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Scaling laws of the out-of-time-order correlators at the transition to the spontaneous
PT -symmetry breaking in a Floquet system

Wen-Lei Zhao ,1,* Ru-Ru Wang,1 Han Ke,1 and Jie Liu 2,3,†

1School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
2Graduate School, China Academy of Engineering Physics, Beijing 100193, China

3HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China

(Received 20 February 2023; revised 14 April 2023; accepted 17 May 2023; published 1 June 2023)

We investigate both numerically and analytically the dynamics of out-of-time-order correlators (OTOCs) in
a non-Hermitian kicked rotor model, addressing the scaling laws of the time dependence of OTOCs at the
transition to the spontaneous PT -symmetry breaking. In the unbroken phase of PT symmetry, the OTOCs
increase monotonically and eventually saturate with time, demonstrating the freezing of information scrambling.
Just beyond the phase transition points, the OTOCs increase in the power laws of time, with the exponent being
larger than 2. Interestingly, the quadratic growth of OTOCs with time emerges when the system is far beyond the
phase transition points. The above numerical findings are validated by our theoretical analysis, which provides
a general framework with important implications for Floquet engineering and information scrambling in chaotic
systems.
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I. INTRODUCTION

Non-Hermiticity has been regarded as a fundamental mod-
ification to the conventional quantum mechanics [1–10], a
subclass of which with PT symmetry even displays the tran-
sition from the real energy spectrum to a complex one. Such
intrinsic spontaneous PT -symmetry breaking occurs at the
exceptional points (EP), at which both the eigenstates and
eigenvalues coalesce [11–19]. The existence of EP leads to
rich physics, such as the enhancement of precision in quantum
sensors [20], the topological phase transition [21–25], the
nonadiabatic transition [26,27], and the unidirectional prop-
agation of light [28], just to name a few. Theoretical advances
enabled exponential realizations of PT -symmetric systems
in various fields, such as optical settings [29–42], electronic
circuits [43], and optomechanical systems [44]. Moreover, the
extension of Floquet-driven systems to the PT -symmetric
regime has opened up unique opportunities for understand-
ing fundamental concepts such as quantum chaos [45] and
quantum-classical transition [46,47]. Interestingly, chaos is
found to facilitate the scaling law of the spontaneous PT -
symmetry breaking in a PT -symmetric kicked rotor (PTKR)
model [48]. This system even displays ballistic energy diffu-
sion [49] and the quantized acceleration of momentum current
[50], which enriches our understanding on the unique trans-
port phenomena in the presence of chaos.

The dynamics of out-of-time-order correlators OTOCs,
originally introduced by Lakin et al., in the study of
quasiclassical theory of superconductivity [51], received ex-
tensive studies in the fields of high-energy physics [52–54],
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condensed matter physics [55–60], and quantum information
[61–63]. It was found that OTOCs can effectively detect
quantum chaos [64–67], quantum thermalization [68], and
information scrambling [69–74]. A paradigmatic model in the
field of chaos is the kicked rotor. Investigations on this model
have shed light on fundamental problems related to quantum
computation [75], quantum control of chaos [76], and many-
body chaos [77,78]. The periodic delta-kicking has promising
applications in engineering the low-energy dispersion [79]
and dynamical localization (DL) [80]. In the semiclassical
limit, the exponential growth of OTOCs is governed by the
Lyapunov exponent of classical chaos, which demonstrates a
route of quantum-classical correspondence [81]. In Floquet-
driven systems, OTOCs have been used to diagnose dynamical
quantum phase transition [82] and entanglement [83,84].
Intrinsically, we previously found a quantized response of
OTOCs when varying the kicking potential of the PTKR
model [85]. In a non-Hermitian Ising chain, the Yang-Lee
edge singularity dominates the dynamics of OTOCs encircling
EP [86]. State-of-the-art experimental advances observed dif-
ferent kinds of OTOCs in the setting of nuclear magnetic
resonance [87,88], trapping ions [89], and qubit under Floquet
engineering [90].

In this context, we both numerically and analytically in-
vestigate the dynamics of OTOCs when the PTKR model
is in different phases of PT symmetry. We use a machine
learning method, namely, a long short-term memory network
(LSTM), to classify the phase diagram of PT -symmetry
breaking and extract the phase boundary in a wide range
of system parameters. We find that, in the unbroken phase
of PT symmetry, OTOCs increase monotonically with time
evolution and eventually saturate, demonstrating the freezing
of operator growth. We analytically prove that the saturation
of OTOCs is a power-law function of the real part of the
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kicking potential. In the broken phase of the PT symmetry,
we find a power-law increase of OTOCs with time, for which
the characteristic exponent is larger than 2 when the system
is just beyond the phase transition point, and is equal to 2
for the system far beyond the phase transition point. Through
the detailed analysis of the wavepacket’s dynamics in the
time reversal process, we uncover the mechanisms of both the
dynamical localization and the power-law increase of OTOCs.
Our investigations reveal that the dynamics of OTOCs can be
utilized to diagnose spontaneous PT -symmetry breaking.

The paper is organized as follows. In Sec. II, we describe
the PTKR model and show the scaling law of spontaneous
PT -symmetry breaking. In Sec. III, we show the scaling
laws of the dynamics of OTOCs at the transition to the
PT -symmetry breaking. Section IV contains the theoretical
analysis of the scaling laws of OTOCs. The conclusion and
discussion are presented in Sec. V.

II. TRANSITION TO SPONTANEOUS PT -SYMMETRY
BREAKING IN FLOQUET SYSTEMS

A. Model

The Hamiltonian of the PTKR model in dimensionless
units reads

H = p2

2
+ V (θ )

∑
n

δ(t − tn), (1)

where the kicking potential V (θ ) = K[cos(θ ) + iλ sin(θ )]
satisfies the PT -symmetric condition V (θ ) = V ∗(−θ )
[48–50]. The parameters K and λ indicate the strength of the
real and imaginary parts of the kick potential, respectively.
The p = −ih̄eff∂/∂θ is the angular momentum operator,
θ is the angle coordinate, and h̄eff denotes the effective
Planck constant. The time tn(= 0, 1, 2 . . . , ) is the integer,
indicating kicking numbers. The eigenequation of the angular
momentum operator is p|ϕn〉 = nh̄eff|ϕn〉 with eigenstate
〈θ |ϕn〉 = einθ /

√
2π and eigenvalue pn = nh̄eff. On the basis

of |ϕn〉, an arbitrary quantum state can be expanded as
|ψ〉 = ∑

n ψn|ϕn〉.
For time-periodic systems, i.e., H(t + T ) = H(t ), the Flo-

quet theory predicts the eigenequation of the evolution
operator U |ψε〉 = e−iε|ψε〉, where the eigenphase ε is referred
to as quasienergy. One-period time evolution of a quantum
state of the PTKR system is given by |ψ (t j+1)〉 = U |ψ (t j )〉
with the Floquet operator

U = Uf UK = exp

(
− i

h̄eff

p2

2

)
exp

[
− i

h̄eff
V (θ )

]
. (2)

This demonstrates that, in numerical simulations, one period
evolution is split into two steps, namely, the kicking evolution
UK and the free evolution Uf . The kick evolution is realized
in angle coordinate space, i.e., ψ ′(θ ) = UK (θ )ψ (θ, t j ). Then,
one can utilize the fast Fourier transform to change the state
ψ ′(θ ) to angular momentum space, thereby obtaining its com-
ponent ψ ′

n on the eigenstate |ϕn〉. Finally, the free evolution
is conducted in angular momentum space, i.e., ψn(t j+1) =
Uf (pn)ψ ′

n. By repeating the same procedure, one can obtain
the quantum state at arbitrary time [91].

FIG. 1. (a) Norm N versus time for λ = 0.01 (squares), 0.05
(circles), 0.15 (triangles), 0.2 (diamonds), and 0.3 (pentagrams). The
parameters are K = 5 and h̄eff = 1. Solid lines indicate the exponen-
tial increase, i.e., N (t ) = eμt , while dash-dotted line denotes N = 1.
Inset: The μ versus λ. Solid line indicates the linear increase μ ∝ λ.
(b) Average value N̄ versus λ for K = 5 with h̄eff = 0.1 (squares),
0.5 (circles), and 1 (triangles). Solid line denotes N = 1. (c) Phase
diagram of the spontaneous PT -symmetry breaking for h̄eff = 1.
One can see clearly a phase boundary λc. Here, the value of ρ, gen-
erated by a well-trained LSTM network, determines the probability
of a parameter value (λ, K ) being within the PT -symmetry phase
(ρ = 0) or the unbroken PT -symmetry phase (ρ = 1). (d) The value
of λc in the parameter space (K, h̄eff ).

B. Spontaneous PT -symmetry breaking

It is straightforward to prove that the Floquet operator
of the PTKR satisfies the PT symmetry U = (PT )†UPT ,
where P and T are the parity and time reversal operators,
respectively. Based on conventional understanding of quan-
tum mechanics, one asserts that the two operators, i.e., U
and PT have simultaneous eigenstates, that is to say, the
quasieigenstate |ψε〉 is also the eigenstate of the PT operator,
i.e., PT |ψε〉 = ±|ψε〉. This conclusion is indeed valid for
positive quasienergies ε > 0. However, a notable feature of
the PTKR system is that complex quasienergies ε = εr ± εi

emerge when the strength of the imaginary part of the complex
potential exceeds a threshold value, i.e., λ > λc [48–50]. The
threshold value λc is just the EP of the system. It can be
proven that the quasieigenstate |ψε〉 is no longer an eigenstate
of the PT operator due to the complex quasienergies, thus
demonstrating the spontaneous PT -symmetry breaking. An
intrinsic quality of the PTKR system is that PT symme-
try is helpful in protecting the real spectrum of the Floquet
operator.

We assume that the initial state is expanded as |ψ (t0)〉 =∑
ε ρε|ψε〉. Then, after the nth kick, the quantum state has

the expression |ψ (tn)〉 = Utn |ψ (t0)〉 = ∑
ε ρεe−iεr tn eεitn |ψε〉,

whose norm N = 〈ψ (tn)|ψ (tn)〉 exponentially increases with
time due to positive εi. We numerically investigate the
time evolution of N for different λ. Without loss of gen-
erality, we choose a Gaussian wavepacket, i.e., ψ (θ, t0) =
(σ/π )1/4 exp(−σθ2/2) with σ = 10 as the initial state in
numerical simulations. Figure 1(a) shows that, for very small
λ (e.g., λ = 0.01 and 0.05), the value of N equals almost to

062201-2



SCALING LAWS OF THE OUT-OF-TIME-ORDER … PHYSICAL REVIEW A 107, 062201 (2023)

unity with time evolution, which implies that quasienergies
are all real. Interestingly, for sufficiently large λ (e.g., λ =
0.15), N increases exponentially with time, i.e., N = eμt ,
and the growth rate μ increases with the increase of λ. The
nonunitary feature of the Floquet operator, specifically, the
real component of the kicking evolution operator, denoted as
U R

K = exp[Kλ sin(θ )/h̄eff], leads to the growth of the norm.
A rough estimation of the norm yields a time dependence
of the form N ∝ exp(Kλt/h̄eff ), indicating the relation of
the growth rate μ ∝ λ, which is confirmed by our numerical
results [see inset in Fig. 1(a)]. We further investigate the
long-time average value of the norm N̄ = ∑N

n=1 N (tn)/N for
a wide range of λ. Figure 1(b) shows that, for a specific h̄eff

(e.g., h̄eff = 0.1), N̄ remains at unity for λ smaller than a
threshold value λc, beyond which it monotonically increases
with λ. It is reasonable to believe that the threshold value λc

corresponds to the emergence of spontaneous PT -symmetry
breaking.

Recently, the LSTM network was exploited to extract the
character of time series and thus to predict the phase dia-
gram of quantum diffusion [92]. Based on the character of
the time evolution of N , we conducted supervised training
on the LSTM network and used it to evaluate the feature of
N (t ), namely, whether N (t ) = eμt or not, for different sys-
tem parameters [93]. This highly effective machine learning
method outputs the probability ρ of the time series N (t )
to be exponentially increasing or not, which can predict the
phase diagram of spontaneous PT -symmetry breaking. In-
terestingly, our results show that the ρ increases with the
increase of both K and λ [see Fig. 1(c)]. We identify two
phases in the parameter’s space (K, λ), the boundary of which
is clearly visible in Fig. 1(c). We further investigate the λc for
different K and h̄eff. Our results demonstrate that the critical
parameter λc increases with the increase of h̄eff and decreases
with the increase of K [see Fig. 1(d)]. This behavior is rooted
in the fact that the mean spacing level � of the quasienergies
of the quantum kicked rotor (QKR) model is proportional
to h̄/K [48]. The smaller the � is, the easier it is for the
non-Hermitian parameter λ to cause the coalescence of two
quasienergies, implying the relation λc ∝ h̄/K .

III. SCALING LAWS OF THE OTOCS AT THE
TRANSITION TO THE SPONTANEOUS

PT -SYMMETRY BREAKING

The OTOCs are defined by C(tn) = −〈[Â(tn), B̂]2〉, with
the operators Â(tn) = U †(tn)AU (tn) and B being evaluated
in the Heisenberg picture [56,61,65,81,94–98]. The aver-
age, i.e., 〈· · · 〉 = 〈ψ (t0)| · · · |ψ (t0)〉, is taken over an initial
state |ψ (t0)〉 [99]. In this work, we consider the case where
both Â and B̂ are angular momentum operators, i.e., C(t ) =
−〈[p(t ), p]2〉. We use a Gaussian wavepacket, i.e., ψ (θ, t0) =
(σ/π )1/4 exp(−σθ2/2) with σ = 10 as the initial state. It is
worth noting that, as opposed to static-lattice systems, periodi-
cally driven systems have no thermal states, as the temperature
grows to infinity with time evolution [100]. Thus, there is
no need to average over the initially thermal states in the
definition of C(tn) in our system [85,101].

Straightforward derivation yields the equivalence

C(tn) = C1(tn) + C2(tn) − 2Re[C3(tn)], (3)

where the two-points correlators, namely, the first two terms
in right side are defined by

C1(tn) = 〈ψR(t0)|p2|ψR(t0)〉, (4)

C2(tn) = 〈ϕR(t0)|ϕR(t0)〉, (5)

and the four-points correlator is

C3(tn) = 〈ψR(t0)|p|ϕR(t0)〉, (6)

with |ψR(t0)〉 = U †(t0, tn)pU (t0, tn)|ψ (t0)〉 and |ϕR(t0)〉 =
U †(t0, tn)pU (t0, tn)p|ψ (t0)〉 [102]. The symbol Re[· · · ] de-
notes the real part of a complex variable.

To obtain the state |ψR(t0)〉, three steps must be carried
out: (i) the forward evolution from t0 to tn, i.e., |ψ (tn)〉 =
U (t0, tn)|ψ (t0); (ii) the action of the operator p on the state
|ψ (tn)〉, i.e., |ψ̃ (tn)〉 = p|ψ (tn)〉; and (iii) the backward evo-
lution from tn to t0, i.e., |ψR(t0)〉 = U †(t0, tn)|ψ̃ (tn)〉. The
expectation value of the square of the momentum can then
be calculated using |ψR(t0)〉 to obtain C1(tn) [see Eq. (4)].
To numerically simulate C2(t ), the operator p should first
be applied to the initial state |ψ (t0)〉, yielding the new state
|ϕ(t0)〉 = p|ψ (t0)〉. Then, the forward evolution is conducted,
i.e., |ϕ(tn)〉 = U (t0, tn)|ϕ(t0)〉. Subsequently, the action of p
is performed on |ϕ(tn)〉, obtaining |ϕ̃(tn)〉 = p|ϕ(tn)〉, after-
wards, the time reversal is applied to |ϕ̃(tn)〉, resulting in
|ϕR(t0)〉 = U †(t0, tn)|ϕ̃(tn)〉. Using Eq. (5), C2(tn) can then be
calculated by evaluating the norm of |ϕR(t0)〉. Lastly, the term
C3(tn) [see Eq. (6)] can be determined using the two states
|ψR(t0)〉 and |ϕR(t0)〉, which is usually complex since they are
not identical.

In the PT -symmetry breaking phase, the norm of the quan-
tum state Nψ (tn) = 〈ψ (tn)|ψ (tn)〉 increases exponentially
with time regardless of the forward or backward evolution.
To address this issue and eliminate its contribution to the
OTOCs, we normalize the time-evolved state. For the for-
ward evolution t0 → tn of |ψ (t0)〉, we set the norm of the
quantum state to be the same as that of the initial state,
i.e., Nψ (t j ) = 〈ψ (t0)|ψ (t0)〉 with 0 � j � n. The backward
evolution starts from the state |ψ̃ (tn)〉 whose norm Nψ̃ (tn) =
〈ψ (tn)|p2|ψ (tn)〉 is the mean energy of the state |ψ (tn)〉.
Thus, it is reasonable to take the norm of the quantum state
during the backward evolution tn → t0 to be Nψ̃ (tn), i.e.,
NψR (t j ) = Nψ̃ (tn). In short, the norm of the time-evolved
state for both the forward and backward evolution is equal
to that of the state it starts from. If the same normalization
procedure is applied to the evolution of |ϕ(tn)〉, then we
will have Nϕ (t j ) = 〈ϕ(t0)|ϕ(t0)〉 and NϕR (t j ) = 〈ϕ̃(tn)|ϕ̃(tn)〉
(0 � j � n) for the forward and time reversal evolutions,
respectively.

To understand the effects of PT -symmetry breaking on
the dynamics of C(tn), we numerically investigate the time
evolution of C(tn) for different λ. Figure 2(a) shows that, for
values of λ smaller than the phase transition point (e.g., λ =
10−5 	 λc), the C(tn) increases gradually up to saturation. In-
terestingly, for λ slightly larger than λc, the C(tn) increases in a
power-law of time, i.e., C(tn) ∝ tη with η > 2 [see λ = 0.022
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FIG. 2. (a) Time dependence of C for K = 6 with λ = 10−5

(squares), 0.022 (circles), 0.2 (diamonds), 0.5 (triangles), and 0.9
(pentagrams). Solid lines in red denote theoretical prediction in
Eqs. (12) and (13), i.e., C(t ) ∝ tη. (b) The η versus λ for h̄eff = 0.3
(squares) and 0.5 (circles). Arrow marks the phase transition point
λc ≈ 0.001 for h̄eff = 0.3.

with η = 3.4 in Fig. 2(a)]. We dub this phenomenon as a
superquadratic growth (SQG) of C(tn). When the value of λ is
much larger than the phase transition point, i.e., λ � λc [e.g.,
λ = 0.5 and 0.9 in Fig. 2(a)], the quadratic growth (QG) of
OTOCs C(tn) ∝ t2 emerges. We further investigate the expo-
nent η for different λ. Our results show that η is 0 for λ < λc,
increases abruptly to a maximum value greater than 2 for λ

slightly larger than λc, and finally saturates to 2 for sufficiently
large λ [e.g., see h̄eff = 0.3 in Fig. 2(b)]. It is evident that
the scaling law of OTOCs reveals the emergence of the spon-
taneous PT -symmetry breaking and unveils the correlation
between information scrambling and the PT -symmetry phase
transition.

IV. THEORETICAL ANALYSIS OF THE DYNAMICS
OF OTOCs

A. Mechanism of the saturation of C(t ) for λ < λc

We numerically investigate the time evolution of the three
parts of the OTOCs, i.e., C1, C2, and C3 for λ < λc. Figure 3(a)
shows that the time dependence of C1 and C almost overlap,
displaying rapid growth up to saturation. Since the real part
of C3, i.e., Re(C3) fluctuates between positive and negative
values, we plot the absolute value |Re(C3)| in Fig. 3(b). Both
C2 and |Re[C3]| saturate after a very short time evolution.
Importantly, C1 is at least four orders of magnitude larger than
both C2 and |Re[C3]|, leading to a perfect consistency between
C1 and C. Consequently, based on Eq. (3), we can safely use
the approximation

C(tn) ≈ 〈ψR(t0)|p2|ψR(t0)〉 = 〈p2(t0)〉RNψR (t0), (7)

where 〈p2(t0)〉R = 〈ψR(t0)|p2|ψR(t0)〉/NψR (t0) denotes the
expectation value of energy of the state |ψR(t0)〉 divided by
its norm NψR (t0) = 〈ψR(t0)|ψR(t0)〉.

The normalization procedure for time reversal yields
the equivalence NψR (t0) = Nψ̃ (tn) = 〈ψ (tn)|p2|ψ (tn)〉, which
shows that the value of NψR (t0) is just the mean energy of the
state |ψ (tn)〉 at the time t = tn. For λ < λc, the quasienergies
are all real, thus the dynamics of the PTKR is the same

FIG. 3. (a) Time evolution of C (circles) and C1 (squares). Note
that C almost fully overlaps with C1. (b) Dependence of C2 (squares)
and |Re(C3)| (circles) on time. The parameters are K = 6, λ = 10−5,
and h̄eff = 0.3. (c) The C̄ versus K with λ = 10−5 for h̄eff = 1
(squares), 5 (circles), 10 (triangles), and 15 (diamonds). Solid lines
indicate our theoretical prediction in Eq. (8).

as that of the Hermitian QKR. A noteworthy characteristic
of the QKR’s energy diffusion is the phenomenon of DL,
i.e., the mean energy 〈p2〉 gradually approaches to saturation
level with increasing time due to quantum coherence. It is
reasonable to believe that the mechanism of DL suppresses
the growth of both NψR (t0) and 〈p2(t0)〉R, and therefore leads
to the saturation of C(tn).

To confirm this conjecture, we consider a specific time, i.e.,
t = tn, and numerically trace the evolution of 〈p2〉 for both the
forward (t < tn) and backward (t > tn) evolution. Figure 4(a)
shows that for tn = 2500, 〈p2〉 increases rapidly to saturation
during forward time evolution from t0 to t2500, then jumps
to a specific value at the start of the time reversal (i.e., at
t = t2500) before finally saturating for the backward evolution
from t2500 to t0. This clearly demonstrates the emergence of
the DL, which is also reflected by the probability density
distribution in momentum space. We compare the momentum
distributions at the end of the forward evolution (i.e., t = t2500)
and the end of time reversal (i.e., t = t0) in Fig. 4(b). One
can see that the two quantum states almost overlap with each
other, both of which are exponentially localized in momen-
tum space, i.e., |ψ (tn)|2 ∼ exp(−|p|/L) [see Fig. 4(b)]. A
rough estimation yields NψR (t0) = 〈ψ (tn)|p2|ψ (tn)〉 ∼ L2 and
〈p2(t0)〉R ∼ ∫ ∞

−∞ p2 exp(−|p|/L)d p ∼ L2. Plugging the two
relations into Eq. (7), we can immediately obtain the esti-
mation of the OTOCs, i.e., C(tn) ∼ L4. It is known that the
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FIG. 4. (a) Time trace of 〈p2〉 (squares) and N (circles) during
the forward evolution t0 → t2500, the action of p at the time t =
t2500, and the time reversal t2500 → t5000. Green dashed line marks
tn = 2500. (b) Momentum distributions for the state |ψ (t )〉 (squares)
at the time tn = 2500 and the state |ψR(t0)〉 (circles) at the end of
time reversal. Solid line indicates the exponentially localized shape
|ψ (p)|2 ∝ e−|p|/L with L ≈ 46. The parameters are K = 6, λ = 10−5,
and h̄eff = 0.3.

localization length is in a quadratic function of K , i.e., L ∝ K2

[103], which results in the relation

C ∝ K8. (8)

This clearly demonstrates that the C is time independent after
the long term evolution, verifying our numerical results in
Figs. 2(a) and 3(a).

To provide evidence of our analytical prediction, we
investigate the time-averaged value of OTOCs, i.e., C̄ =∑N

j=1 C(t j )/N , numerically for different K . In the numeri-
cal simulations, we ensure that N is large enough for the
long-term saturation of C(t ) to be well quantified by C̄. Our
numerical results show that, for a specific h̄, C̄ increases in a
power law of K [see Fig. 3(c)], which is well described by our
theoretical prediction in Eq. (8). This is a strong indication
of the validity of our analytical analysis. Our findings of the
dependence of the OTOCs on the kick strength provide an
opportunity to control the operator growth with an external
driven potential.

The discontinuous jump in the mean square momen-
tum, 〈p2〉, at t = t2500, the beginning of time reversal,
is due to the action of the operator p on the quan-
tum state |ψ (t2500)〉. This action generates the quantum
state |ψ̃ (t2500)〉 = p|ψ (t2500)〉, for which the mean value
is given by 〈ψ̃ (t2500)|p2|ψ̃ (t2500)〉 = 〈ψ (t2500)|p4|ψ (t2500)〉.
The exponentially localized shape of the quantum state
|ψ (t2500)|2 ∼ exp(−|p|/L) [see Fig. 4(b)] allows us to ob-
tain the expectation values 〈ψ (t2500)|p2|ψ (t2500)〉 ∼ L2h̄2

eff
and 〈ψ̃ (t2500)|p2|ψ̃ (t2500)〉 = 〈ψ (t2500)|p4|ψ (t2500)〉 ∼ L4h̄4

eff,
which quantitatively explains the discontinuous increase in
the mean energy from L2h̄2

eff to L4h̄4
eff.

In the PTKR model, the DL takes place in the unbroken
phase of PT -symmetry, where the strength of the imaginary
component of the kicking potential is smaller than a specific
threshold value. In this phase, the DL mechanism is identical
to that of the Hermitian QKR model since the quasienergies
are real. The manifestation of DL is distinctly illustrated by
the time evolution of the mean energy, as depicted in Fig. 4.

FIG. 5. Time evolution of C1 (squares), C2 (diamonds), |Re(C3)|
(triangles), and C (circles) for λ = (a) 0.022 and (b) 0.9. In (a) the
red lines indicate the power-law fitting. In (b) the red lines indicate
the quadratic function C1 ≈ 44t2, C2 ≈ 17t2, and |Re(C3)| ≈ 2t2.
Inset: The �12 (squares) and �13 (circles) versus time. Solid (dashed-
dotted) line denotes �12 ≈ 2.5 (�13 ≈ 22). Other parameters are the
same as that in Fig. 4.

Our analysis of the time evolution of the OTOCs for λ < λc

reveals that the DL mechanism contributes to the saturation
of OTOCs (see Fig. 3). We investigate the quantum diffu-
sion in a non-Hermitian QKR model, utilizing a form of
non-Hermitian driven potential V (θ ) = (K + iλ) cos(θ ) [47].
The energy diffusion of this system displays an interesting
DL, characterized by a decrease of the saturation of mean
energy with the increase of the non-Hermitian parameter λ.
Thus, it is evident that the non-Hermitian kicking potential
can actually amplify the degree of DL in comparison to the
Hermitian QKR model. By extending the Floquet theory to
non-Hermitian cases, we predict that the quantum state will
ultimately evolve into a quasieigenstate with a predominantly
large imaginary part of the quasienergy. The localization of
this state dictates the DL of a time-evolved state [47,104],
which differs from the mechanism of DL in the Hermitian
QKR model [77–80].

B. Mechanism of the SQG of C(t ) for λ � λc

Figure 5(a) shows the time evolution of C1, C2, |Re(C3)|,
and C for λ just larger than the PT -symmetry phase transi-
tion point λ � λc. It is clear that the time dependence of C1

corresponds perfectly to that of C, both of which increase
following the SQG C ∝ t3.4. The time evolution of C2 dis-
plays the QG, i.e., C2(t ) ∝ t2, while |Re(C3)| follows the SQG
|Re(C3)| ∼ t2.9. In addition, one can see that C1 is larger than
both C2 and |Re(C3)| by approximately four orders of magni-
tude. Therefore, it is sufficient to analyze the time evolution
of the term C1 to uncover the mechanism of the SQG of C.

Since the value of C(t ) at a specific time t = tn is de-
pendent on both the mean energy 〈p2(t0)〉R and the norm
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FIG. 6. Top two panels: Time trace of 〈p2〉 (squares) in (a), N
(circles) in (a), and 〈p〉 in (b) during the forward evolution t0 →
t2500, the action of p at the time t = t2500, and the time reversal
t2500 → t5000. Green dashed lines mark t = t2500. In (a) the red line
indicates the quadratic function 〈p2〉 = γ 2t2 with γ ≈ 3.2. In (b) the
red line indicates the linear growth 〈p〉 = γ t . Inset: R versus time.
Red line marks R = 1. In (c) the time dependence of 〈p2(t0)〉R. Red
line indicates the power-law fitting 〈p2(t0)〉R ∝ t1.4. The parameter is
λ = 0.022. Other parameters are the same as Fig. 4.

NψR (t0) of the state |ψR(t0)〉 at the end of time reversal [see
Eq. (7)], we numerically calculate the forward and backward
time evolution of 〈p2〉, 〈p〉, and N with a fixed tn (e.g.,
tn = 2500 in Fig. 6). Figure 6(a) demonstrates that the mean
energy diffuses ballistically with time 〈p2〉 ≈ γ 2t2 during the
forward evolution t0 → t2500 and it displays the intrinsic time
reversal during t2500 → t0. Meanwhile, the mean momentum
〈p〉 linearly increases for t0 < t < t2500, and linearly decays
for t2500 → t0 [see Fig. 6(b)]. Moreover, Fig. 6(a) reveals that
the norm remains unity, i.e., N (t ) = 1, during the forward
evolution and equals the mean energy at the time t = t2500,
i.e., NψR (t j ) = 〈p2(t2500)〉 during the time reversal. Taking
the ballistic diffusion of energy into account, the following
equivalence can be derived

NψR (t0) = γ 2t2
n . (9)

To measure the degree of time reversal for a fixed tn, we
define the ratio of mean energy between forward (t < tn) and
backward (t > tn) time evolution as

R(t j ) = 〈p2(2tn − t j )〉R

〈p2(t j )〉 , (10)

where 〈p2(t j )〉 and 〈p2(2tn − t j )〉R (0 � j � n) denote the
mean square of momentum for the forward evolution and time

FIG. 7. Probability density distributions in real (left panels) and
momentum (right) space for λ = 0.022. (a)–(d) Black and blue lines
separately correspond to the states at forward |ψ (t )〉 and backward
|ψR(t )〉 evolution with t = t0 (top panels) and t = t1250 (middle
panels). Inset in (b) shows a magnified view of the momentum dis-
tribution for the initial Gaussian wavepacket around p = 0. Bottom
panels: Probability density distributions in real (e) and momentum
(f) space at the time t = t2500. Black and blue lines indicate the state
|ψ (t2500 )〉 and |ψ̃ (t2500 )〉 = p|ψ (t2500 )〉, respectively. Other parame-
ters are the same as Fig. 4.

reversal, respectively. The inset in Fig. 6(b) shows that R is
very large (i.e., R � 104 for t = t0) and approaches almost
1 with time evolution. This reveals that the mean energy at
the end of time reversal is much greater than that at the
initial time, i.e., 〈p2(t0)〉R � 〈p2(t0)〉. We further investigate
the time evolution of 〈p2(t0)〉R, and find [see Fig. 6(c)] that
the 〈p2(t0)〉R increases in the power law of time

〈p2(t0)〉R ∝ t1.4. (11)

Substituting Eqs. (9) and (11) into Eq. (7) yields the SQG of
OTOCs

C(t ) ∝ tη with η ≈ 3.4. (12)

Figure 7 shows the probability density distribution of
the state at forward |ψ (t j )〉 and backward |ψR(t j )〉 evolu-
tion in both the real and momentum space. The initial state
is a Gaussian wavepacket ψ (θ, t0) = (σ/π )1/4 exp(−σθ2/2)
centered at θ = 0 and p = 0 [see Figs. 7(a) and 7(b)]. Inter-
estingly, one can observe that the quantum state is mainly
distributed in the region 0 < θ < π for both the forward
and backward evolution. This is due to the fact that the ac-
tion of the Floquet operator of the kicking term UK (θ ) =
exp[Kλ sin(θ )/h̄eff] exp[−iK cos(θ )/h̄eff] on a quantum state,
i.e., UK (θ )ψ (θ ) helps to amplify the state within the region
0 < θ < π as Kλ sin(θ ) > 0. Assuming that the real part of
the kicking potential provides the driven force F = K sin(θ ),
the PTKR experiences a positive magnitude force F > 0 dur-
ing the forward evolution, thus the momentum grows with
time, as shown in Fig. 6(b). For the time reversal, the sign of
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FIG. 8. Same as in Fig. 6 but for λ = 0.9. In (a) the red line indi-
cates the quadratic function 〈p2〉 = γ 2t2 with γ ≈ 6.3. In (b) the red
line denotes the linear growth 〈p〉 = γ t . In (c) the red line indicates
〈p(t0)〉R ≈ 1.

kick strength K flips, i.e., K → −K , so the mean momentum
decreases with time evolution. Our conjecture is supported
by the numerical results of momentum distributions. Fig-
ures 7(b), 7(d) and 7(f) show that the wavepacket, like a
soliton, moves to the positive direction in momentum space
for t0 → t2500, resulting in 〈p〉 = γ t [in Fig. 6(b)], and moves
back to the opposite direction for t2500 → t0. In addition, the
width of the wavepacket in momentum space is so narrow that
one can safely use the approximation 〈p2〉 ∼ (〈p〉)2, which is
verified by our numerical results in Figs. 6(a).

C. Mechanism of the QG of C(t ) for λ � λc

We numerically investigate the time evolution of C1, C2, C3,
and C for λ � λc. As shown in Fig. 5(b), all of them increase
in the way of QG (i.e., ∝ t2). We use the ratios �12 = C1/C2

and �13 = C1/|Re[C3]| to quantify the differences among C1,
C2, and |Re[C3]|. Our investigation shows that both of them
are larger than 1, specifically �12 ≈ 2.5 and �13 ≈ 22 [see
the inset in Fig. 5]. This suggests that C1 contributes mainly
to the C, which is verified by the good agreement between C1

and C [see Fig. 5(b)]. To reveal the mechanism of the QG of C,
we proceed to analyze the time evolution of C1 by thoroughly
investigating both the forward and backward evolution of the
mean values 〈p2〉, 〈p〉, and the norm N for a given tn.

Figure 8(a) shows that the mean energy exhibits ballis-
tic diffusion 〈p2〉 ≈ γ 2t2 during the forward evolution from
t0 to tn and decays as the inverse of a quadratic function,
with 〈p2〉 ∝ t−2, during the backward evolution from tn to t0.
This decay is symmetric with respect to the 〈p2〉 of t < tn.
The dynamics of the mean momentum also exhibits perfect

FIG. 9. Same as in Fig. 7 but for λ = 0.9.

time reversal, namely, it linearly increases as 〈p〉 = γ t dur-
ing t0 → t2500 and decreases linearly during t2500 → t0. The
ratio R remains close to 1 throughout the time evolution,
except at the end, i.e., R(t = 2500) ≈ 2.5 [see the inset in
Fig. 8(b)], providing a clear evidence of time reversal. For the
forward evolution from t0 to t2500, the norm N (t j ) is equal to
unity, while for the interval t2500 → t0, it is equal to the value
of 〈p2(t2500)〉, i.e., NψR (t j ) = 〈p2(t2500)〉 [see Fig. 8(a)]. By
utilizing the ballistic diffusion of mean energy, we establish
the relationship NψR (t0) ≈ NψR (tn) ≈ γ 2t2

n , where tn is an
arbitrary time. We further evaluate the behavior of 〈p2(t0)〉R

for different tn. As shown in Fig. 8(c), the 〈p2(t0)〉R remains
almost constant at a value of 1, indicating that it is independent
of time. Plugging in the values of NψR (t0) and 〈p2(t0)〉R into
Eq. (7), we obtain the QG of OTOCs

C(t ) ≈ γ 2tη with η = 2. (13)

The time reversal of a wavepacket’s dynamics is clearly
seen in the evolution of its momentum distributions. For the
forward time evolution, the quantum state is localized at the
point θc = π/2 [see Figs. 9(a), 9(c) and 9(e)], which is the
result of the localization effect of the imaginary part of the
Floquet operator UK (θ ). With the wavepacket mimicking a
classical particle, it experiences a kicking force of magnitude
F = K sin(θc) = K , resulting in a constant acceleration of
momentum �p = K , which is reflected in the linear growth
of momentum. This phenomenon of the directed current is
also seen in the propagation of momentum distributions in
Figs. 9(b), 9(d) and 9(f), where a soliton can be observed
moving unidirectionally towards the positive direction in mo-
mentum space.

During the backward evolution, the wavepacket of the
real space remains centered at θc = π/2, with a width much
smaller than the corresponding state at the time of forward
evolution [see Figs. 9(a), 9(c) and 9(e)]. As the particle is
exposed to the kicking force with F = −K during time re-
versal, its momentum decreases linearly in time, which is also
reflected in the propagation of the wavepackets in momentum
space [Figs. 9(b), 9(d) and 9(f)]. It is evident that the |ψ (tn)|2
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is in perfect overlap with the |ψR(tn)|2, apart from the initial
state [see Fig. 9(b)]. The width of |ψR(t0)|2 is considerably
larger than that of |ψ (t0)|2, leading to the ratio of energy being
larger than one, i.e., R = 〈p2(t5000)〉R/〈p2(t0)〉 ≈ 2.5 [see the
inset in Fig. 8(b)].

Our numerical findings clearly demonstrate that the prob-
ability density distribution of the PTKR model in angular
coordinate space can unveil the signature of spontaneous PT -
symmetry breaking. In the PT -symmetry phase, i.e., λ <

λc, the quantum state is homogeneously distributed through-
out the angular space. However, just beyond the phase
transition points, i.e., λ � λc, the quantum state primarily
populates the region where 0 < θ < π [see Figs. 7(a) and
7(c)]. As λ increases significantly beyond λc, the quantum
state exhibits a well-localized shape around the point θc =
π/2 [see Figs. 9(a), 9(c) and 9(e)]. This localization results
from the amplification of the probability density by the Flo-
quet operator of the imaginary part of the kicking potential
U R

K = exp[Kλ sin(θ )/h̄eff].

V. CONCLUSION AND DISCUSSION

In this work, we investigate the dynamics of OTOCs in a
PTKR model and achieve its scaling laws in different phases
of PT symmetry. We use the time series of the norm to train
a LSTM, which enables us to extract a clear phase diagram
of PT -symmetry breaking, with a phase boundary at λc. For
λ < λc, we find that the DL of energy diffusion suppresses the
growth of OTOCs and prove analytically the dependence of
OTOCs on the kicking strength, i.e., C ∝ K8. At the vicinity
of the phase transition points, i.e., λ � λc, we observe a SQG
of OTOCs, i.e., C(t ) ∝ tη with an exponent η > 2. Interest-
ingly, a QG of OTOCs, i.e., C(t ) ∝ t2 emerges for λ � λc.
We elucidate the mechanisms of both the SQG and QG by an-
alyzing the time-reversed wavepacket’s dynamics. Our results
demonstrate that the spontaneous PT -symmetry breaking
profoundly affects the dynamics of OTOCs, providing an
unprecedented opportunity for diagnosing the spontaneous
PT -symmetry breaking with OTOCs.

It has been proven that the long-term periodical driving
can trigger the development of a thermal state with infinite
temperature in interacting spin chains [100]. The prethermal-
ization state in a paradigm model of many-body chaos, i.e.,
interacting kicked rotors, can be effectively characterized by a
generalized Gibbs ensemble with a well-defined temperature
[77]. The features of prethermalization, crossover regime, and
heating phases can be identified through the spatiotemporal
fluctuation correlation of kinetic energy [78]. For the PTKR,
the mean energy increases unboundedly in condition that
λ > λc, suggesting a rise in temperature towards infinity. Our
theoretical analysis indicates that the quantum diffusion of en-
ergy underlies the power-law growth of OTOCs, thereby link-
ing quantum heating and quantum scrambling. The intrinsic
relationship between quantum diffusion, quantum thermaliza-
tion, and quantum scrambling is a fundamental issue that has
garnered significant attention, particularly for non-Hermitian
systems in recent years. Our discovery of diffusion-induced
scaling laws for OTOCs presents a different aspect in this
fascinating field and enriches our understanding of the

FIG. 10. Schematic diagram illustrates the method for training
the LSTM network. Pentagrams indicate the phase transition points
λc, which approximately outline the phase boundary (green dashed
line). Double-ended arrow line denotes a series of discrete param-
eters (λ j, Kj ) with 1 � j � N , in which red and blue circles are
characterized by ρ = 0 and 1, respectively.

fundamental problems associated with the quantum-classical
transition in non-Hermitian chaotic systems [104,105].

In recent years, the OTOCs were widely used to investi-
gate the operator growth in quantum mapping systems [106],
the information scrambling in spin chains [107], and the
quantum thermalization in many-body chaotic systems [108].
Theoretical studies demonstrated that the QKR model is math-
ematically equivalent to the kicked Heisenberg spin XXZ
chain [109], indicating a connection between the magnon
dynamics and quantum diffusion of chaotic systems. Our
findings therefore bridge the gap between the information
scrambling in condensed matter physics and the operator
growth in quantum chaotic systems. This also paves the
way for the experimental observation of OTOCs dynamics
in chaotic systems using spin chain platforms. Based on
the equivalence between the light propagation equation un-
der paraxial approximation and the Schrödinger equation,
the author of Ref. [49] proposed an optical setup composed
of a Fabry-Perot resonator with flat end mirrors and com-
bined thin index and loss gratings to emulate the wavepacket
dynamics of the PTKR model. The reflection of light by
the mirrors simulates the delta kicking, while the combined
thin index and loss gratings assume the role of the PT -
symmetric potential. The quantum ratchet transport of optics
is observed in the frequency domain. Therefore, our find-
ings could be realized using state-of-the-art experimental
techniques.
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APPENDIX: DETAILS OF THE LSTM METHOD

Figure 10 shows the schematic strategy for training the
long short-term memory (LSTM) network. There are three
steps.

(i) First, we numerically search several phase transition
points λc based the dependence of time-averaged N̄ on λ [see
Fig. 1(b)], which allows us to outline approximately the phase
boundary [see the dashed line in Fig. 10].

(ii) Second, we sketch a straight line that is approximately
perpendicular, intersecting the midpoint of the phase bound-
ary. Along this line, we select hundreds of discrete parameter

values for (λ j, Kj ) with 1 � j � N and numerically calculate
the corresponding time evolution of the norm N j (t ). Note
that the norm of the parameters below (above) the phase
boundary exhibits a characteristic value of ρ = 0 (ρ = 1),
indicative of the PT -symmetry (broken PT-symmetry) phase.
We utilize the data N j (t ) to perform supervized training on the
LSTM.

(iii) Finally, we numerically calculate the norm N (t )
across a wide range of parameter values in the (λ, K ) space.
By inputting these time series of norms into the trained LSTM,
we obtain the probability ρ, which determines whether the
parameter (λ, K ) is in the PT -symmetry phase or not.
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