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Simulating many-body physics with quantum nonlinear optics
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The rapidly growing field of quantum information can benefit greatly from quantum nonlinear optics, which
has the potential to generate highly correlated optical states with a sufficiently large interaction strength per
photon. Such states play a crucial role in various quantum applications. While the traditional approach to
generating correlated optical states involves controlled interactions between individual single photons through
nonlinear mediums, a more efficient approach is to use the evolution of multiphotons in the highly nonlinear
optical medium. To facilitate this approach, we propose a scheme that traces the time evolution of the photons
encoded in Fock space to generate complex correlated states. Our approach mimics the dynamics of many-body
systems with adjustable interaction strength, allowing us to simulate state transfer on a spin chain by tuning
the interaction. We also investigate the feasibility of our scheme based on current technologies and explore the
potential of quantum nonlinear optics in quantum simulation.
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I. INTRODUCTION

The photonic system is widely regarded as an ideal plat-
form for quantum computation and quantum simulation [1]
thanks to its long coherent time and accurate single-qubit
operation. However, implementing a two-qubit gate between
photons still poses a significant challenge due to the difficulty
of interaction between them. The Knill-Laflamme-Milburn
(KLM) scheme [2] suggests that the two-qubit gate can be
realized in linear optics through measurements and bosonic
statistics. Nevertheless, its intrinsic probabilistic nature and
stringent experimental requirements make it hard to scale up
in practice [3]. Alternatively, a strongly nonlinear medium
can induce a deterministic two-photon gate when its nonlinear
interaction rate exceeds the decoherence rate [4,5]. As a result,
the universal quantum computation can be realized through
the nonlinear optics in the quantum region [5–7]. Fortunately,
recent advancements in materials and technologies [8–14]
offer promising avenues for reaching the quantum regime of
nonlinear optics.

Though a full-fledged universal quantum computer is not
yet available, it is possible to simulate complicated systems
in the developing quantum machine based on nonlinear op-
tics. In an analog quantum simulation, the primary task is to
establish the correspondence between the desired many-body
systems Hamiltonian and the effective Hamiltonian in the
quantum simulator [15]. While simulators based on solid-state
systems, such as ion traps [16,17], ultra-cold atoms [18,19],
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and superconductivity systems [20,21], are easy to realize
interactions but hard to maintain quantum coherence, optical
simulators have long coherent times but are difficult to im-
plement interactions between photons. The special character
of the photonic systems makes it significantly challenging to
establish the Hamiltonian correspondence between the many-
body systems and the simulator [22].

So far, the primary quantum simulations involving multi-
photons, in essence, can be viewed as state preparation [23].
Only a few quantum simulations of noninteraction many-body
systems have been carried out, using a single-particle Fock
state distributed across various bosonic modes under band
theory [24–29]. However, it is believed that the multiphoton
states obtained from the interferometer network, which has
been used to show quantum supremacy [30,31], can provide
potential power to simulate many-body physics efficiently.
Recently, researchers demonstrated a quantum simulator that
exploited multiphoton states using only a single beam split-
ter [32]. This simulator was able to simulate many-body
dynamics, such as the nonlinear Su-Schrieffer-Heeger (SSH)
model and the general chiral XY spin-1/2 chain. However,
this simulator’s capability was significantly limited by a fatal
shortcoming: the interaction strength of the simulated system
cannot be adjusted.

Here we propose a quantum simulation scheme based on
multiphoton states obtained in quantum nonlinear optics. This
scheme can be used to simulate many-body physics with
adjustable interaction strength. By mapping the nonlinear
photonic interaction to a spin chain Hamiltonian, we show
that the full quantum treatment of quantum nonlinear optics
can reveal its connection to many-body physics. The analogy
between nonlinear optics and spin-1/2 systems is often used
when studying geometric phases in nonlinear optics [33].
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However, instead of treating the two modes of light as compo-
nents of a single spin-1/2, as is typically done, our mapping
maps the Hilbert space as the single excitation subspace of
a spin-1/2 chain. By taking advantage of this mapping, we
establish a preliminary simulation of XY spin chain dynamics
with adjustable coupling.

The rest text is organized as follows. Section II provides a
full quantum treatment of a nonlinear process whose Hamil-
tonian is mapped to a many-body physical system in Sec. III.
We then numerically solve this Hamiltonian in Sec. IV to
better understand the dynamic behavior of the simulator. As
an example, in Sec. V, we examine the state transfer property
of the simulated system. Finally, we discuss the practicality of
our scheme in terms of experimental implementation.

II. QUANTIZED HAMILTONIAN IN THE SECOND-ORDER
NONLINEAR OPTICAL PROCESSES

Due to the linearity of the electromagnetic field, any light
(photon) cannot interact directly and their interaction can only
be induced by medium: two lights interact with the medium
together to induce the interaction between the two lights.
Therefore, the interaction between two lights is the second-
or higher-order effect of the interaction between the light and
the medium. The higher the order, the weaker the effect. It
was previously believed that the third-order (χ (3)) nonlinearity
was the minimum required order for implementing optical
quantum computation [5]. However, subsequent work has
shown that the second-order (χ (2)) nonlinearity is sufficient to
accomplish the same task if we take the depleted pump regime
into account [6].

A typical scenario of the depleted pump regime is the
cascaded down-conversion developed for generating pho-
ton triplets without postselection [34]. In this application,
the pump field appearing in the second stage parametric
down-conversion (PDC) can be treated quantum mechanically
because the pump originating from the first stage is so weak
that it only has a power of a few hundred femtowatts. In fact,
while the weak pump field only contains 106 photons per
second and can be approximated as a single photon state, it
is exactly a portion of the two-mode squeezed state generated
in the first stage PDC. That is to say, when the second stage
PDC is arranged to work at a high squeezing level, the single
photon state from the first stage PDC, acts as the pump in
second stage PDC, will be used up quickly, and the parametric
approximation is no longer applicable.

The depleted pump regime requires low pump power
and high nonlinear strength at the same time. However,
conventional nonlinear optics adopts bulk crystals whose
nonlinear coefficients are extremely small and only show non-
linear effects under a high-energy field. New materials with
high nonlinear coefficients and advancements in controlling
light fields enable the single-photon-level nonlinearity [9–14],
bringing the field into the quantum region [8]. Consequently,
the nonlinear optics with depleted pump can be implemented.

We begin with a simple model of a nonlinear medium me-
diating the second-order nonlinear process shown in Fig. 1(a),
which can be described by the Hamiltonian [35]

H = ωpa†
pap + ωia

†
i ai + ωsa

†
s as

FIG. 1. Nonlinear photonic quantum simulator with Fock states.
(a) A nonlinear process mixing three optical modes with Fock-state
inputs, following a photon-number-resolved (PNR) detection for
readout. (b) Fock states |N − n, M + n, n〉 encode a N + 1 sites spin-
1
2 chain with the (n + 1)th spin excited. M controls the adjustable
coupling strength.

+ κ (apa†
s a†

i + a†
pasai ), (1)

where we chose units so that h̄ = 1; a†
j and a j denote the

creation and annihilation operators acting on the pump, signal,
and idler mode in the nonlinear process ( j = p, s, i), with the
corresponding frequncies ω j , and κ , which is assumed to be
real valued without loss of generality, stands for the coupling
coefficient depending upon the second-order susceptibility
tensor χ (2), the geometrical factors of the crystal, and the
mode volumes of the involved modes. We can further simplify
the Hamiltonian in the interaction picture

HI = κ (apa†
s a†

i + a†
pasai ), (2)

by regarding the linear term HL = ωpa†
pap + ωia

†
i ai + ωsa†

s as

as the free part and using the energy conservation constraint
ωp = ωi + ωs.

When we simplify our analysis, we are neglecting degrees
of freedom within each mode. However, when we take these
factors into consideration, the energy exchange among all of
the modes becomes very complex and solving the dynam-
ics becomes extremely difficult. Despite this, our simplified
approach still has practical value. For instance, cavities are
generally adopted to enhance the interaction in nonlinear op-
tical processes [36]. The quality factor of these cavities is
usually very large, indicating a narrow linewidth. This means
that we can treat the two parametric fields as reduced single
modes, simplifying the analysis and making it more manage-
able. The effective mode numbers appearing in an experiment
can be estimated in terms of the second-order autocorrela-
tion function g(2)(0) = (〈n2〉 − 〈n〉)/〈n〉2 [37] of the signal
under a strong pump, which can be measured experimentally.
The single-mode-ness can then be quantified via the effective
mode number K = 1/[g(2)(0) − 1] [38,39]. For fields obeying
thermal statistics, g(2)(0) = 2 indicates an ideal single-mode
number K = 1, while for fields obeying Poissonian statis-
tics, g(2)(0) = 1 gives an infinite mode number. Moving a
step further, faithfully following the Hamiltonian Eq. (2) and
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treating the pump field quantum mechanically, the relevant
time-evolution operator can be directly given as

U = e−itκ (apa†
s a†

i +a†
pasai ). (3)

Different from the squeezing operator obtained under familiar
treatment, the time evolution under full quantum treatment
transfers the energy among the various bosonic modes. Then
we need to consider the exact solution of the time evolution
operator rather than standing on an approximation result. Due
to the statistics of bosons [40] and the effect involved in
calculating the creation and annihilation operators [41,42],
exactly calculating the complex amplitude of such quantum
scattering of bosons is usually not easy. While some results
attempting the full quantum treatment of quantum nonlinear
optics were presented for special scenarios [43,44], there is
still a lack of general theoretical framework. Here, rather than
trying to address the challenges directly, we restrict the form
of optical modes and input states in the nonlinear process.

To simplify the analysis, we consider that the pump pulse
contains a definite photon number np, which corresponds to
an infinite number-phase squeezed state, while the signal and
idler modes each contain ns and ni photons respectively, as
shown in Fig. 1(a). We denote this three-mode quantum state
as |np, ni, ns〉 for convenience. Since the Hamiltonian Eq. (2)
commutes with the observables a†

pap + a†
s as and a†

i ai − a†
s as,

we introduce two conserved quantities

N = np + ns,

M = ni − ns,
(4)

for a three-mode Fock-state input |np, ni, ns〉. These two
conserved quantities are the analogs of Manley-Rowe rela-
tions [45] from classical nonlinear optics, reflecting the fact
that, without considering the dissipation and any other energy
injection, the total photon number of pump and signal modes
and the number difference between signal and idler modes are
invariants.

The conserved quantities in Eq. (4) ensure that the photon
number in pump, signal, and idler modes are completely cor-
related. Consequently, the system will evolve in the subspace
spanned by

{|N − n, M + n, n 〉 | N � n � max(0,−M )}. (5)

Without loss of generality, we assume M > 0, and then the
output state can be written as

|ψ (κt )〉 =
N∑

n=0

cn(κt )|N − n, M + n, n〉. (6)

The Hamiltonian given in Eq. (2) can then be expanded in
detail in the associated subspace spanned by Eq. (5).

III. FOCK-STATE ENCODING
FOR QUANTUM SIMULATIONS

In an analog quantum simulation, we need to formally map
the Hamiltonian to be solved to our controllable Hamilto-
nian [15], i.e., the nonlinear Hamiltonian presented in Eq. (2).
Because the evolution time t and coupling coefficient κ

have the same status in the time-evolution operator Eq. (3),

we combine them into one parameter and rewrite the time-
evolution operator as

U (κt ) = e−iκtHNL, (7)

with the rescaled nonlinear Hamiltonian

HNL = apa†
s a†

i + a†
pasai. (8)

There are commonly used methods for mapping boson cre-
ation and annihilation operators onto spin operators, e.g.,
the Holstein-Primakoff transformation [46] and the Jordan-
Schwinger transformation [47,48]. However, these transfor-
mations have limitations in their applicability to certain types
of bosonic systems. Specifically, they are not directly ap-
plicable to the full quantum treatment of χ (2) nonlinearity,
i.e., Hamiltonian Eq. (8), which involves a bosonic system
with three different bosonic modes and third-order term.
To achieve quantum simulation, we explicitly expand HNL

into formal mathematical matrix in the subspace spanned by
Eq. (5). The matrix element [HNL]Fock

i j , defined as 〈N − i, M +
i, i|HNL|N − j, M + j, j〉, satisfies

[HNL]Fock
i j =

√
i(N + 1 − i)(M + i)δi, j−1

+
√

j(N + 1 − j)(M + j)δi−1, j, (9)

where δi, j is the Kronecker delta function, δi, j = 1 for i = j,
and δi, j = 0 otherwise. Accordingly, the Hamiltonian HNL has
the matrix representation

[HNL]Fock

=

⎛
⎜⎜⎜⎜⎜⎝

0
√

N (M + 1) · · · 0 0
√

N (M + 1) 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0
√

N (M + N )

0 0 · · · √
N (M + N ) 0

⎞
⎟⎟⎟⎟⎟⎠

,

(10)

which is a tridiagonal matrix with zero diagonal elements. The
tridiagonality arises from the Hamiltonian guiding the evolu-
tion of a pump photon converting to a signal-idler photon pair
and the inverse. Therefore, the dynamic of a tree-mode Fock
state |N − n, M + n, n〉 is only related to the states whose
number of photons differs by 1 in each mode, i.e., |N − (n +
1), M + (n + 1), n + 1〉, and |N − (n − 1), M + (n − 1), n −
1〉. Actually, tridiagonal Hamiltonians were used to describe
several one-dimensional systems [49–51], inspiring us to map
the nonlinear Hamiltonian HNL to a one-dimensional system.

Now we will show that a Hamiltonian in such a form can
be directly mapped to the one describing a general chiral XY
spin-1/2 chain, which can be used to study phenomena such
as many-body-localization [52] and dynamic phase transitions
[53], in the single excitation subspace spanned by the states

| j〉 = |↓1 ↓2 · · · ↓ j−1↑ j↓ j+1 · · · ↓L〉, (11)

with L standing for the length of the spin chain and j =
1, 2, . . . , L marking the position of the excitation, as shown
in Fig. 1(b). The mathematical description of the Hamiltonian
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describing a general chiral XY spin-1/2 chain is given as

HXY =
N∑

n=1

Jn

2

(
σ x

n σ x
n+1 + σ y

n σ
y
n+1

)
, (12)

where σ x
n and σ

y
n are the Pauli operators of the spin at the

nth site and Jn represents the couplings between nth and (n +
1)th spin. It can also be rewritten in terms of the raising and
lowering operators as

HXY =
N∑

n=1

Jn(σ+
n σ−

n+1 + σ−
n σ+

n+1), (13)

with σ±
n = 1

2 (σ x
n ± iσ y

n ), satisfying

σ+
n |0〉 = |n〉, σ−

n |n〉 = |0〉, (14)

with |0〉 statding for the all-spin-down state |↓1, . . . ,↓L〉.
Accordingly, in the single excitation subspace, the Hamilto-
nian HXY has a explicit matrix form

[HXY ]Spin =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 J1 0 · · · 0 0
J1 0 J2 · · · 0 0
0 J2 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 JN

0 0 0 · · · JN 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (15)

with the matrix elements giving as [HXY ]Spin
i j = 〈i|HXY | j〉 =

Jj−1δ j,i+1 + Ji−1δi, j+1. Comparing Eqs. (10) and (15), it can
be obviously find that [HNL]Fock exactly equals [HXY ]Spin if
we set the couplings of spin chain as

Jn =
√

n(N + 1 − n)(M + n). (16)

The coupling Jn shows that the interaction strength is not only
related to N , which is determined given a specific chain length
L, but also regulated by M. The parameter M extends the
range of Hamiltonian that can be simulated and improves the
capability of the simulator.

The correspondence [HXY ]Spin = [HNL]Fock specifies a one-
to-one mapping between the three-mode Fock states of a
optical system and the single excitation states of a spin chain,
|N − n, M + n, n〉 ↔ |n + 1〉. The length of the spin chain is
limited by the total photons in the pump and signal modes,
while the photons in the idler mode can be regarded as an an-
cilla providing the variable site-dependent couplings involved
in the spin chain.

Our simulator is not limited to the single excitation of an
XY spin chain. By using the Jordan-Wigner transformation, it
can simulate a fermionic system governed by a generalized
nonlinear SSH Hamiltonian [54] that belongs to the chiral
orthogonal class of Altland-Zirnbauer symmetry classes [55].
Furthermore, mapping to the Bogoliubov–de Gennes Hamil-
tonians [56] allows us to simulate the Kitaev model [57] and
the transverse-field Ising model. Although similar simulations
can be implemented in a linear optical simulator, the nonlin-
earity in our simulation scheme provides additional simulation
parameters. Table I lists a comparison between our simulation
scheme and a linear optical simulator.

TABLE I. The comparison between the nonlinear optical systems
and linear optical systems.

System Nonlinear optics Linear opticsa

Hamiltonian HNL = apa†
s a†

i + a†
pasai HBS = a†b + b†a

Conservation N = a†
pap + a†

s as; S = a†a + b†b

M = a†
i ai − a†

s as

State |N − n〉p|M + n〉i|n〉s |l〉a|S − l〉b

Simulated HXY = ∑L−1
n=1

Jn
2

(
σ x

n σ x
n+1 + σ y

n σ
y
n+1

)
Hamiltonian

System size L N + 1 S + 1

Interaction
√

n(N + 1 − n)(M + n)
√

n(S + 1 − n)

strength Jn (relatively adjusted by M)

Relation HNL degenerates to

HBS while M → ∞.

aReference [32].

IV. SOLVING THE PHOTON NUMBER STATISTICS

Now that the spin state was encoded in the multimode Fock
states in a nonlinear quantum optical system, solving the dy-
namics of the spin precisely means tracing the time evolution
of the number state governed by the nonlinear Hamiltonian
HNL. Obviously, HNL can be diagonalized as

HNL = T �T †, (17)

with T a unitary matrix diagonalizing matrix [HNL]Fock and
� = diag(λ1, λ2, . . . , λN+1) the eigenvalues of [HNL]Fock. The
time-evolution operator in Eq. (7) can then be expressed
in a computation-friendly form U (κt ) = T exp(−iκt�)T †.
Consequently, with an input state |N − n, M + n, n〉, the su-
perposition coefficients of time-evolved states in Eq. (6) are
the matrix elements of U (κt ),

cn′ (κt ) = 〈N − n′, M + n′, n′|U (κt )|N − n, M + n, n〉
= [T exp(−iκt�)T †]n′n. (18)

Using these coefficients we can further characterize the time
evolution of the photon number distribution during the non-
linear process.

Since the conservation given in Eq. (4), the photon number
distribution of three optical modes can be further simplified to
single-mode. We chose the signal photon number distribution
P(n, κt ) = |cn(κt )|2 to describe the evolution of the entire
system. Four examples of P(n, κt ) are shown in Figs. 2(a)
to 2(d), with input states |50, 1, 0〉, |50, 10, 0〉, |50, 50, 0〉,
|50, 100, 0〉, respectively, together with the corresponding av-
erage signal photon number 〈n〉 = ∑N

n=0 nP(n, κt ) and the
second-order autocorrelation function g(2)(0) in Figs. 2(e)
to 2(h).

In all four examples, the distribution of the signal photon
number shows oscillatory behavior, indicating a competi-
tion between two process in the nonlinear process: down-
conversion, where pump photons generate pairs of signal and
idler photons, and its reverse, known as the sum frequency.
Such oscillatory behavior is not observed in the semi-classical
treatment where the down-conversion process is dominant
due to the strong pump light. The difference between
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FIG. 2. The photon number statistics during the nonlinear process. (a)–(d) The signal photon number distribution P as a function of time
κt , with initial state |50, M, 0〉 for (a) M = 1, (b) M = 10, (c) M = 50, (d) M = 100. (e)–(h) The corresponding mean signal photon number
〈n〉 (blue solid line) and autocorrelation function g(2)(0) (red dashed line) as a function of κt , with initial state |50, M, 0〉 for (e) M = 1, (f)
M = 10, (g) M = 50, (h) M = 100.

semi-classical and full quantum treatment is also reflected
in g2(0). The semi-classical treatment gives a prediction of
g2(0) = 1 + 1

M , consistent with the results obtained by full-
quantum methods when κt � 1, but g2(0) varies with κt since
the variation of the photon number in the pump mode cannot
be ignored in the full-quantum treatment.

To quantitatively investigate the oscillation behavior,
we examine the frequency domain by calculating the
Fourier transform 〈ñ〉( f ) = F[〈n〉(κt )] where F[∗] de-
notes the Fourier transform. The results are shown in
Fig. 3(a). The spectrum depends on the value of M, indicating
that the energy spectral structure of the Hamiltonian changes

1 10010 50
0.5

0.0
1 2 3 4

0

2

4

0 20 40 60 80 100

(a)
M M M M

f
(b)

M

n~
n~
f

f m

/κ

/κ

FIG. 3. The signal photon number oscillation in frequency space.
(a) The frequency distribution of signal photon number oscilla-
tion with M = 1 (blue), M = 10 (red), M = 50 (yellow), and M =
100 (green), the dashed lines are corresponding lowest eigenfrequen-
cies. (b) The principal frequency component of signal photon number
oscillation with M from 10 to 100. The dashed line is a visual guide
∝ √

M + 1.

with M, thus demonstrating the adjustability of coupling
strength during the simulation. This suggests that our simu-
lator has superior simulation capabilities compared to a linear
simulator, such as the one used in the previous studies. Fur-
thermore, as shown in Fig. 3(a), the width of 〈ñ〉( f ) decreases
as M increases, which means the oscillation becomes more
and more harmonic. We define fm as the principal frequency,
which is the frequency at which 〈ñ〉( f ) takes the maximum
value, to characterize the oscillation rate. In fact, these peaks
correspond to the differences between eigenfrequencies. In
the Fig. 3(a), we draw the lowest eigenfrequencies of the sys-
tems with different M using dashed lines. These dashed lines
bound the lower limit of peak values. We notice that the peak

(a)
1.0

1
10
50
100

0.5

0.0

1.0

0.5

0.0

(b)

0 1 2 3

0.0 0.2 0.4 0.6 0.8

F

M
M
M
M

κt

κt

F

=
=
=
=

FIG. 4. The absolute value of overlap F in Eq. (19). (a) The curve
of the |F | varying with simulation duration κt has periodic peaks,
the initial state is |50, 10, 0〉. (b) The |F | for different initial states
|50, M, 0〉, with M = 1 (blue), 10 (red), 50 (yellow), 100 (green), re-
spectively, simulation duration κt is limited in first peak of the |F |
for visual clarity.
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FIG. 5. The maximal number of energy gaps in energy interval
of width ε, denoted as N (ε), of the simulated Hamiltonian HXY with
coupling in Eq. (16) for N = 50, M = 1 (blue), M = 10 (red), M =
50 (yellow), M = 100 (green).

value is slightly larger than the lowest eigenfrequency, which
can be attributed to the influence of the peaks corresponding
to higher frequencies. As shown in Fig. 3(b), fm increases
with M, and is proportional to

√
M + 1 if M � N , which

means the signal photon number oscillates faster when the
idler photon number input increases. In other words, the idler
photons enhance the nonlinear process.

V. STATE TRANSFER ON THE SPIN CHAIN

The transfer of arbitrary quantum states across a network is
a key aspect of quantum information processing and has been
extensively studied in the one-dimensional situation [58–61].
In such cases, a one-dimensional network can be modeled
as a chain with L sites, each of which contains a spin-1/2.
Initially, the spin on the first site is prepared in a superposi-
tion of the two spin eigenstates, α|↓〉 + β|↑〉, while all other
spins prepared in |↓〉. Recalling the single excitation state

(a)

(b)

FIG. 6. The transfer quality of different simulation setups.
(a) The maximum overlap |F |max as function of input parameter N
with a fixed M. (b) The maximum overlap |F |max as a function of M
with fixed N/M ratio.

| j〉 in Eq. (11) and the all-spin-down state |0〉, the initial
state of the spin chain reads (α|↓〉 + β|↑〉)1|↓2, . . . ,↓L〉 =
α|0〉 + β|1〉. Our purpose is evolving it into the target state
|↓1, . . . ,↓L−1〉(α|↓〉 + β|↑〉)L = α|0〉 + β|L〉 via the nearest-
neighbor interactions on the spin chain. Both the initial and
target states are in the superposition of the state |0〉 and one
of the single excitation states | j〉 with the same superposition
coefficients α, β. Since the state |0〉 remains unchanged under
the XY interaction, we can focus on the single-excitation
subspace in which our simulation scheme operates. It is worth
noting that the perfect state transfer only occurs for certain
couplings. For instance, perfect state transfer happens if we
set the coupling Jn ∝ √

n(N + 1 − n) in Eq. (12) [59]. As
mentioned in Sec. III, the coupling of the simulated spin chain
can be adjusted by M, hence we can study the state transfer
quality of different couplings by changing M. Importantly, our
simulator can achieve perfect state transfer if M � N . We use
the overlap between the state |1〉 after time evolution and the
state |L〉 to quantify the transfer quality

F = 〈L|e−itH |1〉, (19)

with H the Hamiltonian of spin chain and t the transfer time.
|F | = 1 indicates a perfect state transfer.

In previous works, state transfer of a one-dimensional spin
chain was simulated using photons on a multiphoton linear in-
terference network [32] and an integrated photonic chip [62].
The previous approach used high photon number Fock states
to implement a long spin-chain simulation, but lost the ad-
justability of couplings and can only simulate perfect state
transfer situations. The later approach allowed for easy tuning
of spin couplings but was difficult to scale up, as simulating
N spins requires at least N waveguides. Our protocol takes
advantage of both approaches, where the input parameters N
and M control the length and relative coupling strength of the
simulated spin chain, respectively.

The simulation of state transfer follows a specific proce-
dure. First, the chain length L to be simulated is determined
and M is chosen to determine the coupling of the simulated
spin chain. Next, the three-mode Fock state |L − 1, M, 0〉 is
prepared as the simulator’s input and the coupling coefficient
κ is adjusted to control the simulation duration. Finally, the
photon distribution of the output signal mode is measured and
the quality of state transfer is determined by the probability
P(L − 1, κt ) = |F |2.

Our first study kept the chain length L = 51 and varied
M from 0 to 100. Figure 4(a) shows a typical curve of |F |
as a function of simulation duration κt . The curve exhibits
periodic peaks, which decrease in height as the duration in-
creases, consistent with the photon number statistics results
presented in Sec. IV. The oscillatory behavior of the signal
in nonlinear optics causes the excitation to oscillate back and
forth between the two ends of the chain, leading to periodic
peaks in the |F | values. However, the accumulated transfer
errors in each round trip cause a gradual decrease in the peak
height. To demonstrate the effect of M on transfer quality, we
plot four curves of |F | with M = 1, 10, 50, 100 in Fig. 4(b).
The maximum values of |F | appear earlier for larger values M,
which is consistent with the mean photon number oscillation
rate shown in Fig. 3. Moreover, the maximum value of |F |
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tends to 1 as M increases, indicating better state transfer
quality.

From a thermodynamic point of view, the decay of the |F |
is related to the equilibration on average of rank-one observ-
able |L〉〈L| whose timescale has a strong dependency on the
degeneracy of energy gaps [63]. To quantify the degeneracy,
in Ref. [64] the maximal number of energy gaps in the energy
interval of width ε was defined as

N (ε) = max
E

|{(k, l ) : k �= l and Gk,l ∈ [E , E + ε]}|, (20)

where Gk,l = λk − λl is the energy gap between the kth and
lth eigenstates. The equilibration on average is expected to
happen on a timescale 1/ε for N (ε), which is small compared
to deff, the effective dimension of the initial state, defined as

deff = 1∑
n |〈ψn|ψ (0)〉|4 , (21)

where |ψn〉 stands for nth eigenstate of the Hamiltonian
and |ψ (0)〉 is the initial state. In the example, |ψ (0)〉 = |1〉,
and deff = 4.8, 7.8, 10.5, 11.3 for M = 1, 10, 50, 100, respec-
tively.

Therefore, one of the reasonable requirements for per-
fect state transfer, which is a nonequilibrium process, is a
uniform energy gap, leading to an infinite time for equilibra-
tion on average. Trying to find the underlying mechanism,
we plot N (ε) for the simulated Hamiltonian with different
M in Fig. 5. The energy gaps of the simulated Hamilto-
nian have a flatter distribution as M increases, thus N (ε)
grows faster with ε. We chose N (ε) = 2 as the judg-
ing standard because it is the smallest possible N (ε).
N (ε) = 2 as long as ε < 0.104, 0.044, 0.018, 0.013 for
M = 1, 10, 50, 100, respectively, with the corresponding
|F | = 0.604, 0.847, 0.9720, 0.990. As expected, the trans-
fer quality improves with the energy gaps being flat.

To further explore the relationship between the quality of
the state transfer and equilibrium on average of the observ-
able, we observe how |F | changes with simulated chain length
N + 1, as the time it takes for the system to reach equilibrium
is closely related to the system size. Figure 6(a) shows the
|F |max of different (N, M ) input combinations. As expected,
longer simulated chains have lower transfer quality with a
fixed M because larger systems tend to reach local equilibrium
more quickly. Additionally, transfer quality increases with M,
regardless of chain length, which is consistent with previous
findings. It is a nontrivial problem to examine how transfer
quality changes when two competing factors, N and M, in-
crease simultaneously. Figure 6(b) shows that |F |max tends
to be constant as the simulated chain length increases while
keeping the N/M ratio. The transfer quality at the thermo-
dynamic limit is strongly influenced by the N/M ratio and
the smaller the N/M ratio, the better the asymptotic transfer
quality.

VI. DISCUSSION

Our proposed method can be extended to nonlinear pro-
cesses with higher-order nonlinearity as well as multimode
scenarios. One possible extension is to employ spectral de-
grees of freedom during the nonlinear process and apply a
Schmidt decomposition to reduce the continuous frequency

freedom into an effectively discrete space [65]. The effective
dimension can be further controlled by spectral engineer-
ing [66,67]. Although adding more mode numbers obviously
increases the complexity of the simulator, how to enhance
the simulation capabilities in the presence of the multimode
remains an open question. Nevertheless, our approach shows
promise for simulating problems that exhibit quantum supe-
riority by increasing the number of modes, such as Boson
sampling [30], which considers the distribution of photons
after scattering. When taking into account the rich degrees
of freedom of the three interacting waves inside the nonlin-
ear crystal, discussions of quantum superiority may become
possible, and this is an area of further research interest for us.

To implement our proposal experimentally, there are diffi-
culties in three aspects: generating the high-order Fock states
in pump and idler modes; implementing sufficiently high
and adjustable nonlinear strength; finally, the photon-number-
resolving detection in the output. While these challenges may
seem daunting, the scientific community is working diligently
to overcome them and there have been significant advance-
ments in relevant techniques. We will briefly review some
of these techniques to demonstrate how we can address the
challenges we face.

Generally, preparing a multiphoton state can be on-demand
by using atoms [68] or quantum dots [69] or heralded by
using optical parametric process [70]. Currently, the number
of photons in a high-order Fock state can approach 7 using
atoms [71] and 5 using quantum dots [72]. Recently, Sil-
berhorn and colleagues showed that spontaneous parametric
down-conversion (SPDC) has sufficient potential to gener-
ate the heralded higher-order Fock state, for the 50-photon
event happens about twice per second with a PDC mean
photon number of 7 [73]. Their subsequent work found that
Fock states with n = 9 could be generated at 0.1 Hz with
high fidelity under current experimental constraints [74]. The
number of photons generated can be further enhanced at the
expense of generation rate. In addition to probabilistic gen-
eration via SPDC, there are also other on-demand methods.
By employing a two-level atom resonantly interacting with
a coherent state, one could generate Fock states as large as
n = 50 with a fidelity of 58% in a cavity QED setup [75],
and the number of photons in a Fock state could be further
increased to 100 in the near future by reducing decoherence.

Another difficulty in experimentally demonstrating our
proposal is improving the nonlinear strength, which deter-
mines the simulation duration. Actually, a long-standing goal
in optical science has been the implementation of nonlinear
effects at progressively lower light powers or pulse energy [8].
That implies the entire community has been trying to achieve
large nonlinearities all the time, mainly along three routes.
Nowadays, there have been some significant advances in all
of them. The first is the natural idea of looking for new
materials or structures with high nonlinear coefficients. As
reviewed in detail in Ref. [76], plasmonic metasurfaces can
contribute “significantly to the control of optical nonlinear-
ity and enhancement of nonlinear generation efficiency.” The
second method is focusing the photons both spatially and
temporally to achieve a high collision probability. This can
lead to an increase in the power density of the light, which
can, in turn, make the nonlinear effect more pronounced [77].
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Third, optical cavities can be added to increase the number
of times the photons interacts with each other, thereby en-
hancing the nonlinear effect. Strong light-matter interactions
are crucial for this approach and efforts to achieve this go
back to 1987, when a microcavity with a single Rydberg atom
was used to demonstrate strong coupling [78]. Subsequent
improvements focused on increasing the quality of the cavity
and changing the medium inside the cavity. A recent work
reported an “ultrahigh-quality (Q up to 108) doped micro-
cavity” employing thulium, erbium, and ytterbium elements
corporately [79]. To achieve the required nonlinear strength
for our scheme, enhancing the nonlinear effect with an optical
cavity is the most promising approach. This argument is sup-
ported by previous peer publications. For example, in Ref. [7],
the authors proposed an optical quantum computation scheme
based on second-order nonlinearities, which required cavities
with Q ∼ 2 × 108 to enhance nonlinearity. Similarly, the au-
thors of Ref. [80] discussed a deterministic N-photon-state
generation proposal using the same Hamiltonian, which also
required cavities with Q ∼ 3 × 108. Despite the current lim-
itations in cavity fineness, the authors still discussed these
proposals in theory because such high-Q cavities are believed
to be achievable in principle [81]. Our quantum simulation
scheme requires nonlinear strength at the same order of
magnitude.

The commonly used photon-number resolving detection
methods include transition edge sensors (TES) and multi-
plexed threshold detectors. Recently, by multiplexing 16 TESs
temporally and spatially, researchers were able to register
events with up to 219 photons, with each TES having in-
trinsic photon number resolving ability up to 5 with high
fidelity [82]. Multiplexing highly quantum-efficient TESs to
accurately resolve photon numbers between 0 and 100 was
also achieved in an experiment for implementing a quantum
random-number generator with no inherent bias [83]. Besides
the TES approach, spatiotemporally multiplexing threshold

detectors can also provide photon number-resolving ability.
A recent breakthrough in this area comes from Tang’s group
at Yale University who developed an on-chip detector that can
resolve up to 100 photons by spatiotemporally multiplexing
an array of superconducting nanowires along a single optical
waveguide [84]. Moreover, new data analysis methods are
also improving the resolution of photon number detection. In
Ref. [85], “a measurement workflow free of systematic errors
consisting of a reconfigurable photon number-resolving detec-
tor, custom electronic circuitry, and a faithful data-processing
algorithm” was reported. With this tool, the authors achieved
an “unprecedented accurate measurement” with an average
fidelity of 0.998. These recent advancements in both hard-
ware and data analysis methods suggest that photon number
resolution detection capabilities will continue to improve and
fulfill the requirements in many applications, including those
outlined in our proposal.

In summary, although our proposed scheme for quan-
tum simulation using photon number resolving detectors and
strong nonlinear effects may face some experimental chal-
lenges at present, they are not insurmountable obstacles and
are more likely technical issues that can be resolved with
continued research and development.
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