: PROOF OF THEOREM 8

Recall that a pair of accessible GPT fragments with the
same probability rule and unit, G = (�, E, B, u) and G′ =
(�′, E ′, B, u), are cone-equivalent if and only if

Cone[�′] = Cone[�], (B1)

Cone[E ′] = Cone[E]. (B2)

We now prove our main technical result, repeated here.

Theorem 8. If the accessible GPT fragments G and G′ are
cone-equivalent, then G′ is simplex-embeddable if and only if
G is simplex-embeddable.

Proof. As cone equivalence is a symmetric notion, we only
need to prove one direction. We now consider the case where
G′ is simplex-embeddable and we show that this implies that
G is simplex-embeddable.

By assumption, then, there exists some integer n and linear
maps ι : Span[�′] → Rn and κ : Span[E ′] → Rn∗ such that
for all s′ ∈ �′ and e′ ∈ E ′, we obtain

ι(s′) ∈ �n
sub, (B3)

κ (e′) ∈ �n
sub

∗
, (B4)

κ (e′)[ι(s′)] = B(e′, s′), (B5)

κ (u) = 1n. (B6)

We now show that the embedding maps ι and κ also constitute
a simplex embedding for G, i.e., that for all s ∈ � and e ∈ E ,
we have

ι(s) ∈ �n
sub, (B7)

κ (e) ∈ �n
sub

∗
, (B8)

κ (e)[ι(s)] = B(e, s), (B9)

κ (u) = 1n. (B10)

First, we note that the unit effects for G and G′ are (by
assumption) the same, and so Eqs. (B6) and (B10) are exactly
the same condition.

Next, we show that Eq. (B5) implies Eq. (B9). Not-
ing that Span[X ] = Span[Cone[X ]] and recalling that (by
cone equivalence) Cone[�′] = Cone[�] and Cone[E ′] =
Cone[E], it follows that

Span[�′] = Span[�], (B11)

Span[E ′] = Span[E]. (B12)

It follows that every effect e ∈ E can be decomposed as a
linear combination of effects in E ′, i.e.,

e =
∑

i

αie
′
i where αi ∈ R and e′

i ∈ E ′, (B13)

and similarly, that every state s ∈ � can be decomposed as a
linear combination of states in �′, i.e.,

s =
∑

j

β j s
′
j where β j ∈ R and s′

i ∈ �′. (B14)

It follows that

B(e, s) =
∑

i j

αiβ j B(e′
i, s′

j ) (B15)

=
∑

i j

αiβ j κ (e′
i)[ι(s

′
j )] (B16)

= κ (e)[ι(s)], (B17)

where in the first equality we use the decompositions of e and
s together with bilinearity of B, in the second we use Eq. (B5),
and in the third we use bilinearity of composition and linearity
of κ and ι.
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Next, we show that Eq. (B3) implies Eq. (B7), so that
ι(s) ∈ �n

sub for all states s ∈ �. Note that �n
sub is equal to the

intersection of Cone[�n
sub] with the space

{v ∈ Rn : 1n[v] � 1} (B18)

of subnormalized vectors in the vector space Rn. Now,
Eq. (B3) states that

ι(�′) ⊆ �n
sub, (B19)

and so

Cone[ι(�′)] ⊆ Cone
[
�n

sub

]
, (B20)

which by linearity of ι implies that

ι(Cone[�′]) ⊆ Cone
[
�n

sub

]
, (B21)

and as Cone[�′] = Cone[�], we therefore have that

ι(Cone[�]) ⊆ Cone
[
�n

sub

]
. (B22)

In particular, this means that ι(s) ∈ Cone[�n
sub] for every

s ∈ Cone[�]. All that remains is to show that ι(s) is a sub-
normalized vector, i.e., that 1n[ι(s)] � 1. Equation (B6) tells
us that 1n = κ (u); using this together with the fact [derived
above in Eq. (B17)] that κ (e)[ι(s)] = B(e, s), we find that

1n[ι(s)] = κ (u)[ι(s)] (B23)

= B(u, s) (B24)

� 1, (B25)

where the last line follows from the definition of u and the
fact that s ∈ �. So ι(s) is indeed subnormalized, and Eq. (B3)
follows.

Finally, we show that Eq. (B4) implies Eq. (B8). Equa-
tion (B4) states that

κ (E ′) ⊆ �n
sub

∗
, (B26)

which by linearity of κ implies that

κ (Cone[E ′]) ⊆ Cone
[
�n

sub
∗]

, (B27)

and as Cone[E ′] = Cone[E] we have that

κ (Cone[E]) ⊆ Cone
[
�n

sub
∗]

. (B28)

In particular, this means that κ (e) ∈ Cone[�n
sub

∗] for every
e ∈ Cone[E]. We can then note that �n

sub
∗ is equal to the set

of vectors which are in Cone[�n
sub

∗] and which are below 1n

in the partial order defined by Cone[�n
sub

∗] via

v � v′ ⇐⇒ ∃c ∈ Cone
[
�n

sub
∗] s.t. v + c = v′. (B29)

As we already know that κ (e) ∈ Cone[�n
sub

∗] for e ∈ E , all
that we must show is that κ (e) � 1n with respect to this
partial order. That is, we need to show that there exists ce ∈
Cone[�n

sub
∗] such that

κ (e) + ce = 1n. (B30)

Recall from Eq. (52) that for any effect e ∈ E in an accessible
GPT fragment, there exists some effect e⊥ ∈ E such that

e + e⊥ = u. (B31)
Applying κ to this equation, and using the linearity of κ , we
obtain

κ (e) + κ (e⊥) = κ (u). (B32)

By Eq. (B10), κ (u) = 1n. Using the fact that e⊥ ∈ E and hence
[by Eq. (B28)] that κ (e⊥) ∈ Cone[�n

sub
∗], we can then see

that the choice ce := κ (e⊥) satisfies Eq. (B30) and so κ (e) �
1n. This shows that κ (e) ∈ �n

sub
∗, demonstrating Eq. (B8).

Putting all this together, what we have shown is that the
simplex-embedding maps ι and κ for G′ are necessarily also
simplex-embedding maps for G, and so if G′ is simplex-
embeddable, then so too is G. �

APPENDIX C: FLAG-CONVEXIFICATION YIELDS A
CONE-EQUIVALENT ACCESSIBLE GPT FRAGMENT

Recall the accessible GPT fragment GPμMν =
(�Pμ, EMν , BPμMν , uMν ) defined in Eqs. (63) to (66), arising
from the flag-convexification of some multisource-multimeter
pair (P, M ). We will now show that GPμMν is cone-equivalent
to the accessible GPT fragment GPM = (�P, EM , BPM , uM )
associated with the original multisource-multimeter pair.

First, we relate the relevant subspaces.
Lemma 9. The vector space spanned by the flag-

convexified accessible GPT fragment’s states (effects) is
equal to the vector space spanned by the original accessible
GPT fragment’s states (effects). That is, SP = SPμ and
SM = SMν .

Proof. First note that the span of all of the accessible states
is the same as the span of the states accessible by “atomic”
substochastic combs

SP :=Span P
X

A

S

c =Span

S

P

x

a

X

A

,

(C1)
and similarly in the flag-convexified case

SP μ :=Span

Pμ
A

S

X

c′ =Span

Pμ

a

A

S

x

X
. (C2)
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This is because c and c′ can always be decomposed as

X

A

c =
∑
ax

cax

x

a

X

A

and (C3)

A X

c′ =
∑
ax

c′ax
xa

XA
, respectively, (C4)

for some cax, c′
ax ∈ R+. Then, we can write

Pμ

a

A

S

x

X
=

S

P

a

X

A

μ

x
X

X

X

=

S

P

x

a

X

A

μ

x
,

(C5)

and hence

SP μ =Span

S

P

x

a

X

A

μ

x
. (C6)

Since μ has full support,
μ

x
�0, and so

SP μ =Span

S

P

x

a

X

A

=SP . (C7)

The proof for the measurement side is exactly analogous. �
This has immediate consequences for the structure of the

two GPTs. The fact that the subspaces are the same immedi-
ately implies that the inclusion maps and projection maps are
the same. That is, the fact that SP = SPμ means that

S

P μ

SP μ

=
S

P

SP

and
S

P μ

SP μ

=
S

P

SP

(C8)

and the fact that SM = SMν means that

S

Mν

SMν

=
S

M

SM

and
S

Mν

SMν

=
S

M

SM

. (C9)

Given that the probability rule and the unit effect for the
accessible GPT fragment can be defined in terms of these
inclusion and projection maps [as is done in Eqs. (48) and
(50), respectively] it therefore follows that BPμMν = BPM and
uMν = uM .

We can now reexpress the state space and effect space
[Eq. (63)] for the accessible GPT fragment in the flag-

convexified scenario by using the projectors from the original
scenario

ΩP μ =
s

SP =

Pμ

P

A
S

X

SP

c′ , (C10)

EMν =
e

SM

=
Y

Mν
B

d′

M

S

SM

. (C11)

We now use this to show that the state and effect cones for
these two GPTs are identical.

Lemma 10. The cone generated by the state (effect) space
of a flag-convexified accessible GPT fragment is equal to
the cone generated by the state (effect) space of the original
accessible GPT fragment. That is, Cone[�P] = Cone[�Pμ]
and Cone[EM] = Cone[EMν ].

Proof. This is shown by straightforward calculation:

Cone[ΩP μ ]=Cone

Pμ

P

A
S

X

SP

c′

c′

(C12)

=Cone

Pμ

P a

A
S

x

X

SP

a,x

(C13)

=Cone P

a

X

A

μ

x
X

X

X

P

S

SP

a,x

(C14)

=Cone
P

a
A

x
X

P

S

SP

μ

x

a,x

(C15)

=Cone
P

a
A

x
X

P

S

SP

a,x

(C16)

= Cone[�P]. (C17)
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Here, Eq. (C13) follows by substituting a decomposition of c′
as shown in Eq. (C4). The proof for the measurement side is
exactly analogous. �

This establishes cone equivalence.

APPENDIX D: PROOF THAT A FLAG-CONVEXIFIED GPT
FRAGMENT IN A SUBFRAGMENT OF THE ORIGINAL

ACCESSIBLE GPT FRAGMENT

We here prove the following.
Lemma 11. The state (effect) space of a flag-convexified

accessible GPT fragment is contained within the state (effect)
space of the original accessible GPT fragment. That is, �Pμ ⊆
�P and EMν ⊆ EM .

Proof. Start by assuming that we have some state s ∈ �Pμ .
The definition of �Pμ means that

s

SP =
Pμ

P

AS X

c′
SP

= P

P

X

A
S

μ

X

X

X

c′
SP

. (D1)

Now, we can make the identification

P

P

X

A
S

μ

X

X

X

c′
SP

=: P
X

A

c

P

S

SP

, (D2)

which immediately means that s ∈ �P.
The proof for the measurement side is exactly

analogous. �

APPENDIX E: ALTERNATIVE PROOF OF THEOREM 8

An accessible GPT fragment G = (�, E, B, u) is simplex-
embeddable if and only if there exists some integer n and
linear maps ι : SP → Rn and κ : SM

∗ → Rn∗ such that for all
s ∈ � and e ∈ E , we have

ι(s) ∈ �n
sub, (E1)

κ (e) ∈ �n
sub

∗
, (E2)

κ (e)[ι(s)] = B(e, s), (E3)

κ (u) = 1n. (E4)

Now, we can define an apparently weaker notion which
refers only to cones. That is, we say that an accessible GPT
fragment G = (�, E, B, u) is simplicial-cone-embeddable if
and only if there exists some integer n and linear maps ι :
Span[�] → Rn and κ : Span[E] → Rn∗ such that for all
s ∈ Cone[�] and e ∈ Cone[E], we have

ι(s) ∈ Cone
[
�n

sub

]
, (E5)

κ (e) ∈ Cone
[
�n

sub

]∗
, (E6)

κ (e)[ι(s)] = B(e, s). (E7)

As this condition only depends on the triple
(Cone[�], Cone[E], B), it is immediately clear that, given
two cone equivalent accessible GPT fragments, either both
will be simplicial-cone embeddable or neither will be.

We will now prove the following theorem.
Theorem 12. An accessible GPT fragment G =

(�, E, B, u) is simplex embeddable if and only if it is
simplicial-cone embeddable.

Proof. The only if direction is trivial, as the embedding
maps for simplex embedding also satisfy all of the required
conditions for simplicial-cone embedding. We will therefore
focus on the if direction; that is, the existence of an n, ι, and
κ defining a simplicial-cone embedding implies the existence
of an n′, ι′, and κ ′ defining a simplex embedding.

The key step in the proof is to show that, although it need
not be the case that κ (u) = 1n, the κ ′ that we construct does
satisfy κ ′(u) = 1n.

Note that without loss of generality we can take κ (u) to be
in the interior of the simplicial cone Cone[�n

sub]∗. The reason
that this can be done without loss of generality is that if κ (u) is
not in the interior, then it must lie on a simplicial subcone con-
stituting a face. Then, one can always project down onto the
simplicial-subcone for which it is in the interior, and then have
a new simplicial-cone embedding into this subcone. From the
perspective of ontological models, what this means is that if
κ (u) does not have full support on the ontic state space 
, then
we can always restrict attention to the subset of 
 for which
it does have support, as all of the other response functions in
the model necessarily only have support on this subset and
so we can project the epistemic states of the model into this
space as well. More formally, note that every other effect κ (e)
is already in this subcone, as we have that there exists κ (e⊥)
in the cone such that κ (e) + κ (e⊥) = κ (e + e⊥) = κ (u), and
hence, when we project ι(s) into this subcone none of the
probabilities of obtaining these effects will change.

We therefore consider the case in which κ (u) is in the
interior of Cone[�n

sub]∗. As Cone[�n
sub]∗ is a homogeneous

cone,15 this means that there exists a cone automorphism16 τ

such that τ ∗(κ (u)) = 1n. We therefore define κ ′ := τ ∗ ◦ κ and
ι′ := τ−1 ◦ ι. These satisfy

ι′(s) ∈ Cone
[
�n

sub

]
, (E8)

κ ′(e) ∈ Cone
[
�n

sub

]∗
, (E9)

κ ′(e)[ι′(s)] = τ ∗(κ (e))[τ−1(ι(s))] (E10)

= κ (e)[τ (τ−1(ι(s)))] (E11)

= B(e, s), (E12)

κ ′(u) = τ ∗(κ (u)) (E13)

= 1n. (E14)

To complete the proof, we need only show that ι′(s) ∈ �n
sub

and κ ′(e) ∈ �n
sub

∗.

15A homogeneous cone is one for which the automorphism group
is transitive on the interior, i.e., for which, given any pair of interior
points, there is an automorphism mapping between them.

16That is, an invertible linear map which preserves the cone and
whose inverse preserves the cone.
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Because we know that ι′(s) ∈ Cone[�n
sub] and we know

that

1n[ι′(s)] = κ ′(u)[ι′(s)] = B(u, s) � 1, (E15)

for any s ∈ �, which together mean that ι′(s) ∈ �n
sub as we

require of a simplex embedding.
Similarly, we know that for any effect e there exists

an effect e⊥ such that u = e + e⊥ and that κ ′(e), κ ′(e⊥) ∈
Cone[�n

sub]∗, Moreover,

κ ′(e) + κ ′(e⊥) = κ ′(u) = 1n, (E16)

which means that κ ′(e) � 1n, and, hence that κ ′(e) ∈ �n
sub

∗ as
we require of a simplex embedding. �

What this shows is that whether or not an accessible
GPT fragment is simplex-embeddable is only actually depen-
dent on the tuple (Cone[�], Cone[E], B), as these are the
data necessary to decide if it is simplicial-cone embeddable.
Hence, for any two accessible GPT fragments that are cone-
equivalent either (i) they are both simplicial-cone embeddable
and both simplex-embeddable or (ii) neither is simplicial-cone
embeddable and neither is simplex-embeddable.
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