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Multichannel nonreciprocal amplifications using cesium vapor
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Multichannel synchronous amplifications are an inevitable key problem in quantum communication process,
which can broaden the bandwidth of transmitted signals and establish correlation among different optical
channels. Here we study a nonreciprocal system with four concurrent amplification channels using hot cesium
atoms, both theoretically and experimentally. For the forward probe field, the double–electromagnetically
induced transparency structure is formed and the phase-matching condition of the multiwave mixing process is
satisfied, which are both destroyed when the probe field is reversed. In addition, the four-channel nonreciprocal
amplifications are formed in the Zeeman sublevels of the system with special selection of light field polarization,
which will also dramatically enhance the signal-to-noise ratio by suppressing the spontaneous emission noise
of the system. In our experiment, the quadruple nonreciprocal amplifications are achieved with the maximum
forward gain reaching 30 dB and the reverse suppression reaching–23 dB. The gain adjustability allows the
construction of a gain-loss balanced system, providing a scheme for an atomic system to engineer a parity-time-
symmetric (or -antisymmetric) structure.
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I. INTRODUCTION

Nonreciprocal devices [1–6] exhibit anisotropic transmis-
sion and isolation properties by breaking Lorentz reciprocity
[7], which always holds true in nonmagnetic linear me-
dia guaranteed by Maxwell equations. These devices have
boosted the development of communication networks due to
their ability of protecting coherent information processing
from noise and backscattering. Common schemes related to
nonreciprocity are based on magneto-optical materials that
provide asymmetrical permittivity tensors [8]. As the de-
mand for on-chip integration grows, numerous alternative
linear schemes have been proposed without a reliance on
magneto-optical effects, including indirect interband photonic
transitions [9,10], spatiotemporal modulation [11–15], op-
tomechanical interaction [16–19], etc.

Unlike linear schemes, strong nonlinear interactions be-
tween photons are beneficial to the observation of quantum
effects in optics and the compensation for the inevitable loss
in the transmission process. Studies that combine nonlinear-
ity and nonreciprocity include second harmonic generation
in asymmetric waveguides [20], metastructure [21–23], and
photonic quasicrystals [24,25]. Also, atomic systems, which
have the advantage of high tunability and strong quantum
interference, are an indispensable implementation to achieve
nonreciprocal amplifications, based on Kerr optical nonlinear-
ities [5,26–29], multiwave mixing [30] and nonlinear Raman
interaction [31]. However, these pioneering nonreciprocal
atomic systems with amplification normally contain just one
signal channel.

Since multichannel interaction in atomic systems is cru-
cial for long-distance quantum communication [32], it is of

great significance to develop multichannel nonreciprocal sys-
tems. Particularly, the associated photon pairs generated using
spontaneous parametric down-conversion processes [33] and
spontaneous four-wave mixing processes [34] provide useful
bipartite entanglement in, e.g., energy time [35–38], polar-
ization [39], and orbital angular momentum [40,41]. Thus
it is worthwhile to construct multiple associated channels to
realize nonreciprocal gains synchronously.

In this work we provide an all-optical nonreciprocal system
with multiple amplification channels in cesium (Cs) atoms by
breaking both the time-reversal symmetry [1] and the spacial
inversion symmetry [42]. The technique we utilize here is
electromagnetically induced transparency (EIT), an effective
method in atomic systems to reduce the absorption of the
probe field, which has been integrated onto chips [43–47]. The
requirement for the EIT effect is the two-photon resonance
condition, which is irrelevant with the propagation directions
of the fields in the absence of Doppler effect. This reciprocal
nature of EIT will be broken once we consider the inevitable
microscopic Doppler effect in warm atoms, which will shift
the frequencies of the fields. The frequency shifts are related
to the propagation directions of the fields, which means that
it will be different when the probe field propagates in the
opposite direction and thus breaks the time-reversal symme-
try. As for the spatial inversion symmetry, the generation and
amplification of the weak fields are all based on the multi-
wave mixing processes, where the phase-matching condition
is always indispensable. This condition is a request for the
spatial relationship of the wave vectors, which is related to the
momentum conservation. That is to say, once we input a probe
field from the opposite direction with the directions of other
fields unchanged, this condition will be also broken, leading
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to the breaking of the spatial inversion symmetry. These two
breakings indicate that the transparency windows and non-
linear amplifications are nonreciprocal. To our knowledge,
this study is the first realization of multichannel nonrecipro-
cal amplifications, which has potential applications in, e.g.,
preparing the nonreciprocal entangled (superentangled) pho-
ton pairs [40].

The paper is organized as follows. In Sec. II we introduce
the model of the multichannel nonreciprocal amplifications.
The experimental results are shown in Sec. III, and dis-
cussions and conclusions are given in Sec. IV. Also, some
theoretical results used for explaining the experimental obser-
vations are given in the Appendix.

II. MODEL

A. Physical mechanism of the multichannel amplifications

The development of double-EIT [48] and even double-
double EIT [49] provides us the opportunity to achieve
multichannel systems with transparency windows. Moreover,
the degenerated Zeeman sublevels of Cs atoms [50], on the
one hand, offer us a subtle platform to construct multi-tripod-
type energy-level structures with only one or two coupling
fields but on the other, suffer from the complexity of its
large numbers of the sublevels. By skillful design of the
field polarization, we manage to overcome this weakness
and consequently achieve a nonreciprocal optical system with
four amplification channels in the Zeeman sublevels of Cs
atoms.

As schematically shown in Fig. 1(a), the Cs atomic vapor
cell is embedded in a magnetic shield barrel, where two π -
polarized coupling fields [coupling field 1 (blue arrow) and
coupling field 2 (green arrow)] and a σ+- and σ−-polarized
probe field (red arrow) nearly colinearly pass through the va-
por cell. Here we only consider the two ground states (62S1/2,
Fg = 3, Fg = 4) and one excited state (62P1/2, Fe = 4) in the
D1 line of Cs atoms [cf. Figs. 1(b) and 1(c)], where Fg,e

is the total angular momentum, and the frequency splitting
between the two hyperfine ground energy levels is δ/2π =
9.2 GHz. For convenience, we denote these Zeeman sublevels
by |amF 〉 (62S1/2, Fg = 3), |bmF 〉 (62S1/2, Fg = 4) and |cmF 〉
(62P1/2, Fe = 4), with mF (= −Fg,e, −Fg,e + 1, . . . , Fg,e −
1, Fg,e) being the projection of Fg,e along the y axis. Since
the geomagnetic field is screened, the Zeeman sublevels |amF 〉
(|bmF 〉, |cmF 〉) are degenerate [51]. The coupling field 1 with
frequency ω1 (blue arrow) is set to be in resonance with
the transition |cmF 〉 → |amF 〉, while the coupling field 2 with
frequency ω2 (green arrow) is blue detuned from the transi-
tion |cmF 〉 → |bmF 〉 by �/2π ≈ 40 MHz. The frequency ωp

of the probe laser is scanned around the transition frequency
between the two states |cmF 〉 and |bmF 〉.

In the steady state, due to the forbidden nature of the tran-
sition between |b0〉 and |c0〉, almost all atoms are in the state
|b0〉. This special population case as well as the symmetric
energy-level structure of Cs atoms allow us to draw a simpli-
fied picture [see Fig. 1(c) and Appendix B for more details].
As shown in Fig. 2(a), the injected probe field (red solid
arrow) generates the conjugated field (with frequency ωconj =
ωp + δ − �; blue dotted arrow) via interaction with the two

FIG. 1. Illustration of the principles of nonreciprocal multi-
channel synchronous amplification system based on a Cs atomic
vapor cell. (a) Experimental apparatus. Blue and green arrows: (π -
polarized) coupling fields 1 and 2; Red arrow: (σ+- and σ−-polarized
with equal components) probe field. � denotes the linear polarization.
The probe field and coupling fields are mixed by a polarizing beam
splitter before entering into the Cs atomic vapor cell and then sep-
arated by another polarizing beam splitter after exporting from the
Cs atomic vapor cell. In addition, the spatial distribution of these
input fields is illustrated, where the relative angles between each
coupling field and the probe field are chosen as θ1 = θ2 = 3.45 mrad
(see Appendix A). (b) The hyperfine energy levels in the Cs D1 line
[50]. Note that the energy level 62P1/2, Fe = 3 is decoupled from the
two coupling fields and the probe field. (c) The diagram of Zeeman
sublevels. (d) The conceptual view of the nonreciprocal behavior in
the atomic system with probe field injected from two directions.

coupling fields, where the four-wave mixing (FWM) process,
i.e., |b1〉 → |c1〉 → |b0〉 → |c0〉 → |b1〉, amplifies both the
probe and conjugated fields. Then the amplified probe field
will repump the atoms from |b0〉 to |c1〉, which leads to a
six-wave mixing (SWM) process, i.e., |b1〉 → |c1〉 → |b0〉 →
|c1〉 → |a0〉 → |c0〉 → |b1〉 [see Fig. 2(b)], where the Stokes
(with frequency ωs = ωp − �; yellow dotted arrow) and the
anti-Stokes (with frequency ωas = ωp + δ; purple dotted ar-
row) fields are generated. Furthermore, the FWM process in
the SWM process [i.e., |b1〉 → |c1〉 → |a0〉 → |c0〉 → |b1〉;
see Fig. 2(c)] also amplifies the two generated fields. The two
FWM processes form the two double-EIT (DEIT) structures
[48,49], where one DEIT structure consists of the states |b1〉,
|c1〉, |a0〉, and |b0〉, and the other is formed by |a1〉, |c1〉, |a0〉,
and |b0〉 [cf. Fig. 2(d)]. This provides the four corresponding
transparency windows for the amplified probe, conjugated,
Stokes, and anti-Stokes fields.
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FIG. 2. (a)–(d) Simplified level diagrams with the most pop-
ulated sublevels. (a) The generation and amplification process of
the probe and conjugated fields by a FWM process. (b) A medi-
ated SWM process that connects the probe and Stokes/anti-Stokes
fields. (c) The FWM process in the SWM process will further
amplify the Stokes and anti-Stokes fields. (d) The injected probe
field and the generated conjugated, Stokes and anti-Stokes fields,
are all in the transparency windows of two DEIT structures. (e)
Population of the sublevels, |b0〉, |b±1〉, and |a0〉, vs the tem-
perature T of the atomic vapor cell, which are calculated using
Eqs. (C5)–(C9) in Appendix C. Inset: the enlarged view of the
population of the sublevel |a0〉 and |b±1〉. The parameters used in
the simulation are γc0,1/2π = 4.6 MHz, 	1 = 8.7γc0 ,	2 = 14γc0 ,
�1 = 0, �2/2π = 40 MHz, and γa0,a1/2π = γb0,b1/2π = 9κn(T ),
where κ ≈ 6 × 10−10 cm3 s−1, and the collisional dephasing effect
has been neglected [51]. The atomic density is given by n(T ) =
Pv/kBT, with the Boltzmann constant kB and the pressure Pv (T ) =
107.046−3830/T [50].

In the above processes, almost all Cs atoms in the sublevel
|b0〉 are forbidden to interact with the coupling fields due
to the selection rules, leading to weak spontaneous emission
noises. On the other hand, other sublevels have so few Cs
atoms that the corresponding noises are also weak, despite
that they are coupled to near-resonant coupling fields. Thus
the noises are tremendously suppressed in our system, and
the signal-to-noise ratio of the multichannel nonreciprocal
amplifications can be significantly improved [52].

B. Theoretical results

In this section we derive the susceptibilities χ1 and χ2 of
the weak fields, where χ1 contains ωp and ωconj [cf. Fig. 2(a)],

while χ2 contains ωs and ωas [cf. Fig. 2(c)]. In the interaction
picture the Hamiltonian for the FWM processes in Figs. 2(a)
and 2(c) are [53–57]

H (1)
int = 1

2

[
	1ei(k1z−�1t )

(
σc1a1 + σc0b0

) + 	2ei(k2z−�2t )σc1b1

+ 	pei(kpz−�pt )σc1b0 + 	conje
i(kconjz−�conjt )σc0b1 + H.c.

]
(1)

and

H (2)
int = 1

2

[
	1ei(k1z−�1t )

(
σc1a1 + σc0a0

) + 	2ei(k2z−�2t )σc1b1

+ 	ase
i(kasz−�ast )σc1a0 + 	se

i(ksz−�st )σc0b1 + H.c.
]
,

(2)

respectively, where ωx is the eigenenergy of state |x〉, k1,2

and 	1,2 (kp,conj,s,as and 	p,conj,s,as) stand for the wave vectors
and the Rabi frequencies of the coupling fields (weak fields),
and σxy = |x〉〈y| ({x, y} = {amF , bmF , cmF }, x �= y) denote the
atomic transition operators with transition frequency ωxy =
ωx − ωy. When we consider the Doppler frequency shifts
induced by atomic thermal motion, the frequency detunings
can be expressed as �1 = (ω1 + k1v) − ωc1a1 , �2 = (ω2 +
k2v) − ωc1b1 , �p,s = (ωp,s ± kp,sv) − ωc1b0 , and �conj,as =
(ωconj,as ± kconj,asv) − ωc1a0 , where +kp,sv and +kconj,asv

(−kp,sv and −kconj,asv) correspond to the forward (backward)
probe field, and v is the velocity of Cs atoms.

With the Hamiltonians in Eqs. (1) and (2), we can obtain
the susceptibility χ of the weak fields by solving the master
equations (see Appendix D) [48,49,51]:

χ = χ1 + χ2, (3)

χ1 =
∫ ∞

−∞

iN |dc1b0 |2
ε0	p

(
C(1)

DEIT + C(1)
SRS + C(1)

FWMei�k(1)
FWMz

)
f (v)dv,

(4)

χ2 =
∫ ∞

−∞

iN |dc1a0 |2
ε0	as

(
C(2)

DEIT + C(2)
SRS + C(2)

FWMei�k(2)
FWMz

)
f (v)dv,

(5)

where N stands for the atomic density, dc1b0 = 〈c1|d|b0〉 and
dc1a0 = 〈c1|d|a0〉 are the corresponding matric elements of the
dipole moment d of Cs atoms, ε0 denotes the permittivity
of free space, and f (v) = exp(−v2/u2)/u

√
π is the Maxwell

velocity distribution, with u = √
2kBTat/m being the most

probable velocity, kB the Boltzmann constant, Tat the temper-
ature of atoms, and m the mass of a Cs atom. The coefficients
C(1,2)

DEIT, C(1,2)
SRS , and C(1,2)

FWM given in Appendix D are func-
tions of the two-photon detunings �p2 = (ωp ± kpv) − (ω2 +
k2v), �conj1 = (ωconj ± kconjv) − (ω1 + k1v), �as2 = (ωas ±
kasv) − (ω2 + δ + k2v), and �s1 = (ωs + δ ± ksv) − (ω1 +
k1v), while �k(1)

FWM = k1 + k2 ∓ kp ∓ kconj and �k(2)
FWM =

k1 + k2 ∓ kas ∓ ks denote the momentum-mismatching of the
two FWM processes in Figs. 2(a) and 2(c). For simplicity,
we assume k1 ≈ k2 ≈ kp ≈ kconj ≈ kas ≈ ks in the following
analysis.

To quantitatively describe the four-channel nonreciprocal
amplifications, we define the gain

g ≡ Pp

P0
= exp[−kLIm(χ )], (6)
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FIG. 3. Theoretical simulations of the gain spectra at (a) room
temperature T = 25 ◦C and (b) warm temperature T = 43 ◦C us-
ing Eq. (6), where the ToP rate, γ ′

ab = κn(T ), is γ ′
ab/2π = 30 Hz

in (a) and γ ′
ab/2π = 166 Hz in (b), respectively. Other parameters

are chosen to be γc0/2π = γc1/2π = 4.6 MHz, γ ′
ba = 9γ ′

ab/7, 	1 =
8.7γc0 , 	2 = 14γc0 , 	p = 	conj = 	s = 	as = 0.2γc0 , �1 = 0, and
�2/2π = 40 MHz.

where P0 (Pp) is the input (output) power of the weak field,
and L is the length of the vapor cell. In Fig. 3 we plot the gain
g versus the detunings �p/2π of the probe field at different
temperatures. At T = 25 ◦C, the Doppler-broadened absorp-
tion background is clearly visible for both the forward and
backward cases, while the four transparency windows only
occur in the forward case [see Fig. 3(a)]. This nonreciprocity
results from the fact that the two-photon resonance condi-
tions in the EIT structures and the momentum conservation
conditions in the FWM processes are broken in the back-
ward case. The two-photon resonance �p2 = �conj1 = �as2 =
�s1 = 0 is essential in the EIT structures. When the system is
Doppler-free for the forward probe field (i.e., �p2 = ωp − ω2,
�conj1 = ωconj − ω1, �as2 = ωas − ω2 + δ, and �s1 = ωs +
δ − ω1), the two-photon detunings, �p2, �conj1, �as2, and
�s1, can be tuned to zero by setting ωp = ω2, ωconj = ω1,
ωas = ω2 + δ, and ωs + δ = ω1. Then the absorption of the
probe field can be totally eliminated due to the destructive
quantum interference between the excitation pathways [43].
When the probe and coupling fields have opposite directions,
it is difficult to satisfy the two-photon resonant conditions,
because the Cs atoms have different velocities v. Thus the EIT
effect will be destroyed. Moreover, for the momentum con-
servation �k(1)

FWM = k1 + k2 − kp − kconj = 0 and �k(2)
FWM =

k1 + k2 − kas − ks = 0 in the forward case, it is also violated
for the backward case, i.e., �k(1)

FWM = k1 + k2 + kp + kconj �=
0 and �k(2)

FWM = k1 + k2 + kas + ks �= 0.
When increasing the temperature, e.g., from T = 25 ◦C

to T = 43 ◦C (related to the steady-state population of Cs
atoms), the four transparency windows become four giant
gain peaks in the forward case and there are some sideband
peaks due to the Autler-Townes effect [58] [cf. Figs. 3(a)
and 3(b)]. For the low temperature (corresponding to low
population of Cs atoms in |b±1〉 and |a0〉), the FWM processes
are very weak, and there are only four-channel transparencies
without amplifications. When increasing the temperature, the
spin-exchange collisions among Cs atoms will transfer the
population of hyperfine ground levels [51]. This gives rise to
the decrease of the population in |b0〉 while increasing the
population in |b±1〉 and |a0〉 [see Fig. 2(e)]. It strengthens
the FWM and SWM processes for realizing the four-channel
amplifications.

III. EXPERIMENTAL RESULTS

Experimentally, we measure the transmission and ampli-
fication properties of the scanned probe field in a Cs atomic
vapor cell and explain the experimental results with our the-
oretical model. Here the powers of the two coupling fields
1 and 2 and the probe field are tuned to P1 = 128 mW,
P2 = 147 mW, and Pp = 4 μW, and the beam diameters are
d1 = 0.12 cm, d2 = 0.08 cm, and dp = 0.03 cm, respectively.
Correspondingly, the Rabi frequency 	 j ( j = 1, 2, p) is given

by 	 j = αγc0

√
(4Pj/πd2

j )/2Isat [51], where α denotes the
C-G coefficient, γc0 is the decay rate of excited state |c0〉,
and Isat = 2.5 mW/cm2 is the saturated intensity [50]. To
distinguish the outgoing coupling fields and the four outgoing
weak fields, the relative angles between each coupling field
and the probe field are chosen as θ1 = θ2 = 3.45 mrad, which
may result in both a slight shift of the locations of the four
giant gain peaks and a slight decrease of the amplification
effect (see Appendix A). In Figs. 4(a) and 5(a), we show the
measured gain g versus the detuning �p/2π at T = 25 ◦C
and T = 55 ◦C, respectively. At the low temperature, e.g.,
T = 25 ◦C, there are four transparency windows without am-
plifications in the Doppler-broadened absorption background
for the forward case, while the four transparency windows
disappear when the probe field is backward [see Fig. 4(a)].
These experimental results match well with the theoretical
predictions, cf. Figs. 4(b)–4(e). Note that there are two ad-
ditional Doppler-broadened absorption backgrounds around
�p/2π ≈ −1.4 and 8.1 GHz [see Fig. 4(a)] which result from
the resonant frequencies of the transitions Fg = 4 → Fe = 3
and Fg = 3 → Fe = 3 [cf. Fig. 1(b)]. Because the unwanted
excited state Fe = 3 is decoupled from the coupling fields
due to large frequency detunings between them, the EIT does
not exist in the two additional Doppler-broadened absorption
backgrounds. In addition, the measured Doppler broadened
absorption background near �p/2π = 9.2 GHz, correspond-
ing to the resonant frequency of the transition Fg = 3 → Fe =
4 [Fig. 4(c)], is sightly different from the simulation results
[Fig. 4(e)]. In the experiment, the Cs atoms are excited by
the strong coupling field 1, and the number of Cs atoms in

053716-4



MULTICHANNEL NONRECIPROCAL AMPLIFICATIONS … PHYSICAL REVIEW A 107, 053716 (2023)

FIG. 4. (a) The measured gain g at the room temperature T =
25 ◦C, where each gain value is obtained by averaging 20 sets of
measurement data, which are measured under the same experimental
conditions. Here, the gain values of the Stokes, probe, conjugate,
and anti-Stokes fields are 1.12, 1.19, 0.93, and 0.95, respectively.
(b) and (c) The enlarged view of the measured gain g around �p ≈ 0
and �p/2π ≈ 9.2 GHz, while the corresponding theoretical results,
obtained using Eq. (6) with the ToP rate γ ′

ab/2π = 30 Hz, are shown
in (d) and (e). The dark red (pale red) curves in (a)–(e) correspond
to the forward (backward) probe field. The parameters used in the
theoretical simulation are the same as in Fig. 3.

the ground state |a0〉 is small. The result is that the absorption
of the probe field is suppressed. In contrast, in the theoretical
model we assume that there are always sufficient Cs atoms in
the ground state |a0〉, which means that the probe field can be
always absorbed completely. Furthermore, when we warm up
the vapor cell up to 55 ◦C, the four giant gain peaks occur in
the forward case but do not occur in the backward case, as
shown in Fig. 5(a), which is due to the population transfer
in the ground states with increasing temperature. With the
temperature increasing, the effect of the thermal motion of
Cs atoms becomes more significant and the Doppler-broaden
absorption backgrounds are broadened [cf. Figs. 4(b) and
5(b); Figs. 4(c) and 5(c)]. Besides the four giant gain peaks,
there are also some small peaks at, e.g., �p/2π = −0.03
and 9.17 GHz, in the forward case [see Figs. 5(b) and 5(c)].
They may result from other multiwave mixing processes (cf.

FIG. 5. (a) The measured gain g at the warm temperature T =
55 ◦C, where each gain value is obtained by averaging 20 sets of
measurement data, which are measured under the same experimental
conditions. Here, the gain values of the Stokes, probe, conjugate, and
anti-Stokes fields are 5.8, 962, 116, and 1.4, respectively. (b) and
(c) The enlarged view of the measured gain g around �p ≈ 0 and
�p/2π ≈ 9.2 GHz, while the corresponding theoretical results, ob-
tained using Eq. (6) with the ToP rate γ ′

ab/2π = 505 Hz, are shown
in (d) and (e). The dark red (pale red) curves in (a)–(e) correspond
to the forward (backward) probe field. The parameters used in the
theoretical simulation are the same as in Fig. 3.

Appendix B). Here the maximum forward gain reaches gp =
30 dB and the reverse suppression reaches gp = −23 dB. The
simulation and experimental results match well with each
other [see Figs. 5(b)–5(e)], which strongly verifies the non-
reciprocal behaviors of our multichannel system.

In our system the gain coefficients at the four giant gain
peaks are affected by several experimental parameters, such
as the powers of the coupling and probe fields and the tem-
perature of the vapor cell, which makes the gain g quite
tunable. Figures 6(a) and 6(b) illustrate that with increasing
power P1 (P2) of the coupling field 1 (2), the gain curves
of all the four weak fields will increase until they finally
reach upper limits. This phenomenon reveals a competition
between the enhancement process and the saturation effect.
The DEIT requires the coupling fields being much stronger
than the probe field so as to reduce the absorption of the probe
field in the transparency windows, and the FWM processes are
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FIG. 6. The dependence of the gain g of the four weak fields on
(a) the power P1 of the coupling field 1, (b) the power P2 of the
coupling field 2, (c) the power Pp of the probe field, and (d) the
temperature T of Cs atoms, where P2 = 147 mW, Pp = 4 μW, and
T = 55 ◦C in (a), P1 = 128 mW, Pp = 4 μW, and T = 55 ◦C in (b),
P1 = 128 mW, P2 = 147 mW, and T = 55 ◦C in (c), and P1 = 128
mW, P2 = 147 mW, and Pp = 4 μW in (d). The red circle dots
(probe field), blue triangle dots (conjugated field), orange square dots
(Stokes field), and purple diamond dots (anti-Stokes field) denote the
experimental results, while the red curves (probe field), blue curves
(conjugated field), orange curves (Stokes field), and purple curves
(anti-Stokes field) are the theoretical results obtained using Eq. (6).
Here, each experimental dot is obtained by averaging 20 sets of
measurement data, which are measured under the same experimental
conditions. Also, the theoretical values of the gain g of the four
weak fields are obtained at �p/2π = −0.002, 0.0397, 9.1963, and
9.24 GHz, respectively.

also proportional to the strength of the coupling fields as well.
Thus the increasing powers of coupling fields are beneficial
to the amplification process. However, the gain coefficients
cannot grow indefinitely because of the limited atomic density
and the distortion of dispersion curves in high-power region.
On the other hand, increasing the power of the probe field,
equivalent to decreasing the power of the coupling field, will
reduce the four gain rates [cf. Fig. 6(c)]. Even for the ultralow
power of the probe field (∼1 μW ), high gain rates can also
be obtained. The corresponding theoretical simulations [see
solid curves in Figs. 6(a)–6(c)] agree well with the experi-
mental results, besides the difference in the regions of the low
powers of two coupling fields [see the regions P1 < 50 mW
in Fig. 6(a) and P2 < 50 mW in Fig. 6(b)]. We attribute the
discrepancy at lower power to the destruction of FWMs and
two DEIT structures [cf. Figs. 2(a)–2(d)]. When one of the
coupling fields is too weak, the population distribution shown
in Fig. 1(c) and the simplified structures shown in Fig. 2 will
be destroyed, on which the theoretical results are based. To be
specific, we can take a weak-coupling field 2 as an example.
For a very-weak-coupling field 2, the population in |bmF 〉 is
1/9 for mF = −4,−3, . . . , 4, while the population in |amF 〉 is
zero for mF = −3,−2, . . . , 3. In this case the FWM shown in
Fig. 2(c) and the DEIT structures shown in Fig. 2(d) will be
destroyed, and the theoretical model becomes invalid.

In addition, the four gain coefficients at the giant gain peaks
are also sensitive to the temperature. As shown in Fig. 6(d),
the measured gain coefficients monotonically increase versus
the temperature T and then reach saturation. This is because
the population of Cs atoms in ground states, |b±1〉 and |a0〉,
increase with the temperature [cf. Fig. 2(e)], which strength-
ens the nonlinear processes of amplifications. On the other
hand, further increasing the temperature will bring in severe
absorption and additional decoherence into the system due to
inelastic collisions among Cs atoms. When these two effects
have a balance, the gain coefficients reach saturation. Due
to the limitation of experimental technology, we only mea-
sure the gain coefficients in the region 25 ◦C � T � 65 ◦C. In
the higher-temperature region T > 65 ◦C, the adverse effects
induced by inelastic collisions rather than the population of
Cs atoms dominate the nonlinear processes of amplifications.
The result may be that with the increasing temperature of
Cs atoms, the gain coefficients at the four giant gain peaks
decrease [51]. Also, we numerically simulate the theoretical
results using Eq. (6) [see solid curves in Fig. 6(d)], which fit
the experimental results well.

IV. DISCUSSION AND CONCLUSIONS

Due to the good adjustability of multiple parameters, the
group velocities of the four weak fields can be matched well
in our system, i.e., vg(ωp) = vg(ωconj) = vg(ωs) = vg(ωas),
which is essential for engineering correlated photon pairs [59].
Here the group velocity vg(ω) of the optical field can be
expressed as

vg(ω) = c

n(ω) + ω ∂
∂ω

n(ω)
, (7)

where c is the velocity of light, and n(ω) = 1 + Re[χ (ω)] is
the corresponding refractive index. Because the frequencies
of the four weak fields are all around the resonance frequency
ω0 of the D1 line, we can take an approximation ω ∂

∂ω
n(ω) ≈

ω0
∂

∂ω
n(ω), i.e.,

vg(ω) ≈ c

1 + Re[χ (ω)] + ω0
∂

∂ω
Re[χ (ω)]

. (8)

By numerically analyzing the susceptibility χ (ω) in Eq. (3),
we find that the slope ∂

∂ω
Re[χ (ω)] of the susceptibility at

the frequencies of the four weak fields are approximatively
equal when the two Rabi frequencies of coupling fields are
chosen to be equal, as is shown in Fig. 7(a). For the for-
ward probe field, Re[χ (ωp)] = Re[χ (ωconj)] = Re[χ (ωs)] =
Re[χ (ωas)] = 0, which indicates the group velocity matching
of the four weak fields, cf. Fig. 7(b). The group velocity
matching is an essential requirement for multiwave mixing
processes and manipulating the two-bit gates in quantum
computation [3,48,60,61], which increases the time of the
nonlinear interaction process [62] but also improves the op-
tical storage.

In summary, we have studied the multichannel nonrecip-
rocal amplifications in thermal Cs atoms. Both theoretically
and experimentally, four tunable amplification peaks are ob-
served for the forward probe field, while all gain peaks
cease to exist in the backward case. With polarizations care-
fully chosen, the system significantly reduces the spontaneous
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FIG. 7. (a) The real part Re[χ ] of the susceptibility using Eq. (3)
and (b) the group velocity vg/c using Eq. (7) in both forward (dark
red) and backward (pale red) cases. The group velocity of all the
four fields equals to 0.971c, which indicates that the group velocity
matching condition is achieved. The Rabi frequencies of the two cou-
pling fields are chosen to be 	1 = 	2 = 12 γc0 , and other parameters
are the same as in Fig. 3.

emission noise and thus enhances the signal-to-noise ratio.
In addition, the whole setup is all optical, making it easily
compatible to miniaturization and integration onto a chip.
The adjustability of the gain coefficients makes our system
tunable to achieve abundant prospective applications, such
as frequency division multiplexing [63] and anti-parity-time-
symmetric systems with amplification [64].
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APPENDIX A: OPTIMAL ANGLES BETWEEN COUPLING
FIELDS AND PROBE FIELD

To achieve the four-channel amplifications, the phase-
matching conditions of the two FWMs in Figs. 2(a) and 2(c)
are required (cf. Fig. 8). For the two FWMs, the scalar phase
mismatches in the z direction are denoted as [65]

�k(1)
FWM = (ω1 cos θ1 + ω2 cos θ2 − ωp − ωconj )/c

+ (Re[χp]ωp + Re[χconj]ωconj)/c,

�k(2)
FWM = (ω1 cos θ1 + ω2 cos θ2 − ωs − ωas)/c

+ (Re[χs]ωs + Re[χas]ωas)/c. (A1)

FIG. 8. (a) Schematic diagram of relative angles between cou-
pling fields and probe field. Here the blue arrow (green arrow, red
arrow) denotes the coupling field 1 (coupling field 2, probe field),
θ1(2) is the angle between the coupling field 1 (2) and the probe field,
L represents the distance between the vapor cell and the detector, and
{d1, d2, dp} and {dout

1 , dout
2 , dout

w } denote the diameters of the incident
beams and the outgoing beams, respectively. Note that the diameters
of the four outgoing weak beams are almost the same. (b) and (c) The
phase-matching conditions for the two FWMs in Figs. 2(a) and 2(c),
respectively.

In the forward case, Re[χs] = Re[χp] = Re[χconj] =
Re[χas] = 0 due to the DEIT structures [see Fig. 7(a)].
Now, the two phase mismatches in Eq. (A1) are reduced to

�k(1)
FWM = k1 cos θ1 + k2 cos θ2 − kp − kconj,

�k(2)
FWM = k1 cos θ1 + k2 cos θ2 − ks − kas, (A2)

where the four wave vectors satisfy k1 + k2 = kp + kconj and
k1 + k2 = ks + kas, i.e., ω1 + ω2 = ωp + ωconj and ω1 + ω2 =
ωs + ωas guaranteed by the energy conservation in the two
FWMs. By solving the phase-matching conditions �k(1)

FWM =
�k(2)

FWM = 0, we obtain θ1 = θ2 = 0. This means that the two
coupling fields and the probe field need to be collinearly
incident.

However, if the two coupling fields and the probe field are
collinearly incident, the outgoing coupling fields and the four
outgoing weak fields will be mixed. In this case, even using
polarizing beam splitters and filters, we cannot distinguish the
outgoing coupling fields and the four outgoing weak fields
in the experiment, because the frequency of coupling field 1
(coupling field 2) is close to the frequencies of the Stokes and
probe fields (anti-Stokes and conjugated fields). Therefore the
coupling fields and the probe field are noncollinear in the ex-
periment (corresponding to θ1 �= 0 and θ2 �= 0), cf. Fig. 8(a).
In order to distinguish the outgoing coupling fields and the
four outgoing weak fields, the angles θ1 and θ2, the distance
L between the vapor cell and the detector, the diameters dout

1
and dout

2 (dout
w ) of the outgoing coupling fields (outgoing weak

fields) should satisfy L sin θ1 ≈ Lθ1 � (dout
1 + dout

w )/2 and
L sin θ2 ≈ Lθ2 � (dout

2 + dout
w )/2, i.e., θ1 � (dout

1 + dout
w )/2L

and θ2 � (dout
2 + dout

w )/2L. In addition, to meet the scalar
phase match in the y direction, the angles θ1 and θ2 should
satisfy the constraint θ1 ≈ θ2. With our experimental con-
ditions, when θ1 = θ2 � 3.45 mrad, the outgoing coupling
fields and the four outgoing weak fields can be distinguished.
Taking into account the phase matches, we choose θ1 = θ2 =
3.45 mrad in our experiment. Compared with the case of
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θ1 = θ2 = 0, the nonzero angles between coupling fields and
probe field (i.e., phase mismatches) slightly shift the locations
of the four giant gain peaks as well as slightly weaken the
amplification effect in the experiment.

APPENDIX B: STEADY-STATE POPULATION OF Cs
ATOMS

The Cs atoms have many sublevels in D1 line, which
makes it difficult to analyze amplification processes. In our
experiment, by skillfully choosing the polarizations of the
coupling fields and using the forbidden nature of the transition
|b0〉 → |c0〉, almost all Cs atoms are in the ground state |b0〉
due to the optical pumping induced by coupling fields [cf.
Figs. 1(c) and 2(e)]. Therefore we can only focus on the
simplified level diagrams in Figs. 2(a)–2(d).

At low temperature (e.g., T = 25 ◦C), the populations of
Cs atoms in other ground states (excluding the state |b0〉)
are negligible. Now the two FWMs shown in Figs. 2(a) and
2(c) are very weak, and only four transparency windows exist
in the gain spectra [cf. Fig. 3(a)]. With the increase of the
temperature T of Cs vapor, the population of Cs atoms will
be transferred from the ground state |b0〉 to the ground states
|b1〉 and |a0〉. When the population of Cs atoms in |b1〉 and
|a0〉 cannot be ignored at, e.g., T = 43 ◦C, the two FWMs
shown in Figs. 2(a) and 2(c) become strong, and the four
transparency windows in the gain spectra become four gain
peaks [cf. Fig. 3(b)]. Further increasing the temperature T of
Cs vapor, the populations of Cs atoms in |b1〉 and |a0〉 increase,
and the amplification effect is more significant. In addition,
the populations of Cs atoms in |b1〉 and |a0〉 will also be
transferred to |b2〉 and |a1〉. This can produce other multiwave
mixing processes [e.g., the two FWMs shown in Figs. 9(a) and
9(b)], which may enhance the giant gain peaks investigated in
the main text or give rise to additional gain peaks in transmis-
sion spectra [see Figs. 5(b) and 5(c) and related discussions].
However, since the ratios ρb1b1/ρb2b2 (≈ 3) and ρa0a0/ρa1a1 (≈
6.2) are almost constant in the region 20 ◦C < T < 70 ◦C [cf.
Fig. 9(c)], other multiwave mixing processes induced by the
populations of Cs atoms in |b2〉 and |a1〉 are always much
weaker than the two FWMs shown in Figs. 2(a) and 2(c).
Therefore our theoretical model only including the two FWMs
is reasonable and can describe experimental results well.

APPENDIX C: THE HAMILTONIAN AND THE MASTER
EQUATION OF Cs ATOMS

As schematically depicted in Fig. 1, we construct a nonre-
ciprocal optical system using a thermal Cs atomic ensemble
in the D1 line, where a probe laser (with frequency ωp and
wave vector kp) is scanned around the transition 62S1/2(Fg =
4) → 62P1/2(Fe = 4), a coupling laser (with frequency ω1

and wave vector k1) is on-resonance with the transition
62S1/2(Fg = 3) → 62P1/2(Fe = 4), and another coupling laser
(with frequency ω2 and wave vector k2) is blue detuned from
the transition 62S1/2(Fg = 4) → 62P1/2(Fe = 4). For conve-
nience, the states 62S1/2(Fg = 3, Fg = 4) and 62P1/2(Fe = 4)
are denoted as |amF 〉, |bmF 〉, and |cmF 〉, where mF is the projec-
tion of Fg,e along the quantization axis. With the quantization
axis chosen, the two horizonal linear polarized (π - polarized)

FIG. 9. (a) and (b) The FWM processes relate to ground states
{|b1〉, |b2〉} and {|a1〉, |b2〉}, respectively. (c) The ratios between pop-
ulations, ρb1b1/ρb2b2 and ρa0a0/ρa1a1 , vs the temperature T of the
atomic vapor cell, which are calculated using Eqs. (C5)–(C9). The
parameters used in the numerical simulation are the same as in
Fig. 2(e).

coupling fields and one vertical linear polarized (σ+- and
σ−- polarized with equal components) probe field interact
efficiently with the Cs atoms in the Zeeman sublevels, where
the corresponding Rabi frequencies are denoted as 	1,2 and
	p. Now, the total Hamiltonian of the atomic system reads

H = H0 + HI, (C1)

H0 =
3∑

mF =−3

ωaσamF amF
+

4∑
mF =−4

ωbσbmF bmF
+

4∑
mF ′=−4

ωcσcmF ′ cmF ′ ,

(C2)

HI = 1

2

[ 3∑
mF =−3

	1ei(k1z−ω1t )σcmF amF

+
3∑

mF =−3

	2ei(k2z−ω2t )σcmF bmF
+ H.c.

]
, (C3)

where σxy = |x〉〈y|({x, y} = {amF , bmF , cmF }) are the operators
of Cs atoms, and ωa (ωb, ωc) is the eigenenergy of state
|amF 〉 (|bmF 〉, |cmF 〉). When considering the Doppler effect, the
frequencies ω1 and ω2 of the two coupling fields in Eq. (C3)
become ω1 + k1v and ω2 + k2v, respectively, where v is the
velocity of Cs atoms. In the interaction picture, the Hamilto-
nian of the system can be converted to

Hint = 1

2

( 3∑
mF =−3

	1e−i�1tσcmF bmF

+
3∑

mF =−3

	2e−i�2tσcmF bmF
+ H.c.

)
, (C4)
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where �1 = (ω1 + k1v) − ωca is the detuning of coupling
field 1 with ωca = ωc − ωa, �2 = (ω2 + k2v) − ωcb is the
detuning of coupling field 2 with ωcb = ωc − ωb, and �p =
ωp − ωcb is the detuning of the probe field. With the Hamilto-
nian of the system in Eq. (C4), we can describe the dynamical
evolution of the density matrix elements ρi j using the master
equation [51]:

ρ̇cncl = i
4∑

mF =−4

(
ρcnbmF

	bmF cl − 	cnbmF
ρbmF cl

)

+ i
3∑

mF =−3

(
ρcnamF

	amF cl − 	cnamF
ρamF cl

) − γcncl ρcncl ,

(C5)

ρ̇bnbl = i
4∑

mF ′ =−4

(
ρbncmF ′ 	cmF ′ bl − 	bncmF ′ ρcmF ′ bl

)

− γbnbl ρbnbl + δnlγ
′
ab

∑
a j

ρa j a j , (C6)

ρ̇anal = i
4∑

mF ′=−4

(
ρancmF ′ 	cmF ′ al − 	ancmF ′ ρcmF ′ al

)

− γanal ρanal + δnlγ
′
ba

∑
b j

ρb j b j , (C7)

ρ̇cnbl = i
4∑

mF ′=−4

ρcncmF ′ 	cmF ′ bl − i
4∑

mF =−4

ρbmF bl 	cnbmF

+ (
i�2 − γcnbl

)
ρcnbl , (C8)

ρ̇cnal = i
4∑

mF ′=−4

ρcncmF ′ 	cmF ′ al − i
3∑

mF =−3

ρamF al 	cnamF

+ (
i�1 − γcnal

)
ρcnal . (C9)

Here {n, l} are the substitutions of the Zeeman sublevels,
γcnal = 1

2 (γcn + γal ) is the dephasing rate between |cn〉 and |al〉
with the decay rates γcn and γal , 	cnal (cnbl ) = αcnal (cnbl )	1(2)

represents the effective Rabi frequency of coupling field 1
(2) with transition coefficient αcnal (cnbl ), and the transition of
population (ToP) rates γ ′

ab and γ ′
ba between |a〉 and |b〉 indicate

the effects of spin-exchange collisions among Cs atoms [51].
In the considered system, the ToP rates are proportional to the
temperature of the Cs atomic vapor cell.

Based on the Runge-Kutta method of orders 4 and 5, we
numerically calculating the steady-state populations of the
Zeeman sublevels using Eqs. (C5)–(C9) by setting ρ̇i j = 0,
and the related results are shown in Fig. 2(e) in the main text
and Fig. 9(c) in Appendix B. In this numerical simulation, the
Doppler effect is ignorable because the propagation directions
of two coupling fields are the same.

APPENDIX D: DERIVING THE SUSCEPTIBILITY χ FOR
THE WEAK FIELDS

1. The susceptibility χ1

For the FWM process in Fig. 2(a), the energy levels of Cs
atoms can be simplified into five-level structures. In a rotating

reference frame with respect to the frequencies of the coupling
fields and weak fields, the Hamiltonian of the system can be
expressed as

H (1)
eff =�pσb0b0 + �2σb1b1 − (δ − �p)σc0c0

+ 1
2

[
	peikpzσc1b0 + 	1eik1z

(
σc1a1 + σc0b0

)
+ 	2eik2zσc1b1 + 	conje

ikconjzσc0b1 + H.c.
]
, (D1)

with �p = (ωp ± kpv) − ωc1b0 and �conj = (ωconj ± kconjv) −
ωc1a0 , where 	p (	conj) is the Rabi frequencies of the probe
(conjugated) field, and +kpv and +kconjv (−kpv and −kconjv)
correspond to the forward (backward) weak fields. With the
above Hamiltonian, the dynamical evolution equations of den-
sity matrix elements ρi j of the system are given by

ρ̇c1b0 = ρ̇∗
b0c1

= i

2

[
	p

(
ρc1c1 − ρb0b0

) + 	1
(
ρc1c0 − ρa1b0

)
− 	2ρb1b0

] + (i�p − γc1b0 )ρc1b0 , (D2)

ρ̇a1b0 = ρ̇∗
b0a1

= i

2

(
	pρa1c1 + 	1ρa1c0 − 	∗

1ρc1b0

)
+ (

i�p − γa1b0

)
ρa1b0 , (D3)

ρ̇b1b0 = ρ̇∗
b0b1

= i

2

(
	pρb1c1 + 	1ρb1c0 − 	∗

2ρc1b0

− 	∗
conjρc0b0

) + (
i�p2 − γb1b0

)
ρb1b0 , (D4)

ρ̇c1c0 = ρ̇∗
c0c1

= i

2

(
	∗

1ρc1b0 + 	∗
conjρc1b1 − 	pρb0c0

− 	1ρa1c0 − 	2ρb1c0

) + [
i(δ − �p) + γc1c0

]
ρc1c0 ,

(D5)

ρ̇c1b1 = ρ̇∗
b1c1

= i

2

[
	2

(
ρc1c1 − ρb1b1

) + 	conjρc1c0

− 	pρb0b1 − 	1ρa1b1

] + (
i�2 − γc1b1

)
ρc1b1 , (D6)

ρ̇c0b0 = ρ̇∗
b0c0

= i

2

[
	1

(
ρc0c0 − ρb0b0

) + 	pρc0c1

− 	conjρb1b0

] + (
iδ − γc0b0

)
ρc0b0 , (D7)

ρ̇a1c1 = ρ̇∗
c1a1

= i

2

[
	∗

1

(
ρa1a1 − ρc1c1

) + 	∗
pρa1b0

+ 	∗
2ρa1b1

] − γa1c1ρa1c1 , (D8)

ρ̇b1c0 = ρ̇∗
c0b1

= i

2

[
	∗

conj

(
ρb1b1 − ρc0c0

) + 	∗
1ρb1b0

− 	∗
2ρc1c0

] + [
i(�p2 − δ) − γb1c0

]
ρb1c0 , (D9)

ρ̇b1c1 = ρ̇∗
c1b1

= i

2

[
	∗

2

(
ρb1b1 − ρc1c1

) + 	∗
pρb1b0

+ 	∗
1ρb1a1 − 	∗

conjρc0c1

] − (
i�2 + γb1c1

)
ρb1c1 ,

(D10)

ρ̇a1c0 = ρ̇∗
c0a1

= i

2

(
	∗

1ρa1b0 + 	∗
conjρa1b1 − 	∗

1ρc1c0

)
− [

i(δ − �p) + γa1c0

]
ρa1,c0 , (D11)
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where �p2 = (ωp ± kpv) − (ω2 + k2v) denotes the two-
photon detuning for the FWM process in Fig. 2(a). In addition,
the other two-photon detuning related to this FWM process is
�conj1 = �conj − �1 = (ωconj ± kconjv) − (ω1 + k1v).

To obtain the steady-state solutions of these elements, we
take ρ̇i j = 0 and keep the nondiagonal elements (i.e., ρi j with
i �= j) up to the first order since we are only interested in the
three-order nonlinear process. With the obtained steady state
ρc1b0 , the susceptibility χ1(v) of the weak fields in the group
of Cs atoms with velocity v is given by

χ1(v) = iN
∣∣dc1b0

∣∣2

ε0	p
ρc1b0 (v), (D12)

where N stands for the atomic density, dc1b0 = 〈c1|d|b0〉 is
the matric element of the dipole moment d of Cs atoms, and
ε0 denotes the permittivity of free space. In the ensemble
of Cs atoms, the velocities of Cs atoms satisfy the Maxwell
velocity distribution f (v) = exp(−v2/u2)/u

√
π , with u =√

2kBTat/M the most probable velocity, kB the Boltzmann
constant, Tat the temperature of atoms, and M the mass of
a Cs atom. The susceptibility χ1 = ∫ ∞

−∞ χ1(v) f (v)dv of the
ensemble of Cs atoms reads [48,49,51]

χ1 =
∫ ∞

−∞

iN |dc1b0 |2
ε0	p

(
C(1)

DEIT + C(1)
SRS + C(1)

FWMei�k(1)
FWMz

)

× f (v)dv, (D13)

where

C(1)
DEIT = 	p

(
ρ̄b0b0 − ρ̄c1c1

)
Cc1b0

, (D14)

C(1)
SRS = 	p|	2|2

Cc1b0

[
ρ̄a1a1 − ρ̄c1c1

4iγa1c1

(
�p − γa1

)

+ ρ̄b1b1 − ρ̄c1c1

2i
(
�2 + 2γb1c1

)(
2i�p2 − γb1

)
]

− 	p|	1|2
Cc1b0

ρ̄b0b0

2
[
i(δ − �p) + γc1c0

](
2iδ + γc0

) , (D15)

C(1)
FWM = 	1	

∗
conj	2

Cc1b0

{
ρ̄b1b1 − ρ̄c1c1

4i
(
�2 − 2γb1c1

)[
i(δ − �p) + γc1c0

]

− ρ̄b0b0

2i
(
�p2 − γb1

)(
2iδ − γc0

)
}
, (D16)

with

Cc1b0 = 2i�p − γc1 − |	1|2
2i(δ − �p) + 2γc1c0

+ |	1|2
2i�p − γa1

+ |	2|2
2i�p2 − γb1

. (D17)

In Eq. (4), the first term, CDEIT, denotes the linear part of
the susceptibility, while the second and third terms, CSRS and
CFWM, are the three-order nonlinear parts of the susceptibility.

2. The susceptibility χ2

Following similar procedures for χ1, we then derive the
susceptibility χ2 for the Stokes and anti-Stokes fields. The
FWM process in Fig. 2(c) can be described by the following
time-independent Hamiltonian,

H (2)
eff = �asσa0a0 + �1σa1a1 + �2σb1b1

+ 1
2

[
	ase

ikaszσc1a0 + 	2eik2zσc1b1

+ 	1eik1z
(
σc1a1 + σc0a0

) + 	se
ikszσc0b1 + H.c.

]
,

(D18)

where �s = (ωs ± ksv) − ωc1b0 , �as = (ωas ± kconjv) −
ωc1a0 , and 	s (	as) is the Rabi frequency of the Stokes
(anti-Stokes) field. From the Hamiltonian (D18), we can
derive the dynamical evolution equations of the density
matrix elements ρi j :

ρ̇c1a0 = ρ̇∗
a0c1

= i

2

[
	as

(
ρc1c1 − ρa0a0

) + 	1
(
ρc1c0 − ρa1a0

)
− 	2ρb1a0

] + (
i�as − γc1a0

)
ρc1a0 , (D19)

ρ̇a1a0 = ρ̇∗
a0a1

= i

2

(
	asρa1c1 + 	1ρa1c0 − 	∗

1ρc1a0

)
+ (

i�as1 − γa1a0

)
ρa1a0 , (D20)

ρ̇b1a0 = ρ̇∗
a0b1

= i

2

(
	asρb1c1 + 	1ρb1c0 − 	∗

2ρc1a0

− 	∗
s ρc1a0

) + (
i�as2 − γb1a0

)
ρb1a0 , (D21)

ρ̇c1c0 = ρ̇∗
c0c1

= i

2

(
	∗

1ρc1a0 + 	∗
s ρc1b1 − 	asρa0c0

− 	1ρa1c0 − 	2ρb1c0

) + (
i�as2 − γc1c0

)
ρc1c0 , (D22)

ρ̇c1b1 = ρ̇∗
b1c1

= i

2

[
	2

(
ρc1c1 − ρb1b1

) + 	sρc1c0

− 	asρa0b1 − 	1ρa1b1

] + (
i�2 − γc1b1

)
ρc1b1 , (D23)

ρ̇c0a0 = ρ̇∗
a0c0

= i

2

[
	1

(
ρc0c0 − ρa0a0

) + 	asρc0c1

− 	sρb1a0

] + (
i�2 − γc0a0

)
ρc0a0 , (D24)

ρ̇a1c1 = ρ̇∗
c1a1

= i

2

[
	∗

1

(
ρa1a1 − ρc1c1

) + 	∗
pρa1b0

+ 	∗
2ρa1b1

] − (
i�1 + γa1c1

)
ρa1c1 , (D25)

ρ̇b1c0 = ρ̇∗
c0b1

= i

2

[
	∗

s

(
ρb1b1 − ρc0c0

) + 	∗
1ρb1a0

+ 	∗
2ρc1c0

] + [
i(�as2 − �2) − γb1c0

]
ρb1c0 , (D26)

ρ̇a1c0 = ρ̇∗
c0a1

= i

2

(
	∗

1ρa1a0 + 	∗
s ρa1b1 − 	∗

1ρc1c0

)
+ [

i(�as2 − �1) − γa1c0

]
ρa1c0 , (D27)

where �as2 = (ωas ± kasv) − (ω2 + δ + k2v) is the two-
photon detuning for the FWM process in Fig. 2(c). In addition,
the other two-photon detuning in this FWM process can
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be expressed as �s1 = �s − �1 = (ωs + δ ± ksv) − (ω1 +
k1v). By solving the above equations with ρ̇i j = 0, we can
obtain the expression of the susceptibility χ2 [48,49,51]:

χ2 =
∫ ∞

−∞

iN |dc1a0 |2
ε0	as

(
C(2)

DEIT + C(2)
SRS + C(2)

FWMei�k(2)
FWMz

)

× f (v)dv, (D28)

where

C(2)
DEIT = 	as

(
ρ̄a0a0 − ρ̄c1c1

)
Cc1a0

, (D29)

C(2)
SRS = 	as|	1|2

Cc1a0

[
ρ̄a1a1 − ρ̄c1c1(

2i�as1 − γa1

)(
2i�1 + 2γa1c1

)

+ ρ̄a0a0

(2i�as2 − 2γc1c0 )(2i�2 + γc0 )

]

+ 	as|	2|2
Cc1a0

ρ̄b1b1 − ρ̄c1c1(
2i�as2 − γb1

)(
2i�2 + 2γc1b1

) , (D30)

C(2)
FWM = 	1	

∗
s 	2

Cc1a0

[
ρ̄c1c1 − ρ̄b1b1(

2i�as2 − 2γc1c0

)(
2i�2 − 2γc1b1

)

− ρ̄a0a0(
2i�as2 − γb1

)(
2i�2 − γc0

)
]
, (D31)

with

Cc1a0 = 2i�as − γc1 + |	1|2
2i�as2 − 2γc1c0

+ |	1|2
2i�as2 − γb1

+ |	2|2
2i�as1 − γb1

. (D32)

Here dc1a0 = 〈c1|d|a0〉 is the matric element of the dipole
moment d.
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