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Quantum walk on orbit spaces
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Inspired by the covering-space method in path integrals on multiply connected spaces, we here present a
universal formula of time-evolution kernels for continuous- and discrete-time quantum walks on orbit spaces.
In this note, we focus on the case in which walkers’ configuration space is the orbit space �/�, where �

is an arbitrary lattice and � is a discrete group whose action on � has no fixed points. We show that the
time-evolution kernel on �/� can be written as a weighted sum of time-evolution kernels on �, where the
summation is over the orbit of initial point in � and weight factors are given by a one-dimensional unitary
representation of �. Focusing on one dimension, we present a number of examples of the formula. We also
present universal formulas of resolvent kernels, canonical density matrices, and unitary representations of
arbitrary groups in quantum walks on �/�, all of which are constructed in exactly the same way as for the
time-evolution kernel.
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I. INTRODUCTION

Quantum walk—a quantum-mechanical analog of classical
random walk on lattices or graphs—has been the subject of
intense study over the last two decades. Just as in classical
random walk, there exist two distinct formulations in quantum
walk: continuous-time quantum walk and discrete-time quan-
tum walk; the former is equivalent to tight-binding models in
condensed matter physics, while the latter is a natural gen-
eralization of classical random walk and formulated without
recourse to Hamiltonian operators. These two formulations
have their own merits and their applications now appear in
many disciplines, including the quantum search algorithm
[1,2], universal quantum computation [3–6], and topological
phases of matter [7]; see Refs. [8–10] for reviews. In both
formulations, the central object is the probability amplitude
for finding particles (walkers), which is given by a matrix
element of the time-evolution operator in position space—the
time-evolution kernel.1 This time-evolution kernel is normally
calculated through spectral decomposition or numerical cal-
culation, which becomes harder as the matrix size becomes
larger. It would therefore be desirable if a simpler method
existed.

The purpose of this note is to present such a method
by generalizing the Dowker’s covering-space method [11] in
path integral (see also Refs. [12–16]). As is well known, in
quantum mechanics on continuous spaces, the time-evolution
kernel can be represented by the Feynman path integral, which
provides a number of powerful methods to analyze quantum
systems nonperturbatively. Among them is the covering-space
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1The term “kernel” is a remnant of continuum theory. In quantum

mechanics on continuous spaces, a matrix element of the time-
evolution operator is given by an integral kernel.

method: it provides a universal method to construct the time-
evolution kernel on multiply connected spaces of the form
M = M̃/π1(M), where M̃ is the universal covering space
of M and π1(M) is the fundamental group of M. In this
method, the path integral on M is given by a linear com-
bination of partial amplitudes, where each partial amplitude
is given by the path integral on the universal covering space
M̃ and linear-combination coefficients are given by one-
dimensional unitary representations of the fundamental group
π1(M). Inspired by this method, we here present a universal
formula for the time-evolution kernel in both continuous- and
discrete-time quantum walks where walkers’ configuration
space can be regarded as the orbit space �/�. Here � is an
arbitrary lattice and � is a discrete group whose action on �

has no fixed points. A typical example for such configuration
spaces is that for a single walker on a periodic lattice. An-
other typical example is the configuration space for identical
walkers on an arbitrary lattice, where the indistinguishabil-
ity of identical particles makes their configuration space an
orbit space [13,17–20]. We show that the time-evolution ker-
nel on the orbit space �/� can be written as a weighted
sum of time-evolution kernels on �, where the summation
is over the orbit of initial point in � and weight factors are
given by a one-dimensional unitary representation of �. This
universal formula offers a simpler method to construct the
time-evolution kernel on �/� because computation becomes
generally much easier on �.

In what follows, we first set up the problem and then
present our main formula and its proof. We then present a
number of examples of the formula in Sec. III. In Sec. IV,
we present several other quantities that can be constructed in
exactly the same way as for the time-evolution kernel. Exam-
ples include the resolvent kernel, the canonical density matrix,
and a unitary representation of arbitrary groups. Section V is
devoted to the conclusion. Appendix presents some sample
computations in continuous-time quantum walk.
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Throughout this note we will use the units in which h̄ =
a = 1, where a is a lattice spacing.

II. TIME-EVOLUTION KERNEL

To begin with, let us fix some notation. Let � be an arbi-
trary lattice (i.e., a discrete space spanned by a set of linearly
independent vectors in a Euclidean space) and let � be a
discrete group whose action on � has no fixed points. We
note that � must be a discrete subgroup of the isometry of the
Euclidean space, which consists of reflections, translations,
and rotations. Let �/� be the orbit space (quotient space)
given by the identification x ∼ γ x in �, where γ x stands for
the action of γ ∈ � on x ∈ � that satisfies the compatibility
condition γ1(γ2x) = (γ1γ2)x for any γ1, γ2 ∈ � and x ∈ �.
For the moment, we shall consider continuous-time quantum
walk on the lattice �/�, where the Hilbert space H is the
set of square-summable sequences on �/�, H = l2(�/�).
(Note, however, that the formula presented below is turned
out to be applicable to discrete-time quantum walk as well;
see Sec. IV C.) The action of the time-evolution operator Uτ

on a state ψ0 ∈ H is defined by

(Uτψ0)(x) :=
∑

y∈�/�

Uτ (x, y)ψ0(y), ∀x ∈ �/�, (1)

where Uτ (x, y) is the time-evolution kernel and the subscript
τ ∈ R represents the time. The probability for finding a parti-
cle at the time τ and at the position x is then given by

Pτ (x) = |(Uτψ0)(x)|2. (2)

In particular, if the particle is initially localized at x =
x0 [i.e., ψ0(x) = δx,x0 ], the probability is simply given by
Pτ (x) = |Uτ (x, x0)|2.

In the following, we shall construct Uτ (x, y) in terms of the
time-evolution kernel on �. The key is the group property of
the time-evolution operator.

A. The formula

The time-evolution operator Uτ is a one-parameter fam-
ily of unitary operators. It satisfies the composition law
Uτ1Uτ2 = Uτ1+τ2 , the unitarity U †

τ (= U −1
τ ) = U−τ , and the ini-

tial condition U0 = I , where I stands for the identity operator.
Correspondingly, the time-evolution kernel Uτ (·, ·) must sat-
isfy the following properties:

(1) Property 1 (Composition law):∑
z∈�/�

Uτ1 (x, z)Uτ2 (z, y) = Uτ1+τ2 (x, y), ∀x, y ∈ �/�.

(3a)

(2) Property 2 (Unitarity):

Uτ (x, y) = U−τ (y, x), ∀x, y ∈ �/�. (3b)

(3) Property 3 (Initial condition):

U0(x, y) = δx,y, ∀x, y ∈ �/�. (3c)

Here the overline ( ) stands for the complex conjugate. As
we shall prove shortly, such a kernel can be constructed as

follows:

Uτ (x, y) =
∑
γ∈�

D(γ )Ũτ (x, γ y), (4)

where D : � → U (1) (γ �→ D(γ )) is a one-dimensional
unitary representation of � that satisfies the group composi-
tion law D(γ )D(γ ′) = D(γ γ ′) and the unitarity D(γ ) = D
(γ )−1 = D(γ −1) for any γ , γ ′ ∈ �. Here Ũτ (·, ·) is a time-
evolution kernel on � that satisfies the following assump-
tions:

(1) Assumption 1 (Composition law):∑
z∈�

Ũτ1 (x, z)Ũτ2 (z, y) = Ũτ1+τ2 (x, y), ∀x, y ∈ �. (5a)

(2) Assumption 2 (Unitarity):

Ũτ (x, y) = Ũ−τ (y, x), ∀x, y ∈ �. (5b)

(3) Assumption 3 (Initial condition):

Ũ0(x, y) = δx,y, ∀x, y ∈ �. (5c)

(4) Assumption 4 (� invariance):

Ũτ (γ x, γ y) = Ũτ (x, y), ∀x, y ∈ �, ∀γ ∈ �. (5d)

We note that the � invariance (5d) is guaranteed if the
Hamiltonian operator on � is invariant under the action
of �.

Before giving the proof, let us first present a quick deriva-
tion of formula (4) by following the Dowker method [11].
To this end, let ψ̃τ (x) be an equivariant function on � that
satisfies ψ̃τ (γ x) = D(γ )ψ̃τ (x) for any x ∈ � and γ ∈ �. (The
reason for using this will be apparent shortly.) Then we
have

ψ̃τ (x) =
∑
y∈�

Ũτ (x, y)ψ̃0(y)

=
∑

y∈�/�

∑
γ∈�

Ũτ (x, γ y)ψ̃0(γ y)

=
∑

y∈�/�

∑
γ∈�

Ũτ (x, γ y)D(γ )ψ̃0(y)

=
∑

y∈�/�

⎛⎝∑
γ∈�

D(γ )Ũτ (x, γ y)

⎞⎠ψ̃0(y), (6)

where in the second equality we have used the following
identity: ∑

x∈�

f (x) =
∑

x∈�/�

∑
γ∈�

f (γ x). (7)

Here f (x) is an arbitrary test function on �. This identity just
says that first summing over the orbit � · x := {γ x : γ ∈ �}
of x ∈ �/� and then summing over all x ∈ �/� yields the
summation over the whole space �. By comparing Eq. (6)
with definition (1), we arrive at formula (4).

Now, since Ũτ (·, ·) is defined on the lattice �, the do-
main of Uτ (·, ·) defined by Eq. (4) can be naturally extended
from �/� to �. In particular, it satisfies the following
equation:

Uτ (γ x, y) = D(γ )Uτ (x, y), ∀x, y ∈ �, ∀γ ∈ �. (8)
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In fact, a straightforward calculation gives

Uτ (γ x, y) =
∑
γ ′∈�

D(γ ′)Ũτ (γ x, γ ′y)

=
∑
γ ′∈�

D(γ γ −1γ ′)Ũτ (γ −1γ x, γ −1γ ′y)

= D(γ )
∑
γ ′∈�

D(γ −1γ ′)Ũτ (x, γ −1γ ′y)

= D(γ )
∑
γ ′′∈�

D(γ ′′)Ũτ (x, γ ′′y)

= D(γ )Uτ (x, y), (9)

where the second equality follows from the � invariance (5d)
and the third equality follows from the group composition law
D(γ γ −1γ ′) = D(γ )D(γ −1γ ′). In the fourth equality, we have
changed the summation variable from γ ′ to γ ′′ := γ −1γ ′. It is
now obvious from Eq. (8) that (Uτψ0)(x) defined by Eq. (1)
also satisfies (Uτψ0)(γ x) = D(γ )(Uτψ0)(x) for any x ∈ �

and γ ∈ �; that is, (Uτψ0)(x) becomes an equivariant function
on �. This is the reason why we used the equivariant function
in the above derivation. As we shall see in Sec. III, Eq. (8)
provides boundary conditions on �/�.

Finally, let us comment on the case where the action of �

has fixed points. First, identity (7) does not hold in general
if there is a fixed point: if there is a point x ∈ � that sat-
isfies γ x = x for some γ ( �= e) ∈ �, where e stands for the
identity element of �, the right-hand side of Eq. (7) leads to
an overcounting of the fixed point x.2 Note, however, that if
f (x) is subject to the Dirichlet boundary condition at the fixed
point, such an overcounting does not occur so that Eq. (7)
holds true even in the presence of fixed points.3 Note that
the Dirichlet boundary condition f (x) = 0 at x = γ x can be
deduced from the equivariant property D(γ ) f (x) = f (γ x) =
f (x) if D(γ ) �= 1. Hence, if D : � → U (1) is not the trivial
representation, our formula (4) can be applied equally well
to the case in which the action of � has fixed points. For
the case of the trivial representation, however, the equivariant
property does not lead to any definite boundary conditions.
For simplicity, in this note we will mainly focus on the case
where � has no fixed points.

B. Proof

Now we show that Uτ (·, ·) given by formula (4) satisfies the
required properties (3a)–(3c) if D is a one-dimensional unitary
representation of � and if Ũτ (·, ·) satisfies the assumptions
(5a)–(5d). The proof is by direct computation. Each property
is proved as follows. (See also Refs. [21–23] for similar proofs
in path integral.)

Property 1 (Composition law). Let us first prove the com-
position law (3a). By substituting Eq. (4) into the left-hand

2In general, Eq. (7) becomes
∑

x∈� f (x) = ∑
x∈(�−	)/�

∑
γ∈�

f (x) + ∑
x∈	 f (x), where 	 stands for the set of fixed points of �.

3More generally, such an overcounting does not occur if∑
x∈	 f (x) = 0.

side of Eq. (3a), we get∑
z∈�/�

Uτ1 (x, z)Uτ2 (z, y)

=
∑

z∈�/�

∑
γ1∈�

∑
γ2∈�

D(γ1)D(γ2)Ũτ1 (x, γ1z)Ũτ2 (z, γ2y)

=
∑

z∈�/�

∑
γ1∈�

∑
γ2∈�

D(γ1γ2)Ũτ1 (x, γ1z)Ũτ2 (γ1z, γ1γ2y)

=
∑
γ∈�

D(γ )
∑

z∈�/�

∑
γ1∈�

Ũτ1 (x, γ1z)Ũτ2 (γ1z, γ y)

=
∑
γ∈�

D(γ )
∑
z∈�

Ũτ1 (x, z)Ũτ2 (z, γ y)

=
∑
γ∈�

D(γ )Ũτ1+τ2 (x, γ y)

= Uτ1+τ2 (x, y), (10)

where the second equality follows from the group composi-
tion law D(γ1)D(γ2) = D(γ1γ2) and the � invariance (5d).
The third equality follows from the change of the summation
variable from γ2 to γ := γ1γ2, and the fourth equality follows
from formula (7). Finally, the fifth equality follows from as-
sumption (5a).

Property 2 (Unitarity). Let us next prove unitarity (3b). By
substituting Eq. (4) into the left-hand side of Eq. (3b), we get

Uτ (x, y) =
∑
γ∈�

D(γ ) Ũτ (x, γ y)

=
∑
γ∈�

D(γ −1)Ũ−τ (γ y, x)

=
∑
γ∈�

D(γ −1)Ũ−τ (y, γ −1x)

= U−τ (y, x), (11)

where the second equality follows from the unitarity prop-
erties D(γ ) = D(γ −1) and (5b). The third equality follows
from the � invariance (5d), and the last equality follows from
definition (4) (where the summation is over γ −1 instead of γ ).

Property 3 (Initial condition). Let us finally prove the ini-
tial condition (3c). By substituting Eq. (4) into the left-hand
side of Eq. (3c), we get

U0(x, y) =
∑
γ∈�

D(γ )Ũ0(x, γ y)

=
∑
γ∈�

D(γ )δx,γ y

= D(e)δx,ey

= δx,y, (12)

where the second equality follows from assumption (5c).
The third equality follows from the fact that x and γ y can-
not be equal for any x, y ∈ �/� except for the case γ = e.
Finally, the last equality follows from D(e) = 1 for any one-
dimensional unitary representations of �.
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Putting all the above things together, we see that Eq. (4) is
the sufficient condition to be the time-evolution kernel on the
orbit space �/�. This completes the proof.

III. EXAMPLES

There exist a number of examples in which walkers’ con-
figuration space can be regarded as an orbit space. Typical
examples are a single walker on a torus, the half space, and a
cubic. Another typical example is identical walkers on an arbi-
trary lattice, where their configuration space always becomes
an orbit space. In this section, we shall focus on one spatial
dimension for simplicity and present several examples that fit
into formula (4). Let us start with single-walker examples.

A. A single walker in one dimension

Let Ũτ (x, y) be a time-evolution kernel on the inte-
ger lattice � = Z that satisfies the composition law (5a),
the unitarity (5b), and the initial condition (5c), as well
as the translation invariance Ũτ (x + z, y + z) = Ũτ (x, y) and
the reflection invariance Ũτ (z − x, z − y) = Ũτ (x, y) for any
x, y, z ∈ Z. A typical example of such a kernel is that of a
free particle given by Ũτ (x, y) = ei π

2 |x−y|J|x−y|(ωτ ), where Jn

is the Bessel function of the first kind and ω(> 0) is a hopping
parameter; see Eq. (A8) in Appendix. [Note, however, that
the formulas presented below are not limited to free-particle
theories. They are robust against any perturbations unless
boundary conditions (8) are changed.] Below we shall con-
struct time-evolution kernels for a single walker on a circle,
the half line, and a finite interval by gauging these discrete
symmetries.

Example 1 (A single walker on a circle). Let us first
consider a single walker on a periodic lattice of L sites,
{1, 2, . . . , L (mod L)}. This lattice can be constructed from
Z by making the identification x ∼ x + nL, where n is an
arbitrary integer; see Fig. 1(a). Hence, the configuration space
is the orbit space Z/LZ, where LZ = 〈t | ∅〉 is the free group
generated by a translation t . Its action on Z is defined by

tx := x + L. (13)

Note that any element of LZ can be written as the product t n,
whose action on Z is given by t nx = x + nL.

Now we need to find out one-dimensional unitary repre-
sentations of LZ. Since LZ is the free group generated by a
single generator t , we have a one-parameter family of maps
D[θ] : LZ → U (1) labeled by an angle parameter θ ,

D[θ](t ) = eiθ , (14)

where θ ∈ R/2πR. It then follows from formula (4) that the
time-evolution kernel for a single walker on Z/LZ takes the
following form:

U [θ]
τ (x, y) =

∞∑
n=−∞

D[θ](t n)Ũτ (x, t ny)

=
∞∑

n=−∞
einθŨτ (x, y + nL). (15)

Just as in the path integral on a circle (see, e.g., Sec. 2.4 of
Ref. [24]), Eq. (15) represents the summation over winding

numbers. Physically, Eq. (15) describes the situation in which
the walker acquires the Aharonov-Bohm phase eiθ every time
it winds around the circle, where θ plays the role of a mag-
netic flux penetrating through the circle. This is the physical
meaning of the weight factor (14) and the summation over the
orbit of initial point. See also Fig. 1(a).

Now two remarks are in order. First, it follows from
Eq. (8) that U [θ]

τ (·, ·) satisfies the identity U [θ]
τ (x + L, y) =

eiθU [θ]
τ (x, y); that is, it satisfies the twisted boundary

conditions U [θ]
τ (L + 1, y) = eiθU [θ]

τ (1, y) and U [θ]
τ (0, y) =

e−iθU [θ]
τ (L, y). Namely, Eq. (15) gives the universal formula

of the time-evolution kernel for a single walker on a circle
subject to these twisted boundary conditions.

The second remark is that, under the reflection, Eq. (15)
satisfies U [θ]

τ (z − x, z − y) = U [−θ]
τ (x, y). Hence, at θ = 0 or

π (mod 2π ), Eq. (15) becomes reflection invariant. We can
use this invariance for the construction of time-evolution ker-
nels on a finite interval; see example 3.

Example 2 (A single walker on the half line). Let us next
consider a single walker on a semi-infinite lattice {1, 2, . . . }.
This lattice can be constructed from the integer lattice Z by
making the identification x ∼ 1 − x; see Fig. 1(b). Hence, the
configuration space is the orbit space Z/Z2, where Z2 = 〈r |
r2 = e〉 is the cyclic group of order 2. Here r is the reflection
whose action on Z is defined by

rx := 1 − x. (16)

Note that r2x = x. Note also that reflection (16) does not have
a fixed point in the integer lattice. (Its fixed point is x = 1/2.)

Now, since r2 = e, any one-dimensional unitary represen-
tation D : Z2 → U (1) must satisfy the condition D(r)2 = 1,
whose solution is D(r) = ±1. Hence, there exist two distinct
maps D[φ] given by

D[φ](r) = eiφ, (17)

where φ ∈ {0, π (mod 2π )}. Correspondingly, there exist the
following two distinct time-evolution kernels for a single
walker on Z/Z2:

U [φ]
τ (x, y) =

1∑
n=0

D[φ](rn)Ũτ (x, rny)

= Ũτ (x, y) + eiφŨτ (x, 1 − y). (18)

Again, just as in the path integral on the half line [21,25,26],
Eq. (18) represents the summation over bouncing numbers
off the boundary: the n = 0 term is the contribution from the
direct path, while the n = 1 term is the contribution from
the reflected path off the boundary. The physical meaning
of the weight factor (17) is now clear: it plays the role of
the reflection amplitude off the boundary. In other words, the
walker acquires the phase shift φ when reflected from the
boundary. See also Fig. 1(b).

Notice that Eq. (18) satisfies the identity U [φ]
τ (1 − x, y) =

eiφU [φ]
τ (x, y); that is, it satisfies the boundary condition

U [φ]
τ (0, y) = eiφU [φ]

τ (1, y). Hence, Eq. (18) gives the universal
form of the time-evolution kernel for a single walker on the
half line subject to this boundary condition. We emphasize
that, as noted at the end of Sec. II A, if one wants a theory
subject to the Dirichlet boundary condition at x = 0, one
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FIG. 1. Construction of one-dimensional orbit spaces Z/LZ, Z/Z2, and Z/D∞ and typical single-walker trajectories. In the space-time
picture, these orbit spaces correspond to a cylinder, the half space, and a finite strip. (a) A cylinder of circumference L is constructed by
rolling up the infinite strip. This is equivalent to making the identification x ∼ x + nL (n = 0, ±1, ±2, . . . ) in the infinite strip. Under this
identification, a single-walker trajectory with the initial and final points y + nL and x is mapped to a trajectory that starts from the initial point
y and reaches the final point x after winding around the cylinder n times in the clockwise direction. The walker acquires the Aharonov-Bohm
phase eiθ every time it winds around the cylinder, and this phase is described by the unitary representation D[θ] : LZ → U (1). (b) The half
space with the boundary at x = 1/2 is constructed by folding the infinite strip in half at x = 1/2. This is equivalent to making the identification
x ∼ 1 − x in the infinite strip. (Note, however, that noninteger points are excluded in the integer lattice. Hence, the boundary is in fact at
x = 1 in our lattice problem.) Under this identification, a single-walker trajectory with the initial and final points 1 − y and x is mapped to a
trajectory that bounces off the boundary. The walker acquires the phase eiφ = ±1 every time it hits the boundary, and this phase is described
by the unitary representation D[φ] : Z2 → U (1). (c) A finite strip with the boundaries at x = 1/2 and 1/2 + L is constructed by folding up the
infinite strip at x = 1/2 + nL (n = 0, ±1, ±2, . . . ). This is equivalent to making the identifications x ∼ x + 2nL and x ∼ 1 − x + 2nL in the
infinite strip. Under these identifications, a single-particle trajectory with the initial and final points y + 2nL (1 − y + 2nL) and x is mapped
to a trajectory that bounces off the boundaries 2n (2n + 1) times. The walker acquires the phase eiθ = ±1 (ei(θ+φ) = ±1) every time it hits the
left (right) boundary, and these phases are described by the unitary representation D[θ,φ] : D∞ → U (1).

should consider the reflection defined by rx := −x and choose
the representation φ = π . In this case, one arrives at the
formula U [φ=π]

τ (x, y) = Ũτ (x, y) − Ũτ (x,−y) which satisfies
U [φ=π]

τ (0, y) = 0.
Example 3 (A single walker on a finite interval). Let

us next consider a single walker on a finite interval of L
sites, {1, 2, . . . , L}. This lattice can be constructed from Z
by making the identifications x ∼ x + 2nL and x ∼ 1 − x +
2nL, where n is an arbitrary integer; see Fig. 1(c). Hence,
the configuration space is the orbit space Z/D∞, where
D∞ = Z � Z2 = 〈t, r | r2 = e, rtr = t−1〉 is the infinite di-
hedral group generated by a translation t and a reflection

r.4 The actions of these operators on Z are defined as
follows:

tx := x + 2L and rx := 1 − x. (19)

Note that any element of D∞ can be written as t nrm, where
n = 0,±1,±2, . . . and m = 0, 1. The action of this op-
erator on Z is given by t nrmx = x + 2nL for m = 0 and

4The infinite dihedral group can also be written as the free product
D∞ ∼= Z2 ∗ Z2 = 〈r, r′ | r2 = e, r′2 = e〉, where r′(= tr) is another
reflection defined by r′x := 2L + 1 − x.
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t nrmx = 1 − x + 2nL for m = 1, respectively. Note also that,
in contrast to the previous examples, D∞ is a non-Abelian
discrete group.

Now, since r2 = e and rtr = t−1, any one-dimensional
unitary representation D : D∞ → U (1) must satisfy the con-
ditions D(r)2 = 1 and D(r)D(t )D(r) = D(t )−1, which leads
to D(t )2 = 1. Thus, we have D(t ) = ±1 and D(r) = ±1; that
is, there exist 22 = 4 distinct maps D[θ,φ] given by

D[θ,φ](t ) = eiθ and D[θ,φ](r) = eiφ, (20)

where θ, φ ∈ {0, π (mod 2π )}. Correspondingly, there exist
the following four distinct time-evolution kernels for a single
walker on Z/D∞:

U [θ,φ]
τ (x, y) =

∞∑
n=−∞

1∑
m=0

D[θ,φ](t nrm)Ũτ (x, t nrmy)

=
∞∑

n=−∞
[einθŨτ (x, y + 2nL)

+ einθ eiφŨτ (x, 1 − y + 2nL)]. (21)

Once again, just as in the path integral on a finite interval
[22,27–29], Eq. (21) represents the summation over bouncing
numbers off the two boundaries. Physically, eiφ and ei(θ+φ)

play the roles of the reflection amplitudes off the boundaries
x = 1 and x = L, respectively. See also Fig. 1(c).

Now, it follows from Eq. (8) that Eq. (21) satisfies the
identities U [θ,φ]

τ (x + 2L, y) = eiθU [θ,φ]
τ (x, y) and U [θ,φ]

τ (1 −
x, y) = eiφU [θ,φ]

τ (x, y), which implies the boundary con-
ditions U [θ,φ]

τ (0, y) = eiφU [θ,φ]
τ (1, y) and U [θ,φ]

τ (L + 1, y) =
ei(θ+φ)U [θ,φ]

τ (L, y). This means that Eq. (21) gives the univer-
sal form of the time-evolution kernel for a single walker on
the finite interval subject to these boundary conditions. If one
wants a theory that satisfies the Dirichlet boundary conditions
at x = 0 and x = L + 1, one should redefine the translation
and reflection as tx := x + 2(L + 1) and rx := −x, respec-
tively, and choose the representation φ = π . In this case, one
obtains

U [θ,φ=π]
τ (x, y) =

∞∑
n=−∞

einθ {Ũτ (x, y + 2n(L + 1))

− Ũτ (x,−y + 2n(L + 1))},
which satisfies U [θ,φ=π]

τ (0, y) = 0 and U [θ,φ=π]
τ

(L + 1, y) = 0.
We note in closing that Eq. (21) can also be obtained from

the time-evolution kernel on a circle (15) by gauging the
reflection invariance at θ = 0, π (mod 2π ). In fact, Eq. (21)
can be written as

U [θ,φ]
τ (x, y) =

1∑
m=0

D[φ](rm)U [θ]
τ (x, rmy)

=
1∑

m=0

∞∑
n=−∞

D[φ](rm)D[θ](t n)Ũτ (x, t nrmy),

where D[φ] is the one-dimensional unitary representation
of Z2 given by Eq. (17). An important lesson from this

example is that there could exist several ways to construct
time-evolution kernels on orbit spaces.

B. Identical walkers in one dimension

Now let us turn to the problem of multiple identical walkers
on a lattice. The key to this problem is the indistinguishability
of identical particles, where physical observables must be
invariant under permutations of multiparticle coordinates. As
is well known, this indistinguishability always makes the mul-
tiparticle configuration space an orbit space [13,17–20]. The
basic idea behind this is to regard the permutation invariance
as a gauge symmetry (i.e., redundancy in description). From
this perspective, the configuration space must be a collection
of inequivalent gauge orbits because gauge-equivalent config-
urations are physically equivalent.

To date, there exist two distinct formulations of this idea
in identical-particle problems. The first regards the config-
uration space of N identical particles as the orbit space
(X N − 	N )/SN , where X N is the N-fold Cartesian product of
a single-particle configuration space X and 	N ⊂ X N is the
set of fixed points under the action of the symmetric group SN

[13,17–19]. On the other hand, the second includes the fixed
points and regards the configuration space as the orbit space
X N/SN [20]. The difference between these two formulations
is very subtle (especially in lattices) and beyond the scope of
this note. Fortunately, however, we can circumvent this issue
and solve the N-identical-walker problems as follows.

Suppose that X itself is a nontrivial orbit space and takes
the form X = X̃/G, where G is a discrete group whose action
on X̃ has no fixed points. In this case, the configuration space
can also be written as (X̃ N − 	̃N )/(G � SN ) or X̃ N/(G � SN ).5

Here � stands for the wreath product defined by the semidirect
product G � SN := GN

� SN and 	̃N ⊂ X̃ N is the set of fixed
points of SN . Hence, irrespective of the formulations, once
given a time-evolution kernel on � = X̃ N − 	̃N or X̃ N , the
problem just reduces to the classification of one-dimensional
unitary representations of the discrete group � = G � SN .

In this section, we shall focus on the cases X = Z, Z/LZ,
Z/Z2, and Z/D∞ and construct time-evolution kernels for N
identical walkers on the infinite line, a circle, the half line,
and a finite interval. In the following, Ũτ (x, y) represents a
time-evolution kernel on ZN − 	̃N or ZN that satisfies the
translation invariance, reflection invariance, and permutation
invariance.

5Here is the proof. First, the wreath product G � SN = GN
� SN can

be written as the set {gσ : g ∈ GN , σ ∈ SN } equipped with the group
composition law (gσ )(g′σ ′) = (gσg′σ−1)(σσ ′) for any g, g′ ∈ GN

and σ, σ ′ ∈ SN . Here g �→ σgσ−1 is the automorphism of the N-
fold direct-product group GN = G × · · · × G defined by σgσ−1 :=
gσ (1) . . . gσ (N ) for any g = g1 . . . gN ∈ G × · · · × G. It is now obvious
that first making the identification x ∼ gx by g ∈ GN in X̃ N and then
making the identification x ∼ σx by σ ∈ SN in X̃ N/GN is equivalent
to making the identification x ∼ σgx by σg = (σgσ−1)σ ∈ G � SN in
X̃ N . Hence, (X̃ N/GN )/SN is equivalent to X̃ N/(G � SN ). By subtract-
ing the set of fixed points of SN , we also see that (X̃ N/GN − 	N )/SN

is equivalent to (X̃ N − 	̃N )/(G � SN ). See also Refs. [20,30] for sim-
ilar results in continuous spaces.
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FIG. 2. Typical time evolutions of two identical particles on
the infinite line with the initial and final points y = (y1, y2) and
x = (x1, x2). When N = 2, the time-evolution kernel (25) con-
sists of only two terms, U [±]

τ (x1, x2, y1, y2 ) = Ũτ (x1, x2, y1, y2) ±
Uτ (x1, x2, y2, y1). In the space-time picture, the first and second terms
correspond to time evolutions of two identical particles without
and with particle exchange, respectively; see the left panels. In the
configuration-space picture, on the other hand, these terms corre-
spond to a direct and reflected paths; see the right panels. In the
latter picture, the particle-exchange phase ±1 is described by the
phase shift by reflecting off the boundary. [Note that the two-particle
configuration space is the two-dimensional lattice with the identifi-
cation (x1, x2) ∼ (x2, x1), which has the boundary at x1 = x2 and is
identical to the half space (Z2 − 	2)/S2

∼= {(x1, x2 ) ∈ Z2 : x1 < x2}
or Z2/S2

∼= {(x1, x2) ∈ Z2 : x1 � x2}.]

Example 4 (N identical walkers on the infinite line). Let
us first consider N identical walkers on the integer lattice Z.
In this case, the discrete group � = SN is just the symmetric
group of order N!, whose presentation is

SN = 〈σ1, . . . , σN−1| σ 2
i = e, σiσi+1σi = σi+1σiσi+1,

σiσ j = σ jσi (|i − j| � 2)〉. (22)

Here σi = (i, i + 1) is the adjacent transposition that inter-
changes i and i + 1. Its action on x = (x1, . . . , xN ) ∈ ZN is
defined as follows:

σix := (x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xN ). (23)

An arbitrary element σ ∈ SN can be written as a product of the
generators σ1, . . . , σN−1. Its action on x = (x1, . . . , xN ) can be
written as σx = (xσ (1), . . . , xσ (N ) ), where σ (i) stands for the
permutation of i under σ .

Now, there exist two distinct one-dimensional unitary rep-
resentations of SN : the trivial representation and the sign
representation. Though this result is well known, let us re-
produce it here just for later convenience. Since σ 2

i = e and
σiσi+1σi = σi+1σiσi+1, any one-dimensional unitary represen-
tation D : SN → U (1) must satisfy the conditions D(σi )2 = 1
and D(σi )D(σi+1)D(σi ) = D(σi+1)D(σi )D(σi+1), whose solu-
tions are D(σi ) = ±1 and D(σi ) = D(σi+1). Hence, we have
D(σ1) = · · · = D(σN−1) = ±1; that is, there exist two distinct
maps D[±] given by

D[±](σ ) = (±1)#σ , (24)

where #σ stands for the number of adjacent transpositions
in the permutation σ . In the standard terminology, D[+] is
the trivial representation and D[−] is the sign representation.6

Correspondingly, there exist the following two distinct time-
evolution kernels for N identical walkers on Z:

U [±]
τ (x, y) =

∑
σ∈SN

D[±](σ )Ũτ (x, σy)

=
∑
σ∈SN

(±1)#σŨτ (x, σy). (25)

Notice that Eq. (25) satisfies the identity U [±]
τ (σx, y) =

(±1)#σU [±]
τ (x, y). The weight factors (24) thus describe

particle-exchange phases under the permutation of identical
particles. It is now obvious that the two distinct representa-
tions D[±] correspond to two distinct particle statistics: U [+]

τ

describes the time-evolution kernel for N identical bosons,
while U [−]

τ describes that for N identical fermions. For a
geometrical interpretation of Eq. (25), see Fig. 2.

Example 5 (N identical walkers on a circle). Let us next
consider N identical particles on the periodic lattice of L sites.
In this case, the discrete group is the wreath product � = LZ �
SN , whose presentation is given by

LZ � SN =
〈

t1, . . . , tN ,

σ1, . . . , σN−1

∣∣∣∣∣∣
tit j = t jti, σ 2

i = e,
σiσi+1σi = σi+1σiσi+1, σiσ j = σ jσi (|i − j| � 2),
σitiσi = ti+1, σit jσi = t j ( j �= i, i + 1)

〉
. (26)

Here the actions of the generators ti and σi are defined by Eq. (23) and

tix := (x1, . . . , xi−1, xi + L, xi+1, . . . , xN ). (27)

Note that any element of LZ � SN can be written as t n1
1 . . . t nN

N σ , where σ is a permutation and n1, . . . , nN = 0,±1, . . . . Its action
on x = (x1, . . . , xN ) is given by t n1

1 . . . t nN
N σx = (xσ (1) + n1L, . . . , xσ (N ) + nN L).

Now we have to classify one-dimensional unitary representation D : LZ � SN → U (1). First, the relations σ 2
i = e and

σiσi+1σi = σi+1σiσi+1 imply D(σ1) = · · · = D(σN ) = ±1. Second, the relation σitiσi = ti+1 implies D(σi )D(ti)D(σi ) = D(ti+1),
which, together with D(σi )2 = 1, leads to D(t1) = · · · = D(tN ) = eiθ , where θ ∈ R/2πR. Thus, we have two distinct

6The sign representation can also be written as D[−](σ ) = sgn(σ ), where sgn(σ ) stands for the signature of σ . It is defined by sgn(σ ) = ±1
for even (odd) permutations.
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one-parameter families of the maps D[θ,±] given by

D[θ,±]
(
t n1
1 . . . t nN

N σ
) = ei(n1+···+nN )θ (±1)#σ . (28)

The time-evolution kernel for N identical walkers on Z/LZ is therefore

U [θ,±]
τ (x, y) =

∞∑
n1=−∞

· · ·
∞∑

nN =−∞

∑
σ∈SN

D[θ,±]
(
t n1
1 . . . t nN

N σ
)
Ũτ

(
x, t n1

1 . . . t nN
N σy

)
. (29)

Notice that the kernel (29) satisfies the identities U [θ,±]
τ (σx, y) = (±1)#σU [θ,±]

τ (x, y) and U [θ,±]
τ (tix, y) = eiθU [θ,±]

τ (x, y) for any
i = 1, . . . , N . Physically, U [θ,+]

τ (U [θ,−]
τ ) describes the system of N identical bosons (fermions) on a circle with a nonzero

magnetic flux.
Example 6 (N identical walkers on the half line). Let us next consider N identical particles on the semi-infinite lattice. In this

case, the discrete group is � = Z2 � SN , where

Z2 � SN =
〈

r1, . . . , rN ,

σ1, . . . , σN−1

∣∣∣∣∣∣
rir j = r jri, r2

i = σ 2
i = e,

σiσi+1σi = σi+1σiσi+1, σiσ j = σ jσi (|i − j| � 2),
σiriσi = ri+1, σir jσi = r j ( j �= i, i + 1)

〉
. (30)

The actions of the generators are defined by Eq. (23) and

rix := (x1, . . . , xi−1, 1 − xi, xi+1, . . . , xN ). (31)

Note that any element of Z2 � SN can be written as the product rn1
1 . . . rnN

N σ , where σ ∈ SN and n1, . . . , nN = 0, 1. Its action on
x = (x1, . . . , xN ) is given by rn1

1 . . . rnN
N σx = (. . . , xσ (i), . . . ) for ni = 0 and rn1

1 . . . rnN
N σx = (. . . , 1 − xσ (i), . . . ) for ni = 1.

By repeating the same procedure as above, one can show that one-dimensional unitary representation D : Z2 � SN → U (1)
must satisfy D(r1) = · · · = D(rN ) = ±1 and D(σ1) = · · · = D(σN−1) = ±1. Hence, there exist 22 = 4 distinct maps D[φ,±]

given by

D[φ,±]
(
rn1

1 . . . rnN
N σ

) = ei(n1+···+nN )φ (±1)#σ , (32)

where φ ∈ {0, π (mod 2π )}. The time-evolution kernel for N identical walkers on Z/Z2 is therefore

U [φ,±]
τ (x, y) =

1∑
n1=0

· · ·
1∑

nN =0

∑
σ∈SN

D[φ,±]
(
rn1

1 . . . rnN
N σ

)
Ũτ

(
x, rn1

1 . . . rnN
N σy

)
. (33)

Notice that Eq. (33) satisfies U [φ,±]
τ (σx, y) = (±1)#σU [φ,±]

τ (x, y) and U [φ,±]
τ (rix, y) = eiφU [φ,±]

τ (x, y) for any i = 1, . . . , N .
Hence, U [φ,±]

τ describes the system of N identical bosons (fermions) that acquire the phase shift φ when reflected off the
boundary.

Example 7 (N identical walkers on a finite interval). Let us finally consider N identical particles on a finite interval. In this
case, the discrete group is � = D∞ � SN , where

D∞ � SN =
〈t1, . . . , tN ,

r1, . . . , rN ,

σ1, . . . , σN−1

∣∣∣∣∣∣∣∣
tit j = t jti, rir j = r jri, r2

i = σ 2
i = e,

ritiri = t−1
i , rit jri = t j ( j �= i),

σiσi+1σi = σi+1σiσi+1, σiσ j = σ jσi (|i − j| � 2),
σiriσi = ri+1, σir jσi = r j ( j �= i, i + 1)

〉
. (34)

The actions of the generators are given by Eqs. (23), (31), and

tix := (x1, . . . , xi−1, xi + 2L, xi+1, . . . , xN ). (35)

We note that any element of D∞ � SN can be written as the product t n1
1 rm1

1 . . . t nN
N rmN

N σ , where σ ∈ SN , n1, . . . , nN =
0,±1,±2, . . . , and m1, . . . , mN = 0, 1. Its action is given by t n1

1 rm1
1 . . . t nN

N rmN
N σx = (. . . , xσ (i) + 2niL, . . . ) for mi = 0 and

t n1
1 rm1

1 . . . t nN
N rmN

N σx = (. . . , 1 − xσ (i) + 2niL, . . . ) for mi = 1.
Now it is a straightforward exercise to show that there exist 23 = 8 distinct one-dimensional unitary representations of the

wreath product D∞ � SN . The result is the following maps:

D[θ,φ,±]
(
t n1
1 rm1

1 . . . t nN
N rmN

N σ
) = ei(n1+···+nN )θei(m1+···+mN )φ (±1)#σ , (36)
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where θ, φ ∈ {0, π (mod 2π )}. Correspondingly, we have the following eight distinct time-evolution kernels for N identical
walkers on Z/D∞:

U [θ,φ,±]
τ (x, y) =

∞∑
n1=−∞

1∑
m1=0

· · ·
∞∑

nN =−∞

1∑
mN =0

∑
σ∈SN

D[θ,φ,±]
(
t n1
1 rm1

1 . . . t nN
N rmN

N σ
)
Ũτ

(
x, t n1

1 rm1
1 . . . t nN

N rmN
N σy

)
. (37)

Physically, U [θ,φ,±]
τ describes the system of N identical bosons (fermions) that acquire the phase shifts φ and θ + φ when

reflected off the boundaries x = 1 and x = L, respectively.

IV. ASIDES

Now, there exist several other quantities that can be con-
structed in exactly the same way as for the time-evolution
kernel (4). Examples include the resolvent kernel (Green’s
function) and the canonical density matrix (density matrix
in the canonical ensemble). Another example is a unitary
representation of an arbitrary group G on a (tensor-product)
Hilbert space, which includes the time-evolution kernel in
discrete-time quantum walk. In this section, we shall briefly
discuss the construction of these quantities on the orbit space
�/�.

A. Resolvent kernel

Let us first start with the resolvent kernel—a matrix el-
ement of the resolvent operator in position space. Let H
be the Hamiltonian operator of the system. Then, the re-
solvent operator GE = (EI − H )−1 for ImE > 0 and the
time-evolution operator Uτ = e−iHτ for τ > 0 are trans-
formed into one another through the Laplace transform i(EI −
H )−1 = ∫ ∞

0 dτe−iHτ eiEτ and the inverse Laplace transform

e−iHτ = ∫ ∞+iε
−∞+iε

dE
2π

i(EI − H )−1e−iEτ , respectively, where ε

is an arbitrary positive real. Consequently, the matrix elements
Uτ (x, y) = 〈x|Uτ |y〉 and GE (x, y) = 〈x|GE |y〉 are mutually re-
lated through the following:

iGE (x, y) =
∫ ∞

0
dτ Uτ (x, y)eiEτ for ImE > 0, (38a)

Uτ (x, y) =
∫ ∞+iε

−∞+iε

dE

2π
iGE (x, y)e−iEτ for τ > 0.

(38b)

Hence, by applying the Laplace transform to formula (4),
we find that the resolvent kernel on �/� takes the following
form:

GE (x, y) =
∑
γ∈�

D(γ )G̃E (x, γ y), (39)

where iG̃E (x, y) = ∫ ∞
0 dτ Ũτ (x, y)eiEτ (ImE > 0) is the re-

solvent kernel on �.
An immediate application of the above formula is the local

density of states given by ρE (x) = 〈x|δ(EI − H )|x〉. In fact,
by using the identity

lim
ImE→0+

(EI − H )−1 = P (EI − H )−1 − iπδ(EI − H ),

(40)

where P stands for the Cauchy principal value, we
find ImGE (x, x) = Im〈x|(EI − H )−1|x〉 = −π〈x|δ(EI − H )

|x〉 = −πρE (x) in the limit ImE → 0+. Thus,

ρE (x) = − 1

π
Im

∑
γ∈�

D(γ )G̃E (x, γ x) as ImE → 0+.

(41)

The density of states ρE = trδ(EI − H ) then takes the form
ρE = −(1/π )Im

∑
x∈�/�

∑
γ∈� D(γ )G̃E (x, γ x).

B. Canonical density matrix

Let us next consider the canonical density matrix on
�/�. In thermal equilibrium at temperature β−1, the canon-
ical density matrix is given by ρβ = U−iβ/Z (β ), where
U−iβ = e−βH is the Gibbs operator and Z (β ) = trU−iβ is
the canonical partition function. Note that the Gibbs oper-
ator satisfies the composition law U−iβ1U−iβ2 = U−i(β1+β2 ),
the hermiticity U †

−iβ = U−iβ , and the initial condition U0 =
I . Its matrix elements (heat kernel) U−iβ (x, y) = 〈x|e−βH |y〉
must then satisfy these conditions as well. Namely, we
must have

∑
z∈�/� U−iβ1 (x, z)U−iβ2 (z, y) = U−i(β1+β2 )(x, y),

U−iβ (x, y) = U−iβ (y, x), and U0(x, y) = δx,y. Under these con-
ditions, one can again show that U−iβ (x, y) can be written as
U−iβ (x, y) = ∑

γ∈� D(γ )Ũ−iβ (x, γ y). Hence the matrix ele-
ments of the canonical density matrix are

ρβ (x, y) = 1

Z (β )

∑
γ∈�

D(γ )Ũ−iβ (x, γ y), (42)

where ρβ (x, y) = 〈x|ρβ |y〉. Here Z (β ) is the canonical parti-
tion function given by

Z (β ) =
∑

x∈�/�

∑
γ∈�

D(γ )Ũ−iβ (x, γ x). (43)

We note that the partition function (43) can also be
written as Z (β ) = ∑

x∈�/�

∑
γ∈� D(γ )〈x|e−βH̃ |γ x〉 =∑

γ∈� D(γ )tr(e−βH̃Wγ ), where H̃ is the Hamiltonian operator
on � and Wγ is a unitary operator defined by Wγ |x〉 = |γ x〉.

C. Unitary representations of arbitrary groups
on a tensor-product Hilbert space

As mentioned in the beginning of Sec. II, our main formula
(4) is also applicable to discrete-time quantum walk, where
the time τ takes discrete values and the one-particle Hilbert
space is the tensor product of the position and coin Hilbert
spaces. In this section, we shall see this from a more general
perspective: the construction of matrix elements of a unitary
representation of an arbitrary group G on a tensor-product
Hilbert space. The time-evolution kernel in discrete-time
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quantum walk just corresponds to the special case G = Z (the
additive group of integers).

To begin with, let {Ug ∈ U (H ) : g ∈ G} be a unitary rep-
resentation of G on the tensor-product Hilbert space H =
Hposition ⊗ Hcoin, where U (H ) stands for the set of unitary
operators on H , Hposition = l2(�/�) is the set of square-
summable sequences on the orbit space �/�, and Hcoin =
Cd is the d-dimensional complex vector space that describes
internal degrees of freedom of particles. Let {|x〉} and {|i〉}
be complete orthonormal systems of Hposition and Hcoin,
respectively. The set {|x〉 ⊗ |i〉} then provides a complete or-
thonormal system of the total Hilbert space H such that
the matrix elements of Ug can be defined as Ug(x, i; y, j) =
(〈x| ⊗ 〈i|)Ug(|y〉 ⊗ | j〉).

We now define Ug(x, y) as the following d×d matrix:

Ug(x, y) :=

⎛⎜⎝Ug(x, 1; y, 1) · · · Ug(x, 1; y, d )
...

. . .
...

Ug(x, d; y, 1) · · · Ug(x, d; y, d )

⎞⎟⎠. (44)

Since the unitary representation must satisfy the group com-
position law Ug1Ug2 = Ug1g2 , the unitarity U †

g (= U −1
g ) = Ug−1 ,

and the initial condition Ue = I , matrix (44) must also satisfy
the following properties:∑

z∈�/�

Ug1 (x, z)Ug2 (z, y) = Ug1g2 (x, y), (45a)

tUg(x, y) = Ug−1 (y, x), (45b)

Ue(x, y) = δx,y1, (45c)

where x, y ∈ �/�. Here t and 1 stand for the matrix trans-
pose and the d × d identity matrix, respectively. Now it is
a straightforward exercise to show that matrix (44) can be
written as

Ug(x, y) =
∑
γ∈�

D(γ )Ũg(x, γ y), (46)

where Ũg(x, y) is a d × d matrix subject to the conditions∑
z∈� Ũg1 (x, z)Ũg2 (z, y) = Ũg1g2 (x, y), tŨg(x, y) = Ũg−1 (y, x),

Ũe(x, y) = δx,y1, and Ũg(γ x, γ y) = Ũg(x, y) for any x, y ∈ �

and γ ∈ �. It is also straightforward to show that Eq. (46)
satisfies the following boundary condition:

Ug(γ x, y) = D(γ )Ug(x, y), ∀γ ∈ �. (47)

It is now obvious that Eq. (46) provides the time-evolution
kernel of continuous-time quantum walk with internal degrees
of freedom when G = R (the additive group of real numbers)
and of discrete-time quantum walk when G = Z (the addi-
tive group of integers). It is also obvious that the examples
presented in Sec. III apply to discrete-time quantum walk as
well.

V. CONCLUSION

Inspired by the covering-space method in path integral
on multiply connected spaces, we have developed a gen-
eral theory of quantum walk on orbit spaces. In this note,
we have proved the universal formulas for time-evolution
kernels, resolvent kernels, canonical density matrices, and
unitary representations of arbitrary groups in continuous- and

discrete-time quantum walks on the orbit space �/�, where
� is an arbitrary lattice and � is a discrete group whose action
on � has no fixed points. All of these quantities are given by
summations over the orbit of initial point on �, where each
orbit is weighted by a phase factor given by a one-dimensional
unitary representation of �.

There are several advantages of this orbit-space method. A
main advantage is its universality: our formulas are just based
on geometric and group-theoretic structures of configuration
spaces so that they are robust against any perturbations or
interparticle interactions as long as boundary conditions (8)
remain unchanged. Another advantage is its computational
simplicity: in our formalism, one just needs to compute matrix
elements on �, which is generally much easier than computa-
tions on �/�.

Finally, let us comment on one possible future direction
of this work. A promising direction would be a general-
ization of our formulas to the problem of identical walkers
on graphs. Recent studies have shown that exotic statistics
may show up in many-body problems of identical particles
on graphs [31–35]. Such exotic statistics are generalizations
of braid-group statistics in two dimensions. Hence, just as
in topological quantum computation using anyons [36], they
would have potential applications in quantum computer sci-
ence. Our formalism and its generalization may well serve as
a basic tool for studying the dynamics as well as thermody-
namics of such systems.
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APPENDIX: SAMPLE COMPUTATIONS

Continuous-time quantum walk is just equivalent to tight-
binding models in condensed matter physics. The advantage
of this perspective is that it is straightforward to study
many-particle problems by using the second-quantization for-
malism. In this section, we study tight-binding models for
free spinless particles in one dimension and present sample
computations that justify the formulas in Sec. III.

1. Tight-binding model on the infinite line

Let us first consider spinless particles on the integer lattice
Z only with a nearest-neighbor coupling. In the second-
quantization formalism, the Hamiltonian operator is given by

H̃ = −ω

2

∑
x∈Z

(a†
x+1ax + a†

xax+1), (A1)

where ω(>0) is a hopping parameter. ax and a†
x are annihila-

tion and creation operators for spinless bosons (fermions) and
subject to the following (anti)commutation relations:

[ax, a†
y]∓ = δx,y and [ax, ay]∓ = 0, (A2)

where [A, B]∓ = AB ∓ BA.
Let |0〉 be the Fock vacuum that satisfies ax|0〉 = 0 for all

x. The time-evolution kernel in the one-particle sector of the
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model is then given by

Ũτ (x, y) = 〈x|e−iH̃τ |y〉, (A3)

where |x〉 = a†
x |0〉 is the position-space basis in the one-

particle sector. It satisfies the orthonormality 〈x|y〉 =
〈0|axa†

y |0〉 = δx,y for both bosons and fermions. In order to
calculate the matrix element (A3), we first diagonalize the
Hamiltonian operator, which can be achieved by the following
Fourier integral:

ax =
∫ π

−π

d p

2π
ãpeipx, (A4)

where ãp and ã†
p satisfy [̃ap, ã†

q]∓ = 2πδ(p − q) and
[̃ap, ãq]∓ = 0 for any p, q ∈ (−π, π ). By substituting
Eq. (A4) into Eq. (A3), we obtain

H̃ =
∫ π

−π

d p

2π
εp̃a†

p̃ap, (A5)

where εp = −ω cos(p) is the single-particle energy eigen-
value. It is now easy to see that the time-evolution kernel (A3)
takes the following form:

Ũτ (x, y) = 〈0|axe−iH̃τ a†
y |0〉

=
∫ π

−π

d p

2π

∫ π

−π

dq

2π
〈0|̃ape−iH̃τ ã†

q|0〉eipx−iqy

=
∫ π

−π

d p

2π

∫ π

−π

dq

2π
e−iεqt 〈0|̃ap̃a†

q|0〉eipx−iqy

=
∫ π

−π

d p

2π
eiωτ cos(p)eip(x−y), (A6)

where in the third equality we have used e−iHτ ã†
q|0〉 =

e−iεqt ã†
q|0〉, which follows from e−iHτ ã†

qeiHτ = e−iεqt ã†
q and

e−iHτ |0〉 = |0〉 (or, equivalently, [H, ã†
q] = εqã†

q and H |0〉 =
0). The fourth equality follows from 〈0|̃ap̃a†

q|0〉 = 2πδ(p − q)
for both bosons and fermions. To evaluate the last integral in
Eq. (A6), we note that eiωτ cos(p) is a generating function of the
Bessel function of the first kind Jn. In fact,

eiωτ cos(p) =
∞∑

n=−∞
ein(p+ π

2 )Jn(ωτ )

=
∞∑

n=−∞
ei π

2 |n|J|n|(ωτ )e−inp, (A7)

where the second equality follows from J−n(x) = einπ Jn(x).
By substituting Eq. (A7) into Eq. (A6) and then using the
orthogonal relation

∫ π

−π

d p
2π

eip(x−y−n) = δn,x−y, we obtain

Ũτ (x, y) = ei π
2 |x−y|J|x−y|(ωτ ), ∀x, y ∈ Z. (A8)

This is the well-known transition amplitude for a sin-
gle walker on the lattice Z (see, e.g., Ref. [37]). Note
that Eq. (A8) satisfies the composition law (3a), the
unitarity (3b), and the initial condition (3c), which fol-
low from the addition theorem Jn1−n2 (x1 + x2)ei π

2 (n1−n2 ) =∑
n∈Z Jn1−n(x1)Jn2−n(x2)ei π

2 (n1−n)ei π
2 (n2−n) (n1, n2 ∈ Z), the

analytic continuation Jn(eiπ x) = einπ Jn(x), and Jn(0) = δn,0,
respectively. Note also that Eq. (A8) enjoys the translation

invariance Ũτ (x + z, y + z) = Ũτ (x, y) and the reflection in-
variance Ũτ (z − x, z − y) = Ũτ (x, y) for any x, y, z ∈ Z. As
we shall see shortly, Eq. (A8) provides the building block for
the construction of time-evolution kernels for a free particle
on a circle, the half line, and a finite interval.

Several comments are in order.
(1) Resolvent kernel for a single walker: As discussed in

Sec. IV A, the resolvent kernel (Green’s function) is given by
the Laplace transform of Ũτ (x, y). Let E be a complex number
with ImE > 0. Then we have

iG̃E (x, y) =
∫ ∞

0
dτ Ũτ (x, y)eiEτ

=
∫ π

−π

d p

2π

ieip(x−y)

E + ω cos(p)

= 2i

ω

∮
|z|=1

dz

2π i

z|x−y|

z2 + 2E
ω

z + 1
, (A9)

where in the second equality we have substituted the last line
of Eq. (A6) and performed the integration with respect to τ .
In the last equality we have changed the integration variable
from p to z = eip, where the integration is over the closed loop
|z| = 1 in the counterclockwise direction. By using the residue
theorem we find

iG̃E (x, y) = eip|x−y|

ω sin(p)
, (A10)

where we have parametrized the energy as E = −ω cos(p)
with Rep ∈ (0, π ) and Imp ∈ (0,∞). Equation (A10) pro-
vides the building block for the construction of single-particle
resolvent kernels on a circle, the half line, and a finite interval.

(2) Heat kernel for a single walker. The matrix element
of the Gibbs operator e−βH̃ can be calculated in exactly the
same way as for Ũτ (x, y). Under the substitution τ → −iβ in
Eq. (A6) we find

Ũ−iβ (x, y) =
∫ π

−π

d p

2π
eβω cos(p)eip(x−y)

= Ix−y(βω), (A11)

where In(x) = I−n(x) stands for the modified Bessel function
of the first kind. Here in the last line we have used the fact that
eβω cos(p) is the generating function of In(βω). In fact,

eβω cos(p) =
∞∑

n=−∞
In(βω)e−inp. (A12)

By substituting this into the first line and using the orthogonal
relation

∫ π

−π

d p
2π

eip(x−y−n) = δn,x−y, we arrive at Eq. (A11). As
discussed in Sec. IV B, Eq. (A11) provides the building block
for the construction of canonical density matrices for free
particles on a circle and a finite interval.

(3) Time-evolution kernel for N identical walkers. In the
second-quantization formalism, it is easy to generalize the
above results to many-particle problems. First, the position-
space basis in the N-particle sector is given by

|x1, . . . , xN 〉 := a†
x1

. . . a†
xN

|0〉. (A13)

Notice that Eq. (A13) satisfies the orthonormality condition
on the orbit space (ZN − 	N )/SN

∼= {(x1, . . . , xN ) ∈ ZN :
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x1 < · · · < xN }. In fact, for x1 < · · · < xN and y1 < · · · < yN ,
we have

〈x1, . . . , xN |y1, . . . , yN 〉 = 〈0|axN . . . ax1 a†
y1

. . . a†
yN

|0〉
=

∑
σ∈SN

(±1)#σ δxσ (1),y1 . . . δxσ (N ),yN

= δx1,y1 . . . δxN ,yN , (A14)

where the last line follows from the fact that (xσ (1), . . . , xσ (N ) )
and (y1, . . . , yN ) cannot be equal except for σ = e. It is now
easy to show that the time-evolution kernels for N identical
bosons and fermions take the following forms:7

〈x1, . . . , xN |e−iH̃τ |y1, . . . , yN 〉
= 〈0|axN . . . ax1 e−iH̃τ a†

y1
. . . a†

yN
|0〉

=
⎡⎣ N∏

j=1

∫ π

−π

d p j

2π

∫ π

−π

dq j

2π

⎤⎦eiωτ (cos(q1 )+···+cos(qN ))

× 〈0|̃apN . . . ãp1 ã†
q1

. . . ã†
qN

|0〉eip1x1+···+ipN xN −iq1y1−···−iqN yN

=
∑
σ∈SN

(±1)#σ

N∏
j=1

ei π
2 |x j−yσ ( j)|J|x j−yσ ( j)|(ωτ ). (A15)

This equation can be used to construct the time-evolution
kernels for free identical walkers on a circle, the half line, and
a finite interval.

2. Tight-binding model on a circle

Let us next consider the tight-binding model for free spin-
less particles on the periodic lattice {1, 2, . . . , L (mod L)}
subject to the twisted boundary condition ax+L = eiθ ax. As we
shall see shortly, the following Hamiltonian operator yields
the desired results:

H = −ω

2

L∑
x=1

(a†
x+1ax + a†

xax+1), where aL+1 ≡ eiθ a1.

(A16)

In the following, we assume that θ ranges from 0 to 2π .
In order to compute the time-evolution kernel, we first have

to diagonalize the Hamiltonian operator (A16), which can be
done by using the mode expansion. Under the twisted bound-
ary condition, the annihilation operator can be expanded into
the following:

ax = 1√
L

L−1∑
p=0

ãpei 2pπ+θ

L x, (A17)

where ãp and ã†
p satisfy [̃ap, ã†

q]∓ = δp,q and [̃ap, ãq]∓ = 0 for
any p, q ∈ {0, 1, . . . , L − 1}. By substituting Eq. (A17) into

7It should be noted that Ũτ (x1, . . . , xN , y1, . . . , yN ) =∏N
j=1 ei π

2 |x j−y j |J|x j−y j |(ωτ ) is equivalent to a single-particle
time-evolution kernel on ZN rather than ZN − 	N . As noted
in the beginning of Sec. III B, in this note we will not touch upon
this type of issue related to the fixed points of SN .

Eq. (A16), we find that the Hamiltonian operator is diagonal-
ized as follows:

H =
L−1∑
p=0

εp̃a†
p̃ap, (A18)

where εp = −ω cos( 2pπ+θ

L ) is the single-particle energy
eigenvalue on the periodic lattice.

Now it is easy to compute the time-evolution kernel in the
one-particle sector. A straightforward calculation gives

U [θ]
τ (x, y) = 〈x|e−iHτ |y〉

= 〈0|axe−iHτ a†
y |0〉

= 1

L

L−1∑
p=0

L−1∑
q=0

〈0|̃ape−iHτ ã†
q|0〉ei 2pπ+θ

L x−i 2qπ+θ

L y

= 1

L

L−1∑
p=0

L−1∑
q=0

e−iεqτ 〈0|̃ap̃a†
q|0〉ei 2pπ+θ

L x−i 2qπ+θ

L y

= 1

L

L−1∑
p=0

eiωτ cos( 2pπ+θ

L )ei 2pπ+θ

L (x−y), (A19)

where we have used e−iHτ ã†
q|0〉 = e−iεqτ ã†

q|0〉 in the fourth
line and 〈0|̃ap̃a†

q|0〉 = δp,q in the last line. Notice that
Eq. (A19) is the summation over the energy spectrum.
In order to obtain the summation over winding numbers,
we therefore have to perform a resummation, which can
be done by using Eq. (A7). By substituting eiωt cos( 2pπ+θ

L ) =∑
m∈Z ei π

2 |m|J|m|(ωt )e−im 2pπ+θ

L into Eq. (A19) and using the

orthogonal relation (1/L)
∑L−1

p=0 ei 2pπ+θ

L (x−y−m) = einθ δm,x−y−nL

(n ∈ Z), we find that the time-evolution kernel (A19) can be
put into the following alternative equivalent form:8

U [θ]
τ (x, y) =

∞∑
n=−∞

einθ ei π
2 |x−y−nL|J|x−y−nL|(ωτ ), (A20)

which exactly coincides with Eq. (15) with Ũτ (·, ·) given by
Eq. (A8). This sample computation implies that there is an
equivalence (or duality) between the summation over energy
spectrum and the summation over a particle’s trajectories,
which is the heart of the trace formula in harmonic analysis
and representation theory (see, e.g., Ref. [39]). In this respect,
one could say that our formula is a version of the trace formula
in lattice geometry.

Although we omit the details, it is not difficult to show
that the resolvent kernel, the canonical density matrix, and
the time-evolution kernel for N identical particles all coincide
with the universal formulas.

We note in closing that the parameter θ can be re-
moved from the twisted boundary condition under the
gauge transformation ax �→ VθaxV

−1
θ = ei θ

L xax, where Vθ

is a unitary operator given by Vθ = exp(−i θ
L

∑L
x=1 xa†

xax )
(see, e.g., Ref. [40]). In fact, a straightforward calculation

8The case θ = 0 was noted in Ref. [38].
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gives

VθHV −1
θ = −ω

2

L∑
x=1

(e−iθ/La†
x+1ax + e+iθ/La†

xax+1),

where aL+1 ≡ a1. (A21)

The time-evolution kernel in the one-particle sector for this
Hamiltonian coincides with Eq. (A20) up to a phase factor
ei θ

L (x−y) and hence is physically equivalent.

3. Tight-binding model on the half line

Let us next consider the tight-binding model on the semi-
infinite lattice {1, 2, . . . } with the boundary condition a0 =
eiφa1, where φ ∈ {0, π}. The Hamiltonian operator that en-
sures this boundary condition is given by

H = −ω

2

∞∑
x=1

(a†
x+1ax + a†

xax+1) − ω

2
eiφa†

1a1. (A22)

By substituting the mode expansion

ax =
∫ π

0

d p

2π
ãp(e−ipx + eiφe−ip(1−x) ), (A23)

we get the following diagonalized Hamiltonian operator:

H =
∫ π

0

d p

2π
εp̃a†

p̃ap, (A24)

where εp = −ω cos(p) is the single-particle energy eigen-
value. The time-evolution kernel for a single walker is

given by

U [φ]
τ (x, y)

= 〈0|axe−iHτ a†
y |0〉

=
∫ π

0

d p

2π
e−iεpτ (e−ipx + eiφe−ip(1−x) )(eipy + eiφeip(1−y) )

=
∫ π

−π

d p

2π
eiωτ cos(p)(eip(x−y) + eiφeip(x−1+y) )

= ei π
2 |x−y|J|x−y|(ωτ ) + eiφei π

2 |x−1+y|J|x−1+y|(ωτ ), (A25)

which exactly coincides with Eq. (18). Other quantities can
be calculated in a similar way and coincide with the universal
formulas.

We note that the model that satisfies the Dirichlet boundary
condition ax = 0 at x = 0 is described by the Hamiltonian
operator H = −(ω/2)

∑∞
x=1(a†

x+1ax + a†
xax+1). In this case,

the time-evolution kernel coincides with another formula dis-
cussed in example 2 in Sec. III A.

4. Tight-binding model on a finite interval

Let us finally quickly study the tight-binding model on
the finite lattice {1, 2, . . . , L} with the boundary conditions
a0 = eiφa1 and aL+1 = ei(θ+φ)aL, where θ, φ ∈ {0, π}. The
Hamiltonian operator is given by

H = −ω

2

L−1∑
x=1

(a†
x+1ax + a†

xax+1) − ω

2
eiφa†

1a1−ω

2
ei(θ+φ)a†

LaL. (A26)

This operator can be diagonalized by using the following mode expansions:

ax =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
L

ã0 + 1√
2L

∑L−1
p=1 ãp

(
e−i 2pπ

2L x + e−i 2pπ
2L (1−x)

)
for θ = 0 & φ = 0;

1√
2L

∑L−1
p=1 ãp

(
e−i 2pπ

2L x − e−i 2pπ
2L (1−x)

) + 1√
L

ãL(−1)x for θ = 0 & φ = π ;

1√
2L

∑L−1
p=0 ãp

(
e−i 2pπ+θ

2L x + eiφe−i 2pπ+θ

2L (1−x)
)

otherwise.

(A27)

In fact, by substituting these into Eq. (A26) we find

H =
{∑L

p=1 εp̃a†
p̃ap for θ = 0 & φ = π ;∑L−1

p=0 εp̃a†
p̃ap otherwise,

(A28)

where εp = −ω cos( 2pπ+θ

2L ) for any θ, φ ∈ {0, π}. It is not difficult to show that the time-evolution kernel for a single walker can
be put into the following expression irrespective of the values of θ and φ:

U [θ,φ]
τ (x, y) = 〈0|axe−iHτ a†

y |0〉 = 1

2L

2L−1∑
p=0

eiωτ cos ( 2pπ+θ

2L )(ei 2pπ+θ

2L (x−y) + eiφei 2pπ+θ

2L (x−1+y)). (A29)

Note that this is the summation over the energy spectrum. However, as was done in Appendix A 2, this summation can be
rewritten into the following summation over the bouncing numbers off the boundaries:

U [θ,φ]
τ (x, y) =

∞∑
n=−∞

[
einθ ei π

2 |x−y−2nL|J|x−y−2nL|(ωτ ) + einθ eiφei π
2 |x−1+y−2nL|J|x−1+y−2nL|(ωτ )

]
, (A30)

which exactly coincides with the universal formula (21).
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If one wants to study the model that satisfies the Dirichlet boundary conditions ax = 0 at x = 0 and x = L + 1, one should
use H = −(ω/2)

∑L−1
x=1 (a†

x+1ax + a†
xax+1). In this case, the time-evolution kernel coincides with another formula discussed in

example 3 in Sec. III A.
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