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Nonreciprocal cavity dark-state polariton and quantum statistics
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Optical nonreciprocity plays an essential role in optical information communication and information process-
ing. Based on electromagnetically induced transparency, a nonreciprocal cavity dark-state polariton (DSP) could
be achieved using spin-biased cold atoms. The DSP induces a nonreciprocal window with high transmission
and low insertion loss around the cavity resonant frequency. By decreasing the strength of the control field, the
contribution of the atom excitation dominates the behavior of the DSP, which exhibits a narrow cavity linewidth
and thus a long lifetime of cavity photons in the form of the DSP. Further, we investigate the nonreciprocity
for the statistical properties of the system in the single-atom (N = 1) and multiatom (N > 1) cases. Due to the
existence of DSP, the photon statistics leads to totally different profiles for the light propagating in both directions
in the two cases. In the single-atom (N = 1) case, the light in the form of DSP shows apparent sub-Poissonian
distribution simultaneously with relatively high transmission and a narrow bandwidth corresponding to the
one-photon excitation due to quantum interference. Such a quasiparticle may provide a platform for novel
applications in nonreciprocal quantum devices and quantum simulation.
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I. INTRODUCTION

Optical nonreciprocity has recently attracted a lot of re-
search interest and resulted in novel nonreciprocal devices
such as optical isolators, routers, and circulators [1–5], as well
as building blocks for the construction of quantum networks
[6–8]. Schemes for realizing optical nonreciprocal transmis-
sion without magnetic fields have been proposed based on
the optical nonlinear effect [9–13], cold atomic Bragg lattices
[14,15], dynamic modulation of a material’s optical properties
[16–19], the optomechanical effect [20–29], the thermal mo-
tion of atoms [4,5,30–38], spin-momentum locking [39–48],
and so on. In recent years, the nonreciprocal quantum statistics
have come into view, including nonreciprocal photon block-
ade [49–51] and nonreciprocity in photon pair correlations
[52], which pave the way toward real quantum nonreciprocal
devices.

More recently, cavity polaritons using cold atoms have
attracted growing attention due to the potential applications in
quantum communications and quantum computation [53,54].
Combining cavity photons with excitations of cold atoms,
they possess unique advantages that other systems with only
atoms or photons may not have. For example, in the field
of quantum simulation, the quasiparticles exhibit not only
a richer structure for the hybrid light-matter nature of the
excitations but also the ability to address individual sites and
enable us to probe out-of-equilibrium many-body phenomena
[55–57]. As an exciting development, a nonreciprocal cavity
polariton was proposed theoretically and realized experimen-
tally [58]. By combining the properties of cavity polaritons
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with optical nonreciprocity, the nonreciprocal cavity bright
polariton (BP) may open up a new avenue for novel appli-
cations in nonreciprocal devices and provide the potential
to study topological photonics in many-body physics. How-
ever, such a cavity polariton using two-level cold atoms
[58] contains a large contribution from the excited atomic
states and suffers from decoherence due to large spontaneous
emission. Compared to their counterparts, cavity dark-state
polaritons (DSPs) are mixtures of cavity photonic and Raman-
like matter branches [59] and have been extensively studied
in the past few decades [59–65]. Due to the high tunabil-
ity of photon lifetimes in the cavity and the immunity to
the spontaneous emission of the excited state, many applica-
tions based on cavity DSPs have been found, such as cavity
linewidth narrowing [62,63], quantum storage [64,65], and
photon blockade [66,67].

In this paper, we propose a nonreciprocal cavity DSP
by combining intracavity electromagnetically induced trans-
parency (EIT) with spin-biased cold atoms. Different from
the nonreciprocal cavity BP realized in [58], the nonrecip-
rocal cavity DSP near the cavity resonance here possesses
the following noteworthy features: (i) it is decoupled from
the excited state and thus immune to the effects of the spon-
taneous emission of the excited state; (ii) the bandwidth of
the polariton is highly tunable by an external control field,
which means the lifetimes of photons in the form of the DSP
can be manipulated easily. We also investigate the quantum
statistics of the system in the single-atom (N = 1) and mul-
tiatom (N > 1) cases. It can be found that in the presence
of the nonreciprocal DSP, the photon statistical properties are
also nonreciprocal and exhibit different profiles for light from
forward and backward directions in both cases. Due to EIT,
the statistics for the left-propagating σ−-polarized light in the
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FIG. 1. Schematic illustrations of the nonreciprocal cavity DSP.
(a) The σ+ cavity mode is coupled to the transition |1〉 ↔ |4〉,
(b) leading to a vacuum Rabi splitting transmission, with two small
side peaks due to the BP states, |B1〉 (blue dashed line) and |B2〉
(orange dotted line). (c) The σ− cavity mode couples to the transi-
tion |1〉 ↔ |3〉 with an external control field �c driving |2〉 ↔ |3〉,
forming a standard �-type EIT configuration, and (d) its trans-
mission includes three peaks corresponding to the DSP state |D〉
and two BP states |B±〉. The parameters are Ng2

+ = 180κ2
1 , Ng2

− =
30κ2

1 , �c = 5κ1, �a = �c = 0, κ1 = κ2 = γ3 = γ4, κi = 0.001κ1,
and γ2 = 0.001κ1.

form of a DSP can also be manipulated by an external field. In
the single-atom case, a DSP performing nonclassical statistics
can be obtained by quantum interference between different
paths with the proper parameters and has a pronounced sub-
Poissonian distribution property and simultaneously possesses
high transmission and a narrow bandwidth (i.e., long lifetime
of cavity photons) in terms of one-photon excitation. The
nonreciprocal DSP proposed here may provide a new platform
for nonreciprocal quantum devices and may have the potential
for applications in quantum simulation [53–57].

II. THE MODEL SYSTEM

The basic component in our scheme involves an ensemble
of N cold atoms trapped in an optical cavity, as illustrated
in Fig. 1. The cavity supports degenerate σ± circularly po-
larized optical modes. We assume that the right-propagating
input light field is σ+-polarized and excites only the σ+-
polarized cavity mode and versa vice, which is feasible in
the present experiments [46–48,58]. The relevant levels of
the atoms include two ground states, |1〉 and |2〉, as well as
two degenerate excited states, |3〉 and |4〉. Each of the atoms
is initially prepared in the spin-biased hyperfine ground state
|1〉 with the polarization-dependent transition |1〉 ↔ |4〉 (|3〉)
coupled only to the σ+-polarized (σ−-polarized) cavity mode.
An external field with Rabi frequency �c drives the transition
between |2〉 and |3〉, which can control the σ−-polarized tran-
sition |1〉 ↔ |3〉 through the EIT process.

Under the rotating-wave and electric dipole approxima-
tions, the non-Hermitian Hamiltonian Ĥ of this system,
consisting of a cavity with N four-level atoms, can be

written as

Ĥ =
(

ωa − iκ

2

)
(â+

+â+ + â+
−â−) +

N∑
j=1

4∑
l=1

(ωl − iγl )σ̂
( j)
ll

+
N∑

j=1

[
g( j)

+ â+σ̂
( j)
41 + g( j)

− â−σ̂
( j)
31 + �cσ̂

( j)
32 e−iωct + H.c.

]
+ [i

√
κ1â+

+Ep+e−iωpt + i
√

κ2â+
−Ep−e−iωpt + H.c.]. (1)

Here, â± is the annihilation operator of the σ±-polarized cav-
ity mode, and σ̂

( j)
lm = |l〉 j〈m| (l, m = 1, 2, 3, 4) are the atomic

raising and lowering operators for l �= m and the atomic pop-
ulation operators for l = m. ωl and γl (l = 1, 2, 3, 4) are the
energy and decay rate of the |l〉 state, and we set γ1 ≡ 0. g( j)

± is
the coupling strength between the σ±-polarized cavity mode
and the jth single atom. ωa and ωp are the angular frequencies
of the cavity mode and the probe field, respectively. κ1 (κ2) is
the decay rate of the cavity modes through the left (right) mir-
ror, and the total decay rate of the cavity is κ = κ1 + κ2 + κi,
with κi being the intrinsic cavity decay rate. Ep± represents the
strength of the σ±-polarized input light, which can drive only
the σ± cavity mode, respectively.

In the rotating frame defined by the unitary transformation

Û = exp

{
− iωp(â+

+â+ + â+
−â−)t

− i
N∑

j=1

[
4∑

l=1

ω1σ̂
( j)
ll + ωp

(
σ̂

( j)
44 + σ̂

( j)
33

)

+ (ωp − ωc)σ̂ ( j)
22

]
t

}
, (2)

the effective Hamiltonian Ĥ ′ = Û +ĤÛ − iÛ + ∂Û
∂t (h̄ ≡ 1) can

be written as

Ĥ ′ =
(

�p − iκ

2

)
(â+

+â+ + â+
−â−) −

N∑
j=1

4∑
l=1

iγl σ̂
( j)
ll

+
N∑

j=1

[
(�a + �p)

(
σ̂

( j)
44 + σ̂

( j)
33

)

+ (�a + �p − �c)σ̂ ( j)
22

]
+

N∑
j=1

[
g( j)

+ â+σ̂
( j)
41 + g( j)

− â−σ̂
( j)
31 + �cσ̂

( j)
32 + H.c.

]
+ [i

√
κ1â+

+Ep+ + i
√

κ2â+
−Ep− + H.c.], (3)

in which the detunings are defined as �p = ωa − ωp, �a =
ωD − ω1 − ωa, and �c = ωD − ω2 − ωc. Here, we define
ω3, ω4 ≡ ωD. In the following, we assume that each atom has
the same strength when coupling to the cavity mode and then
take g( j)

+ ≡ g+ and g( j)
− ≡ g− ( j = 1, 2, . . . , N ).
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III. NONRECIPROCAL CAVITY DARK-STATE
POLARITON

When input light is incident from the left side of the cavity
[shown in Fig. 1(a)], the σ+-polarized cavity mode is excited
and is coupled only to the transitions |1〉 ↔ |4〉. The system
can be simplified as N cold cavity-trapped two-level atoms
[58]. As for the light incident from the right side of the
cavity [as shown in Fig. 1(c)], the σ−-polarized cavity mode
is excited and is coupled only to the transitions |1〉 ↔ |3〉, and
then a standard �-type EIT configuration is formed [68]. In
the weak-field approximation, the steady-state solution of the
cavity modes â+ and σ̂

( j)
14 for the right-propagating input light

and â− and σ̂
( j)
12 for the left-propagating input light can be

derived, respectively, as (see Appendix A for more details)

â+ =
√

κ1Ep+

i�p + κ
2 + Ng2+

i(�a+�p)+γ4

, (4a)

σ̂
( j)
14 = − g+â+

�a + �p − iγ4
, (4b)

â− =
√

κ2Ep−

i�p + κ
2 + Ng2−

i(�a+�p)+γ3+ �2
c

i(�a+�p−�c )+γ2

, (4c)

σ̂
( j)
12 = �cg−â−

(�a + �p − iγ3)(�a + �p − �c − iγ2) − �2
c

.

(4d)

According to the two-side cavity input-output formulation
[69], we have âout+ = √

κ2â+ and âout− = √
κ1â−.

Further, we define two cavity bright polariton modes
for the right-propagating input case: B̂1 = 1√

2
(â+ − Ŝ14) and

B̂2 = 1√
2
(â+ + Ŝ14), with the collective atomic operator Ŝ14 =

1√
N

∑N
j=1 |1〉 j〈4| [60]. Then, the transmissions corresponding

to the cavity mode â+ and the cavity BP modes B̂1 and B̂2

are defined as T+ = 〈â+
out+ âout+ 〉
|Ep+ |2 = κ2〈â+

+ â+〉
|Ep+ |2 , TB1 = κ2〈B̂+

1 B̂1〉
2|Ep+ |2 , and

TB2 = κ2〈B̂+
2 B̂2〉

2|Ep+ |2 , respectively. Figure 1(b) shows the transmis-

sions for the cavity mode â+ and the polariton modes B̂1 and
B̂2. Due to the interaction between the cavity mode â+ and
the transitions |1〉 ↔ |4〉, the vacuum Rabi splitting spectrum
appears, and its two small side peaks are at frequencies ωa −√

Ng+ and ωa + √
Ng+, which correspond to the BP states

|B̂1〉 and |B̂2〉 when �a = �c = 0. The two cavity polaritons
separate well if the collective coupling strength

√
Ng+ is rel-

atively large. The nearly resonant input field almost dissipates
and cannot be transmitted from the right mirror.

For the left-propagating input case, a cavity BP
mode B̂ = sin θ â− + cos θ Ŝ12 and a cavity DSP mode
D̂ = cos θ â− − sin θ Ŝ12 are defined with cos θ = �c√

Ng2−+�2
c

,

sin θ =
√

Ng−√
Ng2−+�2

c

, and the collective atomic operator Ŝ12 =
1√
N

∑N
j=1 |1〉 j〈2|. The transmissions corresponding to the cav-

ity mode â−, the cavity BP mode B̂, and the cavity DSP mode

D̂ are given by T− = 〈â+
out− âout− 〉
|Ep− |2 = κ1〈â+

− â−〉
|Ep− |2 , TB = κ1 sin2 θ〈B̂+B̂〉

|Ep− |2 ,

and TD = κ1 cos2 θ〈D̂+D̂〉
|Ep− |2 , respectively. The intracavity EIT in-

FIG. 2. The contrast ratio η and the insertion loss L versus the
normalized frequency detuning �p/κ1. Parameters are the same as in
Fig. 1.

teraction Hamiltonian in the basis of D̂ and B̂ can be rewritten
as [60]

Ĥ ′
EIT =

√
Ng2− + �2

c (Ŝ31B̂ + Ŝ13B̂+). (5)

Figure 1(d) shows the transmission spectrum for the σ−
cavity mode â−, the BP mode B̂, and the DSP mode D̂. The
cavity transmission spectrum includes three peaks: the strong
central peak coincides well with the line of the DSP, while
two small side peaks are in excellent agreement with the line
of the BP. It can be further understood from Eq. (5) that the BP
mode B̂ couples to the collective states Ŝ31 with the coupling

strength
√

Ng2− + �2
c and thus splits into two normal modes

at frequencies E± = ωa ±
√

Ng2− + �2
c when �a = �c = 0

[70]. Due to the spontaneous emission of the excited state |3〉,
the two peaks of splitting BP modes are relatively small, as
shown in Fig. 1(d) (blue dashed line). However, in the absence
of D̂ in Ĥ ′

EIT, we can see that the DSP is totally decoupled from
the excited state and immune to the spontaneous emission,
which leads to a high transmission in the middle peak shown
in Fig. 1(d) (orange dotted line). Comparing Fig. 1(b) with
Fig. 1(d), we notice that the nonreciprocal cavity DSP is ob-
tained only for the σ−-polarized left-propagating input light.
Due to the nonreciprocal DSP, a nonreciprocal window with
high transmission appears near the cavity resonant frequency.
In Fig. 2, the contrast ratio η = | T−−T+

T−+T+
| and the insertion loss

L = −10 log10 T− (dB) are plotted to demonstrate the perfor-
mance of the nonreciprocity. The simulation result shows that
the contrast ratio η is near unity with low insertion loss L � 2
(dB) in the region of |�p| � 0.31γ3.

Next, we focus on the DSP and quantitatively investigate
the decay rate and the linewidth of the DSP. Under the con-

dition of
√

Ng2− + �2
c 	 κ, γ2, γ3 [70], the BP is separated

well from the DSP, and thus, we can ignore the component
of BP mode B̂ near the cavity resonant frequency. Then the
cavity mode â− ≈ cos θD̂, and Ŝ12 ≈ − sin θD̂. We set �a =
�c = 0. The equation of motion for the DSP mode D̂ and its
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FIG. 3. Transmission TD as a function of the normalized fre-
quency detuning �p/κ1 for �c = 0.5κ1, �c = 2κ1, and �c = 5κ1.
The other parameters are the same as in Fig. 1.

steady-state solution are given by

˙̂D = −
(

i�p + κD

2

)
D̂ + √

κ2 cos θEp− , (6a)

D̂ = −
√

κ2 cos θEp−

i�p + κD
2

, (6b)

where κD = κ cos2 θ + γ2 sin2 θ . From Eqs. (6a) and (6b), one
can find that the decay rate of the DSP is determined by
the decay rates κ and γ2, and the dark-state rotation angle

is θ = arctan
√

Ng
�c

[59,61,62]. In practice, γ2 is several orders
of magnitude smaller than κ and γ3. With decreasing �c, the
cavity linewidth narrows due to the small κD, as shown in
Fig. 3. Thus, the lifetime of the cavity photons is enhanced by
increasing the admixture of the long-lived atomic excitation
in the DSP.

IV. NONRECIPROCAL QUANTUM STATISTICS

In addition to the transmission which reflects the mean
photon number, there is growing interest in nonreciprocity
of nonclassical features of the system [49–52]. In this part,
the photon statistics that reveal the quantum nature of the
transmitted light are investigated. We focus on the zero-time-
delay second-order correlation function in the steady state,

g(2)
± (0) = Limt→∞

〈â(t )+2
± â(t )2

±〉
〈â(t )+±â(t )±〉2 . The conditions g(2)

± (0) > 1 and

g(2)
± (0) < 1 characterize super-Poissonian and sub-Poissonian

photon-number statistics [49–51].
According to the method described in [71–74], under weak

excitation (truncating the Hilbert space at the two-quantum
level), the wave function of the system for light incident from
the left side of the cavity is approximately expressed as

|ψ (t )〉+ = |0, 0〉 + A10|1, 0〉 +
N∑
k

A0k|0, 1〉 + A20|2, 0〉

+
N∑
k

A1k|1, 1〉 +
N∑

k,l (k �=l )

A
0
(k

l

)|0, 2〉, (7)

where the state |n, m〉 represents n photons in the cavity and
m atoms in the excited state |4〉. The index k (l) of the coef-
ficients’ subscripts denotes the kth (lth) atom being excited.
Then the approximate expression for the second-order corre-
lation function in the steady state is given by

g(2)
+ (0) = 2|A20|2

(|A10|2 + N |A1k|2 + 2|A20|2)2
. (8)

When light is incident from the right side of the cavity, under
the weak excitation, the wave function of the system is as
follows:

|ψ (t )〉− = |0, 0, 0〉 + A100|1, 0, 0〉

+
N∑
k′

A0k′0|0, 1, 0〉 +
N∑
k′

A00|0, 0, 1〉

+
N∑
k′

A1k′0|1, 1, 0〉 +
N∑
k′

A10k′ |1, 0, 1〉

+
N∑

k′,l ′(k′ �=l ′ )

A
0
(k′

l ′
)

0
|0, 2, 0〉 +

N∑
k′,l ′

A0k′l ′ |0, 1, 1〉

+
N∑

k′,l ′(k′ �=l ′ )

A
00

(k′
l ′
)|0, 0, 2〉 + A200|2, 0, 0〉, (9)

where the state |p, q, s〉 implies there are p photons in the
cavity, q atoms in the excited state |3〉, and s atoms in the ex-
cited state |2〉. The index k′ (l ′) of the coefficients’ subscripts
denotes the k′th (l ′th) atom is in the excited state |3〉 or |2〉.
Then the second-order correlation function in the steady state
is as follows:

g(2)
− (0) = 2|A200|2

(|A100|2 + N |A1k′0|2 + N |A10k′ |2 + 2|A200|2)2
.

(10)

Further, the steady-state analytical solutions of coefficients
in Eqs. (8) and (10) can be calculated using Schrödinger’s
equation (see Appendix B). Here, we stress that the coefficient
A10 (A100) corresponds to the one-photon excitation, while the
coefficient A20 (A200) is related to the two-photon excitation.
Due to the weak driving field, we have |A10| 	 |A20|, |A1k|
(|A100| 	 |A200|, |A1k′0|, |A10k′ |). Thus, the mean photon num-
ber in the cavity 〈â+

+â+〉 (〈â+
−â−〉) is almost equal to |A10|2

(|A100|2), and the transmission related to the one-photon ex-
citation can be indicated as |A10/Ep+ |2 (|A100/Ep− |2). For
simplicity, we define the strength of driving fields as Ep+ =
Ep− ≡ E , and the transmission can be reduced as |A10/E |2
(|A100/E |2).

To demonstrate the nonreciprocity of photon statistics in-
tuitively, the variation of log10[g(2)

± (0)] (red dot-dashed line)
is plotted as a function of the probe detuning �p/κ1 under
the two-photon resonance (�a − �c = 0) and nonresonance
(�a − �c �= 0) conditions in the single-atom (N = 1) and
multiatom (for N = 5 as an example) cases. For conve-
nience, we set �c = 0 throughout the paper. We also plot
the transmission |A10/E |2 (|A100/E |2) (blue solid line) to
analyze the photon statistics and the transmission proper-
ties at the same time. Comparing Figs. 4(a1), 4(a3), 4(b1),
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FIG. 4. Transmission spectrum |A100/E |2/|A10/E |2 corresponding to one-photon excitation (blue solid line) and nonreciprocal quantum
statistics indicated by log10[g(2)

− (0)]/log10[g(2)
+ (0)] (red dot-dashed line). (a1)–(a4) N = 1 and (b1)–(b4) N = 5. (a1) and (b1) �c = κ1, �a = 0;

(a2) and (b2) �c = 0, �a = 0; (a3) and (b3) �c = κ1, �a = 3.5κ1; and (a4) and (b4) �c = 0, �a = 3.5κ1. Ep+ = Ep− ≡ E , E = 0.01κ1,
γ3 = 1.5κ1, g− = 5κ1, g+ = √

15g−, and �c = 0. The other parameters are the same as in Fig. 1. The actual parameters can be referred to
[75,76]

and 4(b3) with Figs. 4(a2), 4(a4), 4(b2), and 4(b4), we can
see that the photon statistical properties are significantly dif-
ferent for the left-propagating σ− and right-propagating σ+
transmitted light. Such nonreciprocal quantum statistics is
due to the existence of the nonreciprocal cavity DSP. In
the following, we focus on the DSP frequency region. From
Figs. 4(a1) and 4(b1) for single-atom and multiatom cases
under the two-photon resonance condition, it can be seen
that g(2)

− (0) tends to be unity (log10[g(2)
− (0)] ≈ 0) at the DSP

point (�p = 0), which indicates that the left-propagating σ−
photons behave nearly like the feature of a coherent field
in spite of having very high transmission (|A100/E |2 ≈ 1).
Such behavior can also be deduced from the analytical so-
lutions in Eqs. (B18)–(B20) (see Appendix B). When the
intracavity two-photon resonance condition of �a − �c = 0
is met, the DSP appears at the frequency point �p = 0,
and the term �2

c/D2 	 1. Then we have T1 → 0, A100 

−i

√
κ2Ep−/K , and A200 
 −i

√
2κ2Ep−A100/(2K ). Thus, we

can obtain g(2)
− (0) 
 2|A200|2/(|A100|)4 → 1. In comparison,

the right-propagating σ+ photons have a super-Poissonian
effect (log10[g(2)

− (0)] > 4) with almost vanishing cavity occu-
pation (|A100/E |2 ≈ 0), as shown in Figs. 4(a2) and 4(b2).
In order to realize the cavity DSP with nonclassical statis-
tics, we tune the two-photon detuning �a − �c off resonance
and find that the DSP is obtained under the proper parame-
ters in Fig. 4(a3) for the single-atom (N = 1) system, which
has an apparent sub-Poissonian distribution (log10[g(2)

− (0)] ≈
−0.76) and simultaneously has a relatively high transmis-
sion (|A100/E |2 ≈ 40%) as well as a narrow bandwidth.
During the investigation, we also find that the apparent
sub-Poissonian distribution of the DSP cannot exist in mul-
tiatom systems, as shown in Fig. 4(b3) with N = 5 as an
example (log10[g(2)

− (0)] ≈ −0.1). In contrast, the statistics of

the right-propagating σ+ photons remain super-Poissonian
(log10[g(2)

− (0)] > 3), as shown in Figs. 4(a4) and 4(b4). Fi-
nally, the nonreciprocal cavity DSP is realized simultaneously
with pronounced sub-Poissonian statistics, relatively high
transmission, and a narrow bandwidth. It is worth noting that
the excited state |3〉 is induced by the dark state |D̂〉 due
to the nonzero two-photon detuning, which accounts for the
loss of the transmission of the DSP. Similar to the principle
of unconventional photon statistics [77], such sub-Poissonian
behavior of the DSP arises from the quantum interference
between different excitation paths.

In order to gain deeper physical insight into the above
results, we demonstrate the three processes contributing to
the transmission of two photons and give a brief coupling
schematic in Figs. 5(a) and 5(b), respectively. Process 1 in
Fig. 5(a) represents two photons from the driving field E
passing through the cavity without being absorbed, which cor-

responds to the path |0, 0, 0〉 i
√

κ2E−−−→ |1, 0, 0〉 i
√

2κ2E−−−−→ |2, 0, 0〉
seen in Fig. 5(b). Process 2 in Fig. 5(a) indicates the two
transmitted photons consist of the transmission of one un-
absorbed photon and one photon emitted by an excited

atom, which is related to the path |0, 0, 0〉 i
√

κ2E−−−→ |1, 0, 0〉 g−−→
|0, 1, 0〉 i

√
κ2E−−−→ |1, 1, 0〉

√
2g−−−−→ |2, 0, 0〉 in Fig. 5(b). Pro-

cess 3 in Fig. 5(a) shows one of the two transmit-
ted photons is emitted from the excited atom and the
other is directly emitted from the photon of the driving
field without being absorbed, which corresponds to the

path |0, 0, 0〉 i
√

κ2E−−−→ |1, 0, 0〉 g−−→ |0, 1, 0〉 �c−→ |0, 0, 1〉 i
√

κ2E−−−→
|1, 0, 1〉 �c−→ |1, 1, 0〉

√
2g−−−−→ |2, 0, 0〉 in Fig. 5(b). When the

two-photon resonance condition is met (�a − �c = 0), the
DSP appears at the frequency point �p = 0. As mentioned
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FIG. 5. (a) Diagrammatic representation of the processes (la-
beled 1, 2, and 3) which contribute to the two-photon transmission.
(b) The coupling schematic corresponding to the relative transitions.

above, we set �c = 0 throughout the paper for convenience.
Due to the almost completely destructive quantum interfer-
ence, the probabilities |A010|2 and |A110|2 are extremely small
[red dash-dotted lines in Figs. 6(a) and 6(b)], while |A001|2 and
|A101|2 are relatively large under the control of �c [yellow
dotted lines in Figs. 6(a) and 6(b)]. Thus, it can be deduced
that the excitation path associated with process 2 is nearly
blocked and, at the same time, the apparent sub-Poissonian
statistics of the DSP cannot exist for A100 
 −i

√
κ2Ep−/K and

A200 
 −i
√

2κ2Ep−A100/(2K ), which are almost independent
of the parameters �c and g−. Once the two-photon reso-
nance condition is broken (i.e., �a �= 0), the states |0, 1, 0〉
and |1, 1, 0〉 have a non-negligible population, as shown in

FIG. 6. The probabilities (a) and (c) |A100|2, |A010|2, and
|A001|2/10 and (b) and (d) |A200|2, |A110|2, and |A101|2/10 versus the
normalized detuning �p/κ1. �a = 0 in (a) and (b), and �a = 3.5κ1

in (c) and (d). The other parameters are the same as in Fig. 4(a3).

FIG. 7. The logarithms of |A100|2/E 2, |A200|2/E 4, and g(2)
− (0) ver-

sus the normalized detuning �a/κ1. �p is taken at the peak of DSP.
The other parameters are the same as in Fig. 4(a3).

Figs. 6(c) and 6(d), due to the incompletely destructive inter-
ference, and the path corresponding to process 2 contributes
to the quantum interference. Figure 7 shows that |A100|2 starts
to decrease as |�a| increases, while |A200|2 decreases quickly
first and then increases slightly. Because the decrease rate
of |A200|2 is faster than that of |A100|2, we can finally get a
small value of |A200|2 and a relatively large value of |A100|2
at the same time with the proper parameters. Thus, a DSP
with pronounced sub-Poissonian distribution statistics can be
obtained with relatively high one-photon transmission as well
as a narrow bandwidth, which represents the long lifetime of
cavity photons. Meanwhile, the parameters �c and g− partic-
ipate in the quantum interference between different paths.

Further, we investigate the effects of the parameters �c,
�a, g−, and �c on the photon statistics of the left-propagating
σ−-polarized light in the single-atom case. In the following,
we focus only on the DSP frequency region in which the
photon statistics of the DSP have the sub-Poissonian property
for log10[g(2)

± (0)] � −0.3 and a relatively high transmission
for |A100/E |2 � 0.3. In order to visualize the positions of DSP
peaks under different parameters, we plot the variation of
|A100/E |2 on the �p-�c plane and �p-g− plane. In Figs. 8(a1)
and 8(a2), the peaks of the DSP are labeled 1, 2, and 3
for different values of �a and �c. Figures 8(b1) and 8(b2)
show the variation of −log10[g(2)

− (0)] in the �p-�c plane and
�p-g− plane for different values of �a and �c, respectively.
According to Fig. 8(b1), with increasing �a (�a = 2κ1, 3κ1,
4κ1), region 1 transforms to regions 2 and 3 in turn. As a
result, the nonclassical statistical region can be controlled; that
is, the sub-Poissonian and super-Poissonian features of the
DSP can be switched by tuning the parameters �a and �c. In
Fig. 8(b2), the sub-Poissonian effect can be further enhanced
by increasing the coupling strength g−. By manipulating
the strength of the control field �c (�c = κ1, 2κ1, 3.5κ1),
the areas satisfying the conditions log10[g(2)

± (0)] � −0.3 and
|A100/E |2 � 0.3 appear in regions 1, 2, and 3. According to
the above analysis, the statistical properties of the DSP can
be manipulated by the external parameters �c and �c and
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FIG. 8. The variation of (a1) and (a2) transmission |A100/E |2
and (b1) and (b2) the correlation function g(2)

− (0) on the �p-�c

and �p-g− planes. (a1) and (b1) �c = κ1 and �a = 2κ1 (region 1),
3κ1 (region 2), and 4κ1 (region 3); (a2) and (b2) �c = κ1 (region
1), 2κ1 (region 2), and 3.5κ1 (region 3) and �a = 3.5κ1. The other
parameters are the same as in Fig. 4(a3).

the system parameters �a and g−. Further, a nonreciprocal
DSP can be obtained with simultaneous nonclassical statistics,
relatively high transmission, and long photon lifetime with the
proper choice of parameters.

V. EXPERIMENTAL FEASIBILITY

We briefly discuss the experimental feasibility of the pro-
posed scheme. Here, we consider 85Rb atoms as an example
to show feasible coupling schemes. The hyperfine Zeeman

FIG. 9. Illustration of two examples of the feasible coupling
schemes using 85Rb atoms.

states |52S1/2, F = 2, mF = 2〉 and |52S1/2, F = 3, mF = 2〉
can be selected as the two ground states |1〉 and |2〉, with
|52P3/2, F = 3, mF = 3〉 and |52P3/2, F = 3, mF = 1〉 being
the two degenerate excited states |3〉 and |4〉, as shown in
Fig. 9(a). We can also choose the hyperfine Zeeman states
|52S1/2, F = 3, mF = 3〉 and |72S1/2, F = 3, mF = 3〉 as the
two ground states |1〉 and |2〉 and |52P3/2, F = 4, mF = 2〉 and
|52P3/2, F = 4, mF = 4〉 as the two degenerate excited states
|3〉 and |4〉, as shown in Fig. 9(b). Furthermore, the nonrecip-
rocal DSP can also be reversed by initially preparing the 85Rb
atoms in the states |52S1/2, F = 2, mF = −2〉 in Fig. 9(a)
and |52S1/2, F = 3, mF = −3〉 in Fig. 9(b). The polarization-
momentum locking of the input light can be realized by
external apparatuses [46–48,58]. The feasible parameters in
Sec. IV can be taken as (g+, κ, γ3)/2π = (14, 0.66, 3) MHz
[76] or (g+, κ, γ3)/2π = (20, 2, 3) MHz [75].

VI. CONCLUSION

In summary, we proposed a nonreciprocal DSP by using
an intracavity EIT with spin-biased cold atoms. The DSP can
be accessed only from a given direction. For the DSP on
resonance, due to the inhibition of the spontaneous emission,
a high-performance nonreciprocal window with a near-unity
contrast ratio and low insertion loss was created. The decay
rate and the linewidth of the DSP were investigated. It was
found that the decay rate is dominantly determined by the
cavity decay rate and the dark-state angle. By increasing the
admixture of the atomic excitation in the DSP, the linewidth is
narrowed, which indicates the enhanced lifetime of the cavity
photons in the form of the DSP. Next, we studied the photon
statistics for light from both directions in the single-atom and
multiatom cases. Due to the nonreciprocal DSP, the statistics
is also nonreciprocal. By selecting the proper parameters in
the single-atom case, a DSP with an apparent sub-Poissonian
distribution was obtained which still possesses relatively high
transmission and a narrow bandwidth. The nonreciprocal DSP
proposed in this paper may provide the potential for novel
quantum nonreciprocal devices and platforms in quantum
simulations [53–57].
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APPENDIX A: DERIVATION OF OPERATORS
IN SECTION III

For the right-propagating input light, the evolution equa-
tions of the relevant operators derived from the Langevin
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equations are as follows:

˙̂a+ = −
(

i�p + κ

2

)
â+ − ig+

N∑
j=1

σ̂
( j)
14 + √

κ1Ep+ , (A1)

˙̂σ ( j)
14 = − i(�a + �p − iγ4)σ̂ ( j)

14 + ig+â+
(
σ̂

( j)
44 − σ̂

( j)
11

)
. (A2)

By using the Langevin equations, the evolution equations of
the relevant operators for the left-propagating input light are
given by

˙̂a− = −
(

i�p + κ

2

)
â− − ig−

N∑
j=1

σ̂
( j)
13 + √

κ2Ep− , (A3)

˙̂σ ( j)
13 = −i(�a + �p − iγ3)σ̂ ( j)

13 − i�cσ̂
( j)
12

+ ig−â−
(
σ̂

( j)
33 − σ̂

( j)
11

)
, (A4)

˙̂σ ( j)
12 = −i(�a + �p − �c − iγ2)σ̂ ( j)

12 − i�cσ̂
( j)
13

+ ig−â−σ̂
( j)
32 . (A5)

In the weak-field approximation, the steady-state solutions of
the cavity modes â+ and σ̂

( j)
14 for the right-propagating input

light and â− and σ̂
( j)
12 for the left-propagating input light can

be derived, respectively, as

â+ =
√

κ1Ep+

i�p + κ
2 + Ng2+

i(�a+�p)+γ4

, (A6)

σ̂
( j)
14 = − g+â+

�a + �p − iγ4
, (A7)

â− =
√

κ2Ep−

i�p + κ
2 + Ng2−

i(�a+�p)+γ3+ �2
c

i(�a+�p−�c )+γ2

, (A8)

σ̂
( j)
12 = �cg−â−

(�a + �p − iγ3)(�a + �p − �c − iγ2) − �2
c

.

(A9)

APPENDIX B: DERIVATION OF PROBABILITY
AMPLITUDES IN SECTION IV

For light input from the left side of the cavity, we obtain
a set of the evolution equations for the coefficients using
Schrödinger’s equation ih̄|ψ̇ (t )〉+ = Ĥ ′|ψ (t )〉+:

Ȧ10 = − i

h̄

{
KA10 +

N∑
i=1

g(i)
+ A0i + i

√
κ1Ep+

}
, (B1)

Ȧ0k = − i

h̄
{D4A0k + g(k)

+ A10}, (B2)

Ȧ20 = − i

h̄

{
2KA20 +

√
2

N∑
i=1

g(i)
+ A1i + i

√
2κ1Ep+A10

}
,

(B3)

Ȧ1k = − i

h̄

{
[K + D14]A1k +

N∑
l=1

g(l )
+ A

0
(k

l

)
+ i

√
κ1Ep+A0k +

√
2g(k)

+ A20

}
, (B4)

Ȧ
0
(k

l

) = − i

h̄

{
2D4A

0
(k

l

) + g(k)
+ A1l + g(l )

+ A1k
}
, (B5)

where we take K = �p − i κ
2 and D4 = �a + �p − iγ4. In the

steady state, by setting the time derivatives equal to zero, the
solutions of the above equations are as follows:

A10 = − i
√

κ1Ep+

K − Ng2+
D4

, A0k = i
√

κ1Ep+g+
KD4 − Ng2+

, (B6)

A20 = − i
√

2κ1Ep+

2K − 2Ng2+/D
A10

+ i
√

κ1Ep+

2K − 2Ng2+/D

√
2Ng+
D

A0k, (B7)

A1k = − i
√

κ1Ep+

D
A0k +

√
2g+
D

A20, (B8)

where D = K + D4 − (N−1)g2
+

D4
and we set g( j)

+ ≡ g+ ( j =
1, 2, . . . , N ). When light is incident from the right side of the
cavity, using Schrödinger’s equation ih̄|ψ̇ (t )〉− = Ĥ ′|ψ (t )〉−,
the set of evolution equations for the coefficients is given by

Ȧ100 = − i

h̄

{
KA100 +

N∑
k′=1

A0k′0g(k′ )
− + i

√
κ2Ep−

}
, (B9)

Ȧ0k′0 = − i

h̄
{D3A0k′0 + �cA00k′ + g(k′ )

− A100}, (B10)

Ȧ00k′ = − i

h̄
{D2A00k′ + �cA0k′0}, (B11)

Ȧ1k′0 = − i

h̄

{
(K + D3)A1k′0 + �cA10k′ +

√
2g(k′ )

− A200

+
N∑

l ′=1

g(l ′ )
− A

0
(k′

l ′
)

0
+ i

√
κ2Ep−A0k′0

}
, (B12)

Ȧ10k′ = − i

h̄

{
(K + D2)A10k′ +

N∑
l ′=1

g(l ′ )
− A0l ′k′

+ �cA1k′0 + i
√

κ2Ep−A00k′

}
, (B13)

Ȧ
0
(k′

l ′
)

0
= − i

h̄

{
2D3A

0
(k′

l ′
)

0
+ g(l ′ )

− A1k′0 + g(k′ )
− A1l ′0

+�c(A0k′l ′ + A0l ′k′ )

}
, (B14)

Ȧ0k′l ′ = − i

h̄

{
(D3 + D2)A0k′l ′ + �c(A

00
(k′

l ′
) + A

0
(k′

l ′
)

0
)

+ g(k′ )
− A10l ′

}
, (B15)

Ȧ
00

(k′
l ′
) = − i

h̄

{
2D2A

00
(k′

l ′
) + �c(A0k′l ′ + A0l ′k′ )

}
, (B16)

Ȧ200 = − i

h̄

{
2KA200 +

√
2

N∑
k′=1

g(k′ )
− A1k′0

+ i
√

2κ2Ep−A100

}
. (B17)
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Here, we define D3 = �a + �p − iγ3 and D2 = �a + �p − �c − iγ2. In the steady state, the analytical solutions of the
coefficients are presented as

A100 = − i
√

κ2Ep−

K − Ng2−
D3−�2

c/D2

, (B18)

A0k′0 = − g−
D3 − �2

c/D2
A100, A00k′ = −�c

D2
A0k′0, (B19)

A200 = − i
√

2κ2Ep−

2K − N (
√

2g−)2T3

A100 + i
√

κ2Ep−N
√

2g−T3

2K − N (
√

2g−)2T3

A0k′0 − N
√

2g−T3T4

2K − N (
√

2g−)2T3

A00k′ , (B20)

A1k′0 =T3T4A00k′ −
√

2g−T3A200 − i
√

κ2Ep−T3A0k′0, (B21)

A10k′ = − �c

K + D2
[1 + (N − 1)g2

−T1T2]A1k′0 − i
√

κ2Ep−

K + D2
[1 + (N − 1)g2

−
K + D2

T1]A00k′ , (B22)

where T1 = (D2 + D3 − �2
c

D2
− �2

c
D3

− (N−1)g2
−

K+D2
)−1, T2 = 1

D3
+ 1

K+D2
, T3 = [K + D3 − �2

c
K+D2

− (N − 1)g2
−�2

cT1T 2
2 − (N−1)g2

−
D3

]−1,

and T4 = i
√

κ2Ep−�c

K+D2
[1 + (N − 1)g2

−T1T2].

[1] C. Caloz, A. Alù, S. Tretyakov, D. Sounas, K. Achouri, and
Z. L. Deck-Léger, Electromagnetic Nonreciprocity, Phys. Rev.
Appl. 10, 047001 (2018).

[2] D. Jalas, A. Petrov, M. Eich, W. Freude, S. H. Fan, Z. F. Yu,
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