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Near-perfect discrimination of chiral molecules based on steady states of a cavity mode
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We propose a protocol to realize discrimination of chiral molecules based on steady states of a cavity mode.
Using the closed-loop three-level structure of a molecule, an effective Hamiltonian of the molecule-cavity-
coupled system is derived. The effective Hamiltonian is similar to a linear driving of the cavity mode, but the
driving strength depends on the chirality of the molecule. In the presence of photon loss, the cavity behaves
like a driven damped harmonic oscillator, and it will evolve to different steady coherence states according to the
chirality of the molecule. By selecting proper parameters, it is possible to obtain steady coherence states with
large-enough amplitudes that can be well determined by homodyne measurements on the cavity. Consequently,
the chirality of the molecules can be discriminated near perfectly, according to the measurement result of the
cavity. Numerical simulations show that the protocol is insensitive to the systematic errors of the control fields
and the energy relaxation of the molecules. Therefore, the protocol may provide an effective approach to realize
chirality discrimination with high accuracy.

DOI: 10.1103/PhysRevA.107.053714

I. INTRODUCTION

Chiral molecules have shown many important applications
in chemistry, biotechnologies, and pharmaceutics [1–4]. For
a mirror-symmetrical pair of enantiomers of chiral molecules,
they share many physical and chemical properties, but usually
possess significantly divergent biological activities and phys-
iological effects [5–8]. Therefore, discriminating the chirality
of chiral molecules is a crucial task in the chemical and bio-
logical fields.

Conventionally, chirality discrimination can be realized
using chemical techniques, such as crystallization and deriva-
tization [9]. However, these chemical techniques are usually
time-consuming and expensive. To realize fast and efficient
chirality discrimination, much attention has been paid to the
optical methods [10–23]. Some early optical methods [10–13]
for chirality discrimination is based on the fact that the
circularly polarized electromagnetic fields can break mirror
symmetry of enantiomers. Because the circularly polarized
light interacts with chiral molecules via weak magnetic-dipole
and electric-quadrupole interactions [24,25], the chiral signal
obtained by such methods is relatively weak. For example,
the coupling strength of the magnetic-dipole interaction of the
molecule is only about 1/274 of the electric-dipole interaction
in Refs. [24,25].

As alternatives, optical methods using linearly polar-
ized light [14–18] have been considered, where the chiral
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molecules interact with light through strong electric-dipole
interactions [26–29]. Since there exists the sign difference in
some of the transition dipole moments, the chirality informa-
tion can be mapped onto population difference, by subjecting
the chiral molecules to an appropriately timed and phased
set of electromagnetic fields [19]. Recently, more protocols
[19–23] have been proposed based on the electric-dipole in-
teraction. By means of some new quantum control techniques
like shortcuts to adiabaticity [30–33] and optimal control
[34–37], the speed and accuracy of the chirality discrimination
is further improved.

Unfortunately, in a practical physical system for chiral-
ity discrimination, there exist several types of experimental
imperfections, including the systematic errors in the control
fields and the energy relaxation of the molecules [20,21].
When these experimental imperfections are taken into ac-
count, it is still challenging to achieve very high accuracy
of the chirality discrimination using previous population-
based protocols [20–23]. The reasons are as follows. First,
the populations of molecules are relatively sensitive to the
deviations of the control parameters. For example, in the pro-
tocol [20], the error probability of the chirality discrimination
reaches about 2% when the strengths of the control pulses
have ±10% relative deviations. Thus, precise control of the
parameters is required in the population-based protocols. Sec-
ond, the excited states of the molecules should be populated
in the population-based protocols, but the energy relaxation
of the molecules will gradually reduce the populations of
the excited states. To obtain an acceptable error probability,
long lifetimes of the excited states are required. For example,
to obtain error probability lower than 1% using the protocol
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[20], the lifetimes should be 200–300 µs. Such long lifetimes
are still hard to be achieved with the current technology. To
overcome the shortcomings of the population-based protocols,
new attempts [38–41] on the accurate chirality discrimination
were made in molecule-cavity coupled systems during the
past few years. The results showed that the molecule-cavity
coupled systems may be promising candidates for the robust
chirality discrimination in the presence of experimental im-
perfections.

In this paper, we propose an alternative protocol for the
accurate discrimination of chiral molecules based on steady
states of a cavity mode. The closed-loop three-level structure
of the chiral molecule is considered as the physical model. The
transition between the ground state and one of the two excited
states is coupled with a microwave cavity mode, while that
between the ground state and the other excited state is driven
by a classical microwave field. In addition, the transition be-
tween two excited states is driven by other strong classical
microwave fields. Using this physical model, we derive an
effective Hamiltonian of the molecule-cavity-coupled system,
where the molecule is almost restricted at its ground state and
the cavity is similar to a driven harmonic oscillator with the
driving strengths depending on the chirality of the molecule.
In the presence of photon loss, the cavity behaves like a driven
damped harmonic oscillator and its states will converge to dif-
ferent steady coherence states according to the chirality of the
molecule. By setting proper parameters, the amplitudes of the
steady coherence states are large enough to be distinguished
via homodyne measurements on the cavity. Hence, we can
obtain the chirality information of the molecule according to
the measurement result of the cavity.

We show that the error probability of the homodyne mea-
surements can be described by a complementary error func-
tion of the absolute value of the steady-coherence-state ampli-
tude. Thus, the error probability changes slightly when there
exist errors in the amplitudes of the steady coherence state, in
the large amplitude case. Consequently, the protocol is more
insensitive to the experimental imperfections compared with
the previous population-based protocols [20–23]. Moreover,
since photon loss is used as a physical resource in the protocol,
the protocol is also superior to the previous cavity-mode-
based protocol [38], where the photon loss is a negative factor.

The performance of the protocol is estimated by the numer-
ical simulations. The results prove that the protocol is robust
against the influence of the systematic errors and the energy
relaxation of the molecule, in accordance with the theoretical
prediction. Therefore, the protocol may provide some useful
perspectives for near-perfect chirality discrimination.

The article is organized as follows. In Sec. II, we intro-
duce the physical model for the discrimination of the chiral
molecules. In Sec. III, we show the details of the accurate
discrimination of chiral molecules based on steady states. In
Sec. IV, we perform numerical simulations to estimate the
performance of the protocol. Finally, conclusions are given
in Sec. V.

II. PHYSICAL MODEL

We now describe the physical model for the discrimination
of the chiral molecules. Considering an enantiomer of chiral

FIG. 1. Comparison of the couplings among three discrete en-
ergy states in molecules with left (L) and right (R) handedness.

molecules with s handedness (s = L, R), it has three discrete
energy states {|1〉s, |2〉s, |3〉s}, as shown in Fig. 1. Here, L and
R correspond to the left and right handedness, respectively.
The unit direction vectors of the x, y, and z axes are assumed
as �ex, �ey, and �ez, respectively. The transition-dipole moments
of the transitions |1〉s ↔ |2〉 and |2〉s ↔ |3〉 are in the same
direction for L- and R-handed molecules, i.e., �μs

12 = μ12�ey,
�μs

23 = μ23�ex. However, the transition-dipole moments of the
transition |1〉s ↔ |3〉 are in the opposite directions for a pair of
enantiomers due to the difference of handedness, i.e., �μL

13 =
−�μR

13 = μ13�ez [19–21].
To realize the chirality discrimination, we couple the tran-

sition |1〉s ↔ |2〉s resonantly with a microwave cavity mode
with the polarization along the y axis. Assuming that the
frequency of the cavity mode is ν, the coupling strength is
given by g = μ12[ν/(2εV )]1/2, with ε and V the dielectric
constant and the volume of the cavity, respectively. Moreover,
we apply a classical field

�E ′(t ) = ε̃ cos(ω̃t )�ex, (1)

to the molecule, with the frequency ω̃ and the amplitude ε̃.
When the frequency ω23 of the transition |2〉s ↔ |3〉s is equal
to the frequency ω̃, the transition |2〉s ↔ |3〉s is resonantly
driven by the classical field �E ′(t ) with the Rabi frequency

�̃ = ε̃ �μs
23 · �ex/2 = ε̃μ23/2. (2)

In addition, another classical field

�E (t ) = ε cos(ωt )�ez, (3)

with the frequency ω and the amplitude ε, is applied to the
molecule. When the frequency ω13 of the transition |1〉s ↔
|3〉s is equal to the frequency ω, the transition |1〉s ↔ |3〉s

is resonantly driven by the classical field �E (t ) with the Rabi
frequency

�s = ε �μs
13 · �ez/2. (4)

From Eq. (4), we find that the Rabi frequencies of the tran-
sition |1〉s ↔ |3〉s have opposite signs for L- and R-handed
molecules, i.e., �L = −�R = εμ13/2. In summary, for both
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L- and R-handed molecules, the total Hamiltonian under the
rotating-wave-approximation can be described as

H = ga†|1〉s〈2| + �̃|2〉s〈3| + �s|1〉s〈3| + H.c., (5)

with a (a†) the annihilation (creation) operator of the cavity
mode.

To further construct an effective Hamiltonian, we rewrite
the Hamiltonian H in Eq. (5) by using the vectors |±〉 =
(|2〉s ± |3〉s)/

√
2 as

H = H ′ + H̃ ,

H ′ = g√
2

a†|1〉s(〈+| + 〈−|) + �s√
2
|1〉s(〈+| − 〈−|) + H.c.,

H̃ = �̃(|+〉〈+| − |−〉〈−|), (6)

where �̃, �s and g are all assumed as real numbers. In the
rotating frame of the unitary operator R(t ) = exp(−iH̃t ), the
Hamiltonian of the system becomes

HR(t ) = R†(t )H ′R(t ) − iR†(t )Ṙ(t )

= g√
2

a†|1〉s(〈+|e−i�̃t + 〈−|ei�̃t )

+ �s√
2
|1〉s(〈+|e−i�̃t − 〈−|ei�̃t ) + H.c. (7)

We assume that the molecule is initially prepared in the
ground state |1〉s. Under the condition �̃ � g,�, the effective
Hamiltonian of the system can be derived via the second-order
perturbation theory [42] as

He = �̄s(a + a†)|1〉s〈1|, (8)

with �̄s = −g�s/�̃.

III. DISCRIMINATION OF CHIRAL MOLECULES BASED
ON STEADY STATES OF CAVITY MODES IN THE

PRESENCE OF PHOTON LOSS

In Sec. II, we derive the effective Hamiltonian of the
molecule-cavity coupled system. In this section, let us demon-
strate that the cavity will finally be stabilized at different
steady coherence states in the presence of photon loss if the
chirality of the molecules are different.

When the molecule-cavity-coupled system interacts with
the environment, there exists two types of decoherence fac-
tors in general, the photon loss of the cavity mode and the
energy relaxation of the molecule from the excited states to
the ground state [20,21]. When the two decoherence factors
are taken into account, the evolution of the system (described
by the density operator ρ) is governed by the master equa-
tion as

ρ̇ = −i[H, ρ] + κL[a]ρ +
3∑

ι=2

γιL[σ−
ι ]ρ, (9)

with σ−
ι = |1〉s〈ι| and L[o]ρ = oρo† − (o†oρ − ρo†o)/2 (o =

a, σ−
ι ). Here, L[a] and L[σ−

ι ] denote the superoperators act-
ing on the density operator induced by the photon loss and the
energy relaxation from the excited state |ι〉s to the ground state
|1〉s, respectively. In addition, κ is the photon loss rate and γι is
the energy relaxation rate for the relaxation path |ι〉s → |1〉s.

According to the discussions in Sec. II, the effective Hamil-
tonian of the system is He in Eq. (8) when the molecule is
initially in the ground state |1〉. Because He does not excite
the molecule to the excited states, the influence of the energy
relaxation can be neglected. In this case, the photon loss plays
the most important role. Moreover, the density operator of
the system can be approximately written by ρ = ρc ⊗ |1〉s〈1|,
with ρc the density operator of the cavity. Thus, the master
equation in Eq. (9) is reduced to

ρ̇ = −i[He, ρ] + κL[a]ρ, (10)

in the effective dynamics. The dynamics in Eq. (10) can be
considered as the well-known driven damped harmonic oscil-
lator model [43], where the unique steady state of the cavity is
the coherent state |αs〉c (αs = −2i�̄s/κ). In fact, substituting
ρc = |αs〉c〈αs| into Eq. (10), we have

−i[He, ρ] = − i�̄s(a + a†)|αs〉c〈αs| ⊗ |1〉s〈1|
+ i�̄s|αs〉c〈αs|(a + a†)] ⊗ |1〉s〈1|

= −i�̄s(αs + a†)|αs〉c〈αs| ⊗ |1〉s〈1|
+ i�̄s|αs〉c〈αs|(a + α∗

s ) ⊗ |1〉s〈1|,
κL[a]ρ = κ

2
[2|αs|2|αs〉c〈αs| − αsa

†|αs〉c〈αs|
− α∗

s |αs〉c〈αs|a] ⊗ |1〉s〈1|, (11)

implying −i[He, ρ] + κL[a]ρ = 0.
Using the result �̄s = −g�s/�̃ and �L = −�R, we obtain

the following results.
(i) When the molecule is left handed, the cavity will finally

be stabilized at the steady coherence state |αL〉c with ampli-
tude αL = 2ig�L/κ�̃.

(ii) When the molecule is right handed, the cavity will
finally be stabilized at the steady coherence state |αR〉c with
amplitude αR = −2ig�L/κ�̃.

The coherence states |αL〉c and |αR〉c are approximately
orthogonal when α0 = |αL| = |αR| is large enough. For ex-
ample, when α0 = 2.5, we obtain |〈αL|αR〉c| = exp(−2α2

0 ) �
3.727 × 10−6. In this case, the two coherence states can
be well distinguished by using an Xϕ-quadrature homodyne
measurement [44–47] with a probing mode in the coherence
state |z〉, satisfying ϕ = arg(z) = π/2. The Xϕ-quadrature ho-
modyne measurement is equivalent to the eigenprojection
|x, ϕ〉c〈x, ϕ| of the operator Xϕ = eiϕa† + e−iϕa. Here, we
consider that the measurement results x ∈ [0,+∞) and x ∈
(−∞, 0) correspond to the cavity in the states |αL〉c and |αR〉c,
respectively. Then, the error probability Pe to distinguish the
two coherence states is

Pe =
∫ +∞

0
fR(x, ϕ)dx =

∫ 0

−∞
fL(x, ϕ)dx

= erfc(α0)/2,

fs(x, ϕ) = |〈x, ϕ|αs〉c|2 = 1√
π

exp[−(x − e−iϕαs)2]. (12)

For α0 � 2.5, the error probability Pe � 2.0348 × 10−4 can
be obtained, which means that the discrimination of two
coherence states |αL〉c and |αR〉c is almost deterministic.
Therefore, the chirality of molecules can be accurately de-
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FIG. 2. (a) The average value 〈Xϕ〉/2 versus λ1 and t in the case
of the left-handed molecule. (b) The logarithm of error probability
pe = − log10(Pe) versus λ1 and t in the case of the left-handed
molecule. (c) The average value 〈Xϕ〉/2 versus λ1 and t in the case
of the right-handed molecule. (d) The logarithm of error probability
pe = − log10(Pe) versus λ1 and t in the case of the right-handed
molecule.

termined according to the measurement result of the cavity
mode. In addition, assuming that there exists an error δα0 =
α′

0 − α0, the change of the error probability is

δPe = {erfc(α′
0) − erfc(α0)}/2

= − 1√
π

exp
(−α2

0

)
δα0 + O

(
δα2

0

)
. (13)

Accordingly, the error probability is almost unchanged if α0 is
large enough. This implies that the protocol is robust against
the deviations in the amplitudes of steady coherence states.

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS

In this section, let us select proper parameters for the
chirality discrimination and estimate the performance of pro-
tocol. For simplicity of the discussions, we first use the photon
loss rate κ as the reference and set g/κ = �L/κ = λ1, �̃/κ =
λ2. According to α0 = 2g�L/κ�̃, we derive λ2 = 2λ2

1/α0. To
obtain a relatively low error probability, we consider α0 = 2.5,
implying λ2 = 0.8λ2

1. In general, the ideal steady state is ob-
tained with t → ∞. However, the measurement time cannot
be infinite in a real experiment. Therefore, one should also
select a finite measurement time τ and make sure that the state
of the cavity is approximately equal to the ideal steady state
at that time. To select proper values of λ1 and τ , we plot the
average value 〈Xϕ〉/2 = Tr[Xϕρ]/2 and the logarithm of error
probability pe = − log10(Pe) versus the parameter λ1 and the
evolution time t in Fig. 2, where the initial state of the cavity
is selected as the vacuum state |0〉c.

In Fig. 2(a), 〈Xϕ〉/2 versus λ1 and t , in the case of the left-
handed molecule, is shown. Seen from Fig. 2(a), the value of
〈Xϕ〉/2 tends to 2.5 when λ1 and t increase. For two different
parameters λ1 = λ̃1 and λ1 = λ̄1 with λ̃1 > λ̄1, the increasing
speed of 〈Xϕ〉/2 is faster in the case of λ1 = λ̃1. For example,
the time to get 〈Xϕ〉/2 � 2.25 is t � 62.63/κ when λ1 = 10,
while the time to get 〈Xϕ〉/2 � 2.25 is only t � 6/κ when

λ1 = 15. Noticing that 〈αL|Xϕ|αL〉/2 = α0 = 2.5, the cavity
gradually evolves to the steady state |αL〉 when the average
value 〈Xϕ〉/2 tends to 2.5. Combining with the result shown in
Fig. 2(a), we can find that the state of the cavity converges to
the steady coherence state |αL〉 with faster speed when a larger
parameter λ1 is selected.

In Fig. 2(b), the logarithm of error probability pe =
− log10(Pe) versus λ1 and t , in the case of the left-handed
molecule, is shown. Since the error probability decreases
when the state of the cavity approach the steady coher-
ence state |αL〉, the logarithm of the error probability pe =
− log10(Pe) increases when λ1 and t increase, similar to the
result shown in Fig. 2(a). According to Fig. 2(b), the evo-
lution time should be longer than 8/κ to obtain an error
probability Pe � 10−3 when λ1 = 10. In addition, if λ1 = 15
is selected, then the evolution time should be t � 6/κ and
t � 8/κ , for Pe � 10−3 and Pe � 10−3.32 = 4.79 × 10−4, re-
spectively. Considering a photon loss rate κ � 1 MHz [48],
the measurement time τ can be selected as 8–10 µs for error
probability Pe � 10−3 with λ1 � 10. Therefore, the chirality
discrimination can be implement rapidly and accurately using
the protocol.

In Figs. 2(c) and 2(d), we also study the average
value 〈Xϕ〉/2 and the logarithm of error probability pe =
− log10(Pe) versus λ1 and t , respectively, in the case of the
right-handed molecule. Similar to the result in the case of
the left-handed molecule, the value of 〈Xϕ〉/2 tends to −2.5
when λ1 and t increase. Because of the result 〈αR|Xϕ|αR〉/2 =
−α0 = −2.5, the state of the cavity converges to the steady
coherence state |αR〉 when 〈Xϕ〉/2 varies to −2.5. The speed
converging to the steady coherence state |αR〉 is faster when
the parameter λ1 is greater. When λ1 = 10 and λ1 = 15,
we obtain 〈Xϕ〉/2 � −2.25 with t � 62.63/κ and t � 6/κ ,
respectively. The error probability Pe in the case of the right-
handed molecule is also similar to that in the case of the
left-handed molecule, i.e., Pe decreases when λ1 and t in-
crease. According to Fig. 2(d), the evolution time to obtain
Pe � 10−3 is t � 8/κ (t � 6/κ) with λ1 = 10 (λ1 = 15). Nu-
merical simulation in the case of the right-handed molecule
also proves that the chirality discrimination can be near per-
fectly implemented in a relatively short operation time.

Although the measurement time to obtain the same er-
ror probability is shortened by increasing the parameter λ1,
the coupling strength g and the Rabi frequency � (�̃) also
increase when λ1 increases. Thus, the parameter λ1 should
be selected properly to avoid excessive coupling strength
and Rabi frequencies. Here, we consider the 1,2-propanediol
molecules, where |Jk−1k1〉 is the rotational states with quantum
numbers of the limiting prolate (k−1) and oblate symmetric
top (k1) [49]. The three levels of the molecule in the protocol
can be selected as |1〉s = |000〉, |2〉s = |111〉, and |3〉s = |110〉.
In this case, the transition frequencies of |1〉 ↔ |2〉, |1〉 ↔ |3〉,
and |2〉 ↔ |3〉 are ω12 = 11363 MHz, ω13 = 12212 MHz, and
ω23 = 849 MHz [49], respectively. Considering the photon
loss rate κ = 1 MHz of a microwave cavity [48], we obtain
g = �L = 10 MHz and �̃ = 80 MHz with λ1 = 10. The ro-
tating wave approximation is fulfilled as the frequency of
the antirotating term is ωa = 2ω23 = 1698 MHz, much greater
than the Rabi frequency �̃. After selecting λ1 = 10, we select
the measurement time as τ = 10 µs, so that the error prob-

053714-4



NEAR-PERFECT DISCRIMINATION OF CHIRAL … PHYSICAL REVIEW A 107, 053714 (2023)

FIG. 3. (a) The average value 〈Xϕ〉/2 and the logarithm of error
probability pe = − log10(Pe) versus t in the case of the left-handed
molecule. (b) The average value 〈Xϕ〉/2 and the logarithm of error
probability pe = − log10(Pe) versus t in the case of the right-handed
molecule. The parameter λ1 = 10 is selected in the numerical
simulations.

ability is lower than 10−4 in the Xϕ-quadrature homodyne
measurement.

Using the selected parameter λ1 and the measurement time
τ , we plot the variations of the average value 〈Xϕ〉/2 and
the logarithm of error probability pe = − log10(Pe) with the
evolution time t in Fig. 3. As shown in Fig. 3(a), we obtain
〈Xϕ〉/2 = 2.23 and Pe = 8.0709 × 10−4 (pe = 3.09) at t = τ ,
in the case of the left-handed molecule. In addition, according
to Fig. 3(b), 〈Xϕ〉/2 = −2.23 and Pe = 8.0709 × 10−4 (pe

= 3.09) is obtained at t = τ , in the case of the right-handed
molecule. Both results in the cases of the left- and right-
handed molecules prove that the cavity will gradually evolve
to the steady coherence states predicted by the theory in
Sec. III, and the chirality discrimination can be completed
with high accuracy in a relatively short time.

In the discussions above, we selected the parameters λ1 and
measurement time τ according to the results of the numerical
simulation. Now, let us further consider some other factors
that may influence the performance of the protocol. Here, the
case of the left-handed molecule is taken as the example in the
following discussions.

Due to the instrument and operation imperfections, there
may exist systematic errors in the coupling strength and the
Rabi frequencies [34–37]. For the molecule in the proto-
col, the coupling strength and the Rabi frequencies under
the influence of the systematic errors can be described as
g → (1 + δ1)g, �s → (1 + δ2)�s, and �̃ → (1 + δ3)�̃, with
δk (k = 1, 2, 3) the systematic error coefficient. To estimate
the accuracy of the chirality discrimination in the presence of
the systematic errors, we plot the logarithm of error proba-
bility pe = − log10(Pe) versus δk in Fig. 4(a). As shown by
the figure, the error probability decreases when δ1 (δ2) is
positive and increases when δ1 (δ2) is negative. The highest
error probability for δ1 ∈ [−0.1, 0.1] (δ2 ∈ [−0.1, 0.1]) ap-
pears at δ1 = −0.1 (δ2 = −0.1) with the result Pe = 1.8561 ×
10−3 (Pe = 1.9275 × 10−3). However, the error probability
increases when δ3 is positive and decreases when δ3 is nega-
tive. The highest error probability for δ3 ∈ [−0.1, 0.1] appears
at δ3 = 0.1 with the result Pe = 1.6282 × 10−3. The trends of
the error probability Pe versus δk can be easily understood
using the result α0 = g�L/κ�̃. When δ1 > 0 (δ2 > 0), the
absolute amplitude of the steady coherence state is greater
than the value predicted by the theory because the coupling

FIG. 4. (a) The logarithm of error probability pe = − log10(Pe)
versus systematic error coefficient δk . (b) The logarithm of error
probability pe = − log10(Pe) versus energy relaxation rates γ2 and
γ3. The parameter λ1 = 10 is selected in the numerical simulations
and the numerical simulations are performed in the case of the left-
handed molecule.

strength g and the Rabi frequency �L are both in the numera-
tor. But the absolute amplitude of the steady coherence state is
lower than the predicted value when δ3 > 0 because the Rabi
frequency �̃ is in the denominator. As the error probability Pe

has a negative correlation with the absolute amplitude α0 of
the steady coherence states, we can know the variation of the
error probability Pe by analyzing the deviation of the absolute
amplitude α0. In addition, we can also find from Fig. 4(a) that
the error probability remains at the level of 10−3 when the
systematic error rates is about ±10%. Therefore, the protocol
is insensitive to the systematic errors in the coupling strength
and the Rabi frequencies.

In the above discussions, we omit the influence of the
energy relaxation of the molecule, as the molecule almost
remains in the ground state |1〉s under the effective dynam-
ics governed by the effective Hamiltonian He in Eq. (8). To
confirm that the influence of the energy relaxation to the
chirality discrimination is small, we perform the numerical
simulation based on the full master equation shown in Eq. (9).
The logarithm of error probability pe = − log10(Pe) versus
energy relaxation rates γ2 and γ3 are plotted in Fig. 4(b).
Seen from Fig. 4(b), the error probability is insensitive to the
energy relaxation from the excited state |2〉s. When γ2 � 10κ

and γ3 = 0, the highest error probability appears at γ2 = 0,
where the error probability is Pe = 8.0705 × 10−4. However,
the lowest error probability appears at γ2 = κ , where the
error probability is Pe = 7.0291 × 10−4. The lowest probabil-
ity does not appear at γ2 = 0 because the energy relaxation
also prevents the molecule from being excited to the excited
state |2〉s. Therefore, the energy relaxation of the molecule
from the excited state |2〉s may even help to improve the
performance of the protocol with proper energy relaxation rate
γ2.

The error probability is more sensitive to the energy re-
laxation from the excited state |3〉s compared with that from
the excited state |2〉s. When γ2 = 0 and γ3 � 10κ , the high-
est (lowest) error probability is Pe = 2.5032 × 10−3 (Pe =
8.0705 × 10−4), appearing at γ3 = 10κ (γ3 = 0). When the
energy relaxation rate varies from γ3 = 0 to γ3 = 10κ with
γ2 = 0, the change of the error probability is lower than
1.6961 × 10−3. Consequently, the chirality discrimination is
also robust against the energy relaxation of the molecule from
the excited state |3〉s.
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Considering the energy relaxation from both the excited
states |2〉s and |3〉s, with the energy relaxation rates in the
range {γ2, γ3} ∈ [0, 10κ], the error probability is still lower
than 2.5609 × 10−3. In the worst case, we have γ2 = γ3 =
10κ = g. This means that the protocol still works well even
when the energy relaxation rates are comparable with the cou-
pling strength. Accordingly, the chirality discrimination can
still be implemented accurately when the energy relaxation of
the molecules is taken into account.

V. CONCLUSION

In conclusion, we proposed a protocol for accurate dis-
crimination of chiral molecules based on steady states of
a cavity mode. The closed-loop three-level structure, with
the transition between the excited states of the molecule
driven by a relatively strong microwave field was exploited
to build a chirality-dependent effective Hamiltonian of the
molecule-cavity-coupled system. Governed by the effective
Hamiltonian, the molecule is almost restricted in its ground
state, while the cavity behaves like a driven harmonic oscil-
lator with the driving strengths depending on the chirality of
the molecule. When the photon loss of the cavity is taken into
account, the dynamics of the system is similar to the driven
damped harmonic oscillator model. In this case, the state of
the cavity will finally converge to steady coherence states
with opposite amplitudes, according to the chiralities of the
molecules. By setting proper parameters, the amplitudes of the
steady coherence states, in the cases of left- and right-handed
molecules, are large enough to be distinguished via homodyne
measurements on the cavity. Consequently, we can determine
the chirality of the molecule through the measurement result
of the cavity.

We notice that the error probability Pe of the homodyne
measurement is the complementary error function of the
absolute amplitude α0 of the steady coherence states, i.e.,
Pe = erfc[α0]/2. The error probability is insensitive to the
deviation of α0, if α0 is large enough. As a result, the error
probability changes slightly when the steady states deviates
from the ideal one due to the experimental imperfections,
including the systematic errors of the control parameters and
the energy relaxation of the molecule. Therefore, the chirality
discrimination retains high accuracy under the influence of the
experimental imperfections. These results are also provend by
the numerical simulations in Sec. IV.

Compared with the previous chirality discrimination pro-
tocols [20–23] based on the population difference of the
molecules, the present protocol is robust against experi-
mental imperfections. This is because the populations of
the molecules generally vary significantly when the control
parameters change. Moreover, as the excited states of the
molecules should be populated in the population-based pro-
tocols, such protocols are also more insensitive to the energy
relaxation of the molecules.

In addition, the present protocol is superior to the previ-
ous chirality discrimination protocol [38] based on the cavity
mode. In the previous protocol [38], the evolution of the
cavity is based on the unitary evolution. However, due to

the influence of photon loss, the unitary evolution is spoiled.
As a result, the chirality discrimination in the protocol [38]
is relatively sensitive to the influence of photon loss. Since
photon loss of the cavity is inevitable in a real experiment,
the accuracy of the previous protocol [38] is limited. In the
present protocol, rather than a negative factor, the photon loss
is used as a physical resource to obtain the steady coherence
states of the cavity. Accordingly, the present protocol may be
more easily implemented in experiments and the accuracy of
the chirality discrimination should be higher than that using
unitary evolution.

Furthermore, in the present protocol, the effective Hamil-
tonian is constructed by using a relatively strong microwave
field to drive the transition between the excited states of
the molecule. The second-order perturbation theory was only
used once in the derivation of the effective Hamiltonian and
the Stark shift terms were completely eliminated. However, in
the previous protocol [38], the effective Hamiltonian was de-
rived based on the large detuning condition. The second-order
perturbation theory was used twice in the derivation of the
effective Hamiltonian and there existed extra Stark shift terms
to be dealt with. Therefore, the effective coupling strength in
the previous protocol [38] is weaker than that in the present
protocol. Moreover, the extra Stark shift terms in the previous
protocol [38] were also related to the phase in the complex
amplitude of the coherence state. This makes the chirality
discrimination in the previous protocol [38] more sensitive
to parameter errors since the phase of the probing mode of
the homodyne measurement should match with the phase
of the cavity mode. Therefore, the present protocol is more
robust against parameter errors compared with the previous
protocol [38]. According to the advantages shown above, we
believe the protocol can be feasible to realize near-perfect
chirality discrimination against experimental imperfection.

To implement the chirality discrimination of many
molecules, we may apply the device demonstrated in
Ref. [49]. The device contains a cryogenic cell with an em-
bedded cavity. The molecules are gradually injected into the
device from a feed tube. When a molecules is injected, it will
be cooled down to its rotational temperature by a cold helium
buffer gas. Then, we will drive the injected molecule with
classical fields. Consequently, the cavity mode can evolve to
a coherence state and be measured by a homodyne measure-
ment. After that, the molecule will get out of the cavity and
arrive at a cold wall of the device and finally freeze there. In
addition, the state of the cavity is reset to the vacuum state
using a linear drive of the cavity. Then the next molecule
is injected and we repeat the above operations. In this way,
the the chirality discrimination of many molecules can be
realized.
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