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Using electric dipoles to describe light-matter interactions between two entities is a conventional approx-
imation in physics, chemistry, and materials science. However, the lack of material structures makes the
approximation inadequate when the size of an entity is comparable to the spatial extent of electromagnetic
fields or the distance of two entities. In this study, we develop a unified theory of radiative and nonradiative
resonance energy transfer based on transition current density in a theoretical framework of macroscopic quantum
electrodynamics. The proposed theory allows us to describe polariton-assisted resonance energy transfer between
two entities with arbitrary material structures in spatially dependent electromagnetic fields. To demonstrate the
generality of the proposed theory, we rigorously prove that our theory can cover the main results of the transition
density cube method and the plasmon-coupled resonance energy transfer. We believe that this study opens a
promising direction for exploring light-matter interactions beyond the scope of electric dipoles and provides
insights into materials physics.
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I. INTRODUCTION

Resonance energy transfer (RET) is a fundamental process
in photophysics and has attracted considerable attention in a
variety of fields owing to its extensive applications in biolog-
ical and chemical sensing [1–9], molecular imaging [10–14],
and photovoltaics [15–19]. To understand the mechanism
of RET, numerous theoretical studies have been conducted
based on the electric dipole approximation (EDA) [20–28].
For example, Förster developed a concept of spectral overlap
for the description of RET [29,30], Andrews and co-workers
established a unified theory of radiative and nonradiative
RET [31–33] (which corresponds to the resonant dipole-
dipole interaction in free space) from molecular quantum
electrodynamics (QED) [34], and Dung et al. incorporated
the effect of dielectric environment into the resonant dipole-
dipole interaction [35,36]. These theories not only advance the
understanding of RET, but also successfully capture the main
features of RET.

Recently, experimental studies have shown that the RET
rates between two entities (molecules [37–41], semiconduc-
tors [18], biomolecules [42,43], etc.) can be significantly
influenced by the presence of polaritons, which provides a
new perspective on exploring light-matter interaction in spa-
tially dependent electromagnetic fields. It is well known that
the EDA cannot be used to describe RET in the following
scenarios: (i) The distance between two entities is insuffi-
cient [44–48] and (ii) the surrounding electromagnetic field of
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entities varies drastically [49,50]. In the former scenario, sev-
eral approaches have been successively proposed and applied
to some representative systems, e.g., the transition monopole
theory for chlorophyll [51], the line-dipole approximation for
conjugated polymers [52], and the transition density cube
(TDC) method for pigments of light-harvesting complex [53],
but these approaches cannot describe the retardation effect,
i.e., the mechanism of radiative RET. In the latter scenario,
a straightforward improvement is to consider the quadrupo-
lar interaction [50,54,55], but the convergence of multipolar
expansion depends on material structures. Moreover, the
methods used to address scenarios (i) and (ii) cannot describe
the influence of polaritons (photons dressed by dielectric en-
vironments) on RET. Therefore, to address the above issues,
our strategy is to start from the framework of macroscopic
QED [56,57] (which enables us to incorporate the effect of
dielectric environments) and derive an explicit RET-rate ex-
pression by employing a transition current density approach
(which enables us to capture the retardation effects).

In this article, the main goal is to establish a generalized
theory of RET beyond the EDA and allow us to study RET
between two entities with material structures in spatially de-
pendent vacuum electric fields. The structure of this article
is organized as follows. In Sec. II we begin with the total
Hamiltonian of polaritons and point charges with interactions
introduced via the minimal coupling procedure. Next we de-
rive the RET rate of a pair of molecules expressed by the
molecular transition current density by expanding the Born
series to the second order. Moreover, we adopt the Condon-
like approximation in order to separate the electronic and
nuclear degrees of freedom and then derive a formula which
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allows us to acquire the transition current density via ab initio
calculations. In Sec. III we demonstrate the generality of our
theory by comparing them to previous works, including the
TDC method [53] and plasmon-coupled RET [58]. In Sec. IV
we present a brief summary of this research.

II. THEORY

A. Total Hamiltonian

In the nonrelativistic regime, we consider a collection of
point charges with the quantized electromagnetic fields in the
presence of linear, dispersive, and absorbing media (polari-
tons). Note that the formation of polaritons originates from the
hybridization of photons and media, which does not include
the contribution of point charges. Hence, in this context, the
total Hamiltonian comprises a polariton Hamiltonian and a
Hamiltonian of point charges Ĥtot = Ĥpol + ĤPC. To properly
describe the quantum behavior of polaritons, we adopt the
quantization framework of macroscopic QED [36,56,57] and
express the polariton Hamiltonian as

Ĥpol =
∫

d3r
∫ ∞

0
dω h̄ωf̂†(r, ω) · f̂ (r, ω), (1)

where the vector bosonic operators f̂†(r, ω) and f̂ (r, ω) are
the creation and annihilation operators, respectively, that obey
the commutation relations

[ f̂k (r, ω), f̂ †
k′ (r′, ω′)] = δkk′δ(r − r′)δ(ω − ω′), (2a)

[ f̂k (r, ω), f̂k′ (r′, ω′)] = 0. (2b)

Incidentally, the macroscopic QED can be reduced to the
microscopic (or molecular) QED [34,59] in the cases of ho-
mogeneous dilute media or vacuum [60]. For the Hamiltonian
of point charges, the interaction between point charges and
quantized electromagnetic fields is introduced through the
minimal coupling procedure in the Coulomb gauge

ĤPC =
∑

n

1

2mn
[p̂n − qnÂ(r̂n)]2 +

∑
n<m

V̂ (r̂n, r̂m)

+
∑

n

qnϕ̂(r̂n). (3)

The first term in ĤPC describes the mechanical kinetic en-
ergy of point charges in the presence of electromagnetic
fields, where mn, qn, r̂n, and p̂n are the mass, charge num-
ber, position operator, and canonical momentum operator
of the nth point charge, respectively [61]. The second term
V̂ (r̂n, r̂m) describes the Coulomb interaction between the nth
and mth point charges. The final term is the interaction be-
tween point charges and scalar potential from media. In the
Coulomb gauge, the scalar potential operator ϕ̂(r) is asso-
ciated with the longitudinal auxiliary electric-field operator
Ê‖(r, ω) [Eq. (4a)]. Similarly, the vector potential operator
Â(r) is associated with the transverse auxiliary electric-field
operator Ê⊥(r, ω) [Eq. (4b)],

−∇ϕ̂(r) =
∫ ∞

0
dω[Ê‖(r, ω) + H.c.], (4a)

Â(r) =
∫ ∞

0
dω[(iω)−1Ê⊥(r, ω) + H.c.]. (4b)

Here the longitudinal (transverse) component is defined by
the auxiliary electric-field operator Ê(r, ω),

Ê‖(⊥)(r, ω) =
∫

d3r′δ‖(⊥)(r − r′) · Ê(r′, ω), (5)

where δ‖(r − r′) and δ⊥(r − r′) denote the longitudinal and
transverse dyadic delta functions, respectively. Moreover, the
auxiliary electric-field operator in the frequency domain is
defined by [36,62]

Ê(r, ω) = i

√
h̄

πε0

ω2

c2

∫
d3r′√εI(r′, ω)G(r, r′, ω) · f̂ (r′, ω).

(6)

Here εI(r′, ω) = Im[ε(r′, ω)] denotes the imaginary part of

the relative permittivity function and G(r, r′, ω) is the dyadic
Green’s function of macroscopic Maxwell’s equations, i.e.,

(
ω2ε(r, ω)

c2
− ∇ × ∇

)
× G(r, r′, ω) = −Iδ(r − r′), (7)

where I is a 3 × 3 identity matrix.
On the basis of the total Hamiltonian, we further catego-

rize the point charges according to their belonging entities
because the main purpose of this study is to focus on the
RET between the entities, where the entities can be atoms,
molecules, two-dimensional materials, etc. Accordingly, the
Hamiltonian of point charges is rewritten as

ĤPC =
∑

M

ĤM +
∑

M<M ′
V̂MM ′ +

∑
M

[V̂pol,M + �̂pol,M],

where M denotes the index of entities and ξ ∈ M denotes
the index of point charges (including nuclei and electrons)
in the entity M. Here the Hamiltonian ĤM of the entity M
and the Coulomb interaction between two entities V̂MM ′ are
defined by

ĤM =
∑
ξ∈M

p̂2
ξ

2mξ

+
∑
ξ<ζ

V̂ (r̂ξ , r̂ζ ), (8)

V̂MM ′ =
∑
ξ∈M

∑
ζ∈M ′

V̂ (r̂ξ , r̂ζ ), (9)

respectively. The interactions between polaritons and the en-
tity M (V̂pol,M and �̂pol,M) are defined as

V̂pol,M =
∑
ξ∈M

(
qξ ϕ̂(r̂ξ ) − qξ

mξ

Â(r̂ξ ) · p̂ξ

)
, (10a)

�̂pol,M =
∑
ξ∈M

q2
ξ

2mξ

Â2(r̂ξ ). (10b)

Note that in Eq. (10a) we use the relation p̂ξ · Â(r̂ξ ) =
Â(r̂ξ ) · p̂ξ , which holds as we choose the Coulomb gauge. In
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addition, it is convenient to define the charge density operator
ρ̂M (r) and the current density operator ĵM (r) of the entity M,

ρ̂M (r) ≡
∑
ξ∈M

qξ δ(r − r̂ξ ), (11)

ĵM (r) ≡
∑
ξ∈M

qξ

2mξ

[δ(r − r̂ξ )p̂ξ + p̂ξ δ(r − r̂ξ )], (12)

so that V̂pol,M can be expressed in a continuous form

V̂pol,M =
∫

d3r[ϕ̂(r)ρ̂M (r) − Â(r) · ĵM (r)]. (13)

Note that the order of δ functions and canonical momentum
operators in Eq. (12) should be done with care because r̂ξ

and p̂ξ are not commutative. The details can be found in Ap-
pendix A. In contrast to V̂pol,M , which includes both scalar and
vector potentials, �̂pol,M depends only on the vector potential
and is associated with the diamagnetic response [63–65] of
the entity M. Here we would like to emphasize that the in-
teractions in Eqs. (10) and (10b) are the complete couplings
between polaritons and molecules, i.e., the couplings beyond
the commonly used EDA. In other words, the information of
molecular structures is fully preserved in Eq. (10). Finally, the
total Hamiltonian is reorganized as the compact form

Ĥtot = Ĥpol +
∑

M

ĤM +
∑

M

(V̂pol,M + �̂pol,M ) +
∑

M<M ′
VMM ′ .

(14)

It is worth pointing out that the above Hamiltonian is a general
form for entities coupled to the quantized electromagnetic
fields in the presence of dispersive and absorbing media,
which can also be applied to investigate other photophysi-
cal (photochemical) topics such as spontaneous emission and
electron transfer under the influence of polaritons.

B. Transfer rate of a two-entity system

Now we focus on the RET between a pair of entities with
the assistance of polaritons in the incoherent limit [23,66–
69], i.e., the RET processes can be described by kinetic rates.
According to the definition in Eq. (14), the total Hamiltonian
in the two-entity case reads

Ĥ ≡ Ĥtot (M = {A, B}) = Ĥ0 + Ĥ1, (15)

with the unperturbed Hamiltonian Ĥ0 and interaction Hamil-
tonian Ĥ1 described by

Ĥ0 = Ĥpol + ĤA + ĤB, (16)

Ĥ1 = V̂pol,A + �̂pol,A + V̂pol,B + �̂pol,B + V̂AB

≈ V̂pol,A + V̂pol,B + V̂AB. (17)

In the interaction Hamiltonian, we do not consider the dia-
magnetic effect in the RET (i.e., we neglect the contribution
from the diamagnetic terms �̂pol,A and �̂pol,B) because their
magnitude is far less than that of the remaining terms [70,71].
In this system, we consider the initial (final) state, which is the
direct product of the polaritonic vacuum state and the energy
eigenstates A and B,

|i〉 = |a′〉 ⊗ |b〉 ⊗ |{0}〉 , Ei = Ea′ + Eb, (18a)
| f 〉 = |a〉 ⊗ |b′〉 ⊗ |{0}〉 , E f = Ea + Eb′ . (18b)

Here |a(a′)〉 and |b(b′)〉 are the eigenkets of the Hamiltonians
ĤA and ĤB, and their corresponding energy are Ea (a′ ) and
Eb (b′ ). Also, we denote the energy of the initial (final) state
by Ei (E f ) and we require that Ea′ > Ea and Eb′ > Eb. By
expanding Born series up to the second order in the time-
dependent perturbation theory [72], the total RET rate � is
expressed as

� =
∑

f ,i

Pi� f i, � f i = 2π

h̄
|〈 f | T̂ |i〉|2δ(E f − Ei ), (19)

where Pi is the probability of the initial state and the transition
operator T̂ is given by

T̂ = T̂1 + T̂2 = Ĥ1 + Ĥ1Ĝ0Ĥ1. (20)

Here Ĝ0 is the retarded Green’s operator, which is defined by

Ĝ0 = 1

Ei − Ĥ0 + iη
, η → 0+. (21)

Now we evaluate the total transition amplitude 〈 f | T̂ |i〉 and
divide 〈 f | T̂ |i〉 into two parts 〈 f |T̂1|i〉 and 〈 f |T̂2|i〉. First, in
the transition amplitude of T1, it is not difficult to obtain that
only V̂AB contributes to transition amplitude,

〈 f | T̂1 |i〉 = 〈 f | V̂AB |i〉 = 〈a; b′|
∑
ξ∈A

∑
ζ∈B

qξ qζ

4πε0|r̂ξ − r̂ζ | |a′; b〉 ,

(22)

where ε0 denotes the vacuum permittivity. Equation (22)
clearly shows that the first-order perturbation excludes the
interplay of molecules and polaritons due to V̂pol,A (V̂pol,B) as
indirect couplings between two entities. This is the reason
that the second-order perturbation is required in our theory.
Second, the transition amplitude of T2 contains the nonzero
terms

〈 f | T̂2 |i〉 = 〈 f | V̂pol,AĜ0V̂pol,B |i〉 + 〈 f | V̂pol,BĜ0V̂pol,A |i〉 + 〈 f | V̂ABĜ0V̂AB |i〉 . (23)

It is worth noting that 〈 f | V̂ABĜ0V̂AB |i〉 can be neglected if the entities are far apart, resulting in negligible Coulomb interactions.
At the present stage, we neglect the contribution of 〈 f | V̂ABĜ0V̂AB |i〉 and evaluate the second-order transition amplitude by using
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the spectral representation of the retarded Green’s operator

〈 f | T̂2 |i〉 ≈ 〈 f | V̂pol,AĜ0V̂pol,B |i〉 + 〈 f | V̂pol,BĜ0V̂pol,A |i〉

=
3∑

l=1

∫
d3s

∫ ∞

0
dω

〈a; {0}| V̂pol,A |a′; {1l (s, ω)}〉 〈b′; {1l (s, ω)}| V̂pol,B |b; {0}〉
Eb − Eb′ − h̄ω + iη

+
3∑

l=1

∫
d3s

∫ ∞

0
dω

〈b′; {0}| V̂pol,B |b; {1l (s, ω)}〉 〈a; {1l (s, ω)}| V̂pol,A |a′; {0}〉
Ea′ − Ea − h̄ω + iη

. (24)

In 〈 f | V̂pol,AĜ0V̂pol,B |i〉 and 〈 f | V̂pol,BĜ0V̂pol,A |i〉, we consider the two intermediate states |a′, b′; {1l (s, ω)}〉 and
|a, b; {1l (s, ω)}〉, respectively. Recall that the single-polariton Fock state in Eq. (24) is defined by |{1l (s, ω)}〉 = f †

l (s, ω) |{0}〉,
which is interpreted as a single-polariton density with the polarization component l at the frequency ω and at the position s.
Furthermore, to adequately cope with V̂pol,M , one can define the auxiliary current density of the entity M,

Jmm′ (r; ω) ≡ ω

ωm′m
j‖mm′ (r) + j⊥mm′ (r), (25a)

Jm′m(r; ω) ≡ ω

ωm′m
j‖m′m(r) + j⊥m′m(r), (25b)

where ωm′m = ωm′ − ωm and j‖ (⊥)
mm′(m′m)(r) is the longitudinal (transverse) part of the transition current density jmm′(m′m)(r) =

〈m(m′)|ĵM (r)|m′(m)〉. For convenience, we restrict the denominator ωm′m in Eq. (25) to be positive and ωmm′ to be negative.
Therefore, according to the auxiliary transition current density, each element of V̂pol,M in Eq. (24) can be expressed as

〈a; {0}| V̂pol,A |a′; {1l (s, ω)}〉 = −
∫

d3r
∫ ∞

0
dω′(iω′)−1 〈{0}| Ê(r, ω′) |{1l (s, ω)}〉 · Jaa′ (r; −ω′), (26a)

〈b′; {1l (s, ω)}| V̂pol,B |b; {0}〉 =
∫

d3r
∫ ∞

0
dω′(iω′)−1 〈{1l (s, ω)}| Ê†(r, ω′) |{0}〉 · Jb′b(r; −ω′), (26b)

〈b′; {0}| V̂pol,B |b; {1l (s, ω)}〉 = −
∫

d3r
∫ ∞

0
dω′(iω′)−1 〈{0}| Ê(r, ω′) |{1l (s, ω)}〉 · Jb′b(r; ω′), (26c)

〈a; {1l (s, ω)}| V̂pol,A |a′; {0}〉 =
∫

d3r
∫ ∞

0
dω′(iω′)−1 〈{1l (s, ω)}| Ê†(r, ω′) |{0}〉 · Jaa′ (r; ω′). (26d)

The details can be found in Appendix B. Note that the integral variable ω′ differs from the frequency ω in the single-polariton
Fock state. Substituting Eqs. (6) and (26) into Eq. (24) with mathematical operations and using the identity to contract two
dyadic Green’s functions

ImG(r, r′, ω) =
∫

d3s
ω2εI(s, ω)

c2
G(r, s, ω) · G†(r′, s, ω), (27)

we finally obtain that the transition amplitude of T2 becomes

〈 f | T̂2 |i〉= h̄

πε0c2

∫
d3r

∫
d3r′

∫ ∞

0
dω

(
Jaa′ (r; −ω) · ImG(r, r′, ω) · Jb′b(r′; −ω)

h̄(ωb − ωb′ − ω) + iη
+Jb′b(r; ω) · ImG(r, r′, ω) · Jaa′ (r′; ω)

h̄(ωa′ − ωa − ω) + iη

)
.

(28)

To further simplify the transition amplitude in Eq. (28), we next evaluate the ω integral by contour integration in the complex
domain. We evaluate the ω integral by extending the interval [0,∞) to the whole real axis through the transformation ω → −ω

to the first term in Eq. (28) and using the identity ImG(r, r′,−ω) = −ImG(r, r′, ω) [36,57]. Next, by exchanging the inner
product order of the dyadic Green’s function (by Onsager reciprocity [57]), we extend the ω integral to the whole real axis

〈 f | T̂2 |i〉 = h̄

πε0c2

∫
d3r

∫
d3r′

∫ ∞

−∞
dω

Jb′b(r; ω) · ImG(r, r′, ω) · Jaa′ (r′; ω)

h̄(ωT − ω) + iη sgn(ω)
, (29)

where sgn(z) ≡ z/|z| is a sign function. Here we assume
that the transition frequencies of entities A and B are the
same, ωT = ωa′ − ωa = ωb′ − ωb, because we focus on the
process of resonance energy transfer. Moreover, because

ImG(r, r′, ω) is not holomorphic, we rewrite Eq. (29) as

〈 f | T̂2 |i〉 = h̄

πε0

∫
d3r

∫
d3r′

∫ ∞

−∞
dω I (r, r′, ω), (30)
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FIG. 1. Illustration of the contour adopted in the ω integral. The
total closed contour C is equal to C1 + C2. A singularity at 
 = ωT +
iη is located in the upper complex half plane.

where

I (r, r′, ω) = 1

2ic2

(
Jb′b(r; ω) · G(r, r′, ω) · Jaa′ (r′; ω)

h̄(ωT − ω) + iη sgn(ω)

− Jb′b(r; ω) · G∗(r, r′, ω) · Jaa′ (r′; ω)

h̄(ωT − ω) + iη sgn(ω)

)
.

(31)

By using the fact that the dyadic Green’s function G(r, r′, ω)
is holomorphic in the upper complex half plane [36], we
choose the path, as shown in Fig. 1, and evaluate the ω in-
tegral. Hence, the ω integral becomes∫ ∞

−∞
I (r, r′, ω)dω =

∮
C

I (r, r′,
)d
 −
∫

C2

I (r, r′,
)d
.

(32)

According to the result derived in Appendix C, the contour
integral gives the result

〈 f | T̂2 |i〉 |C2 = 1

ε0ω
2
T

∫
d3r j‖b′b(r) · j‖aa′ (r) (33)

= 〈a; b′| V̂AB |a′; b〉 . (34)

In Eq. (33) the coupling of longitudinal transition current den-
sities between entities A and B can be further reduced to the
Coulomb interaction form (the derivation details can be found
in Appendix D), as a consequence of the Coulomb gauge. For
the contour integral of the closed path C = C1 + C2, according
to the residue theorem, we can obtain∮

C
I (r, r′,
)d
 = 2π i Res[I (r, r′,
), ωT + iη/h̄]

= π

h̄c2
jb′b(r) · G(r, r′, ωT) · jaa′ (r′),

which indicates that

〈 f |T̂2 |i〉 |C = 1

ε0c2

∫
d3r

∫
d3r′

× jb′b(r) · G(r, r′, ωT) · jaa′ (r′). (35)

Recall that the auxiliary current density defined in Eq. (25)
gives Jb′b(r; ωT) = jb′b(r) and Jaa′ (r′; ωT) = jaa′ (r′). Finally,

according to Eqs. (22), (32), (33), and (35), we obtain the total
transition amplitude

〈 f | T̂ |i〉 = 1

ε0c2

∫
d3r

∫
d3r′jb′b(r) · G(r, r′, ωT) · jaa′ (r′).

(36)

Note that the transition amplitudes in Eqs. (22) and (33) mu-
tually cancel out. Finally, we obtain the RET rate in terms of
transition current density in the expression

� = 2π

h̄2

∫ ∞

0
dω

∑
(a,b′ )

∑
(a′,b)

Pa′Pb

∣∣∣∣ 1

ε0c2

∫
d3r

∫
d3r′jb′b(r)

· G(r, r′, ω) · jaa′ (r′)
∣∣∣∣
2

δ(ωa′ − ωa − ω)

× δ(ωb′ − ωb − ω), (37)

where (a′, b) [(a, b′)] denotes the grouped indices of the initial
(final) state and Pa′ (Pb) denotes the initial-state probability
distribution of the entity A (B). Recall that the transition
frequencies of A and B are the same, ωa′ − ωa = ωb′ − ωb.
In the current stage, we have derived an explicit form of the
RET rates in terms of transition current density, as shown in
Eq. (37), but this equation cannot be used to directly evaluate
RET rates in material systems via ab initio methods. To
solve this issue, we adopt a further approximation in the next
section.

C. Transition current density and molecule

To evaluate the transition current density via ab initio
methods, it is necessary to separate the electronic and nuclear
degrees of freedom first (approach to recapturing the vibronic
effect can be found in Refs. [73–75]). In the same spirit of the
Condon approximation [76,77], we approximate the transition
current density to

jmm′ (r) = 〈m|ĵM (r)|m′〉 ≈ 〈φM,γ |ĵM (r)|φM,γ ′ 〉{R} 〈χM,ν | χM,ν ′ 〉,
(38)

where |φM,γ 〉 denotes the γ th electronic state and |χM,ν〉 is
the νth nuclear state associated with the γ th electronic state.
Here the subscript {R} represents the electronic element be-
ing evaluated under a specific nuclear coordinate {R}. The
Condon-like approximation allows us to separate the elec-
tronic and nuclear degrees of freedoms. As a result, we can
focus only on the electronic transition current density, and the
contribution of the nuclear part can be attributed to the nu-
clear wavefunction overlap 〈χM,ν | χM,ν ′ 〉. As a consequence,
the quantum number m is now assigned to the two indices,
m → (γ , ν). In addition, because most ab initio calculations
are performed in the coordinate space, the projection of the
states to the position-spin coordinates is required. After taking
the projection and considering the antisymmetric property
of electrons, we finally get the electronic transition current
density (detail derivations can be found in Appendix E)

jM
γ γ ′ (r) ≡ 〈φM,γ |ĵM (r)|φM,γ ′ 〉{R}

= −ih̄eNel

2mel
[φ̃∗

M,γ (r; {R})∇φ̃M,γ ′ (r; {R})

− φ̃M,γ ′ (r; {R})∇φ̃∗
M,γ (r; {R})], (39)
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Medium MediumVacuum

(a) (b) (c)

FIG. 2. Schematic diagram of how to calculate the electromagnetic coupling factors within three different theoretical approaches:

(a) transition current density method F (ω) = |ε−1
0 c−2

∫
d3r

∫
d3r′jB

eg(r) · G(r, r′, ω) · jA
ge(r′)|2, (b) transition density method FTD =

|(4πε0)−1
∫

d3r
∫

d3r′ρB
eg(r)g(r, r′)ρA

ge(r′)|2, and (c) transition dipole moment method FRDDI(ω) = |ω2ε−1
0 c−2μB

eg · G(rB, rA, ω) · μA
ge|2.

where Nel is the total number of electrons in molecule M,
e is the elementary charge of an electron, and mel is the
electron mass. Recall that the gradient operator only operates
on r, not {R}. Moreover, φ̃M,γ (r, {R}) is the single-electron
reduced wavefunction of the electronic state γ , which is
defined by

φ̃∗
M,γ (x1; {R})φ̃M,γ ′ (x1; {R})

≡
∫

D{xμ �=1}φ∗
M,γ ({xμ}; {R})φM,γ ′ ({xμ}; {R}). (40)

In Eq. (40), {xμ} denotes the set of position-spin coordinates
and φM,γ ({xμ}; {R}) denotes the multielectron wavefunction
of the electronic state γ , which is parametrized by a specific
nuclear coordinate {R}. The integration symbol represents a
series of integrals except for x1,

∫
D{xμ �=1} ≡

∫
dx2· · ·

∫
dxNel .

In particular, in molecular systems, it is common to approx-
imate the single-electron reduced wavefunctions as molecular
orbitals (MOs), which can be obtained from ab initio calcula-
tions. If the transition between the electronic ground state and
the first excited state is the most important transition, one can
assume that the single-electron reduced wavefunction can be
properly described by

φ̃M,e(r; {R}) ≈ φM,LUMO(r; {R}), γ ′ ≡ e, (41a)

φ̃M,g(r; {R}) ≈ φM,HOMO(r; {R}), γ ≡ g, (41b)

where the transition current density for the molecule M
is determined by its highest occupied MO (HOMO), low-
est unoccupied MO (LUMO), and the nuclear wavefunction
overlap. Under the approximation in Eq. (41), the transition
current density can be expressed as

jmm′ (r) = 〈χM,ν |χM,ν ′ 〉jM
ge(r). (42)

According to Eqs. (39) and (41), one can obtain jM
ge(r) as

jM
ge(r) = −ih̄eNel

2mel
[φ∗

M,HOMO(r; {R})∇φM,LUMO(r; {R})

− φM,LUMO(r; {R})∇φ∗
M,HOMO(r; {R})]. (43)

Eventually, the RET rates in Eq. (37) can be expressed and
interpreted as a generalized spectral overlap between two
molecules and the electromagnetic coupling factor F (ω),

� = 2π

h̄2

∫ ∞

0
dωLabs

B (ω)F (ω)Lem
A (ω), (44)

with

Lem
A (ω) ≡

∑
a,a′

Pa′ |〈χA,α |χA,α′ 〉|2δ(ωa′ − ωa − ω),

Labs
B (ω) ≡

∑
b,b′

Pb|〈χB,β ′ |χB,β〉|2δ(ωb′ − ωb − ω),

and

F (ω) =
∣∣∣∣ 1

ε0c2

∫
d3r

∫
d3r′jB

eg(r) · G(r, r′, ω) · jA
ge(r′)

∣∣∣∣
2

.

The schematic illustration of F (ω) is shown in Fig. 2(a).
Note that Labs

B (ω) and Lem
A (ω) are related to the absorption

spectrum of B and the emission spectrum of A, respectively.

III. APPLICABILITY TO FORMER THEORIES

In Sec. II we showed how to derive the RET rate based on
the transition current density approach in the framework of
macroscopic QED. Furthermore, to demonstrate the general-
ity of our theory, in this section we will prove that Eq. (44)
can recover to the main results in previous studies: the TDC
method [53] and the plasmon-coupled resonance energy trans-
fer [58].

A. Transition density cube method

For the case when two entities are close, Krueger et al.
developed the TDC method [53] in the electrostatic limit and
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demonstrated how to calculate the Coulomb coupling between
the pigments of the bacterial light-harvesting complex. To
recover the main result given in the TDC method, we consider

the free-space dyadic Green’s function G0(r, r′, ω) and adopt
the electrostatic approximation

G(r, r′, ω) → lim
k0→0

G0(r, r′, ω) = ∇∇ 1

4πk2
0R

, (45)

where k0 = ω/c, R = |r − r′|, and ∇∇ is a dyadic opera-
tor. Thus, under the electrostatic limit, the electromagnetic
coupling factor F (ω) becomes FTD (TD denotes transition
density) as

FTD ≡ lim
k0→0

F (ω)

=
∣∣∣∣ 1

ε0c2

∫
d3r

∫
d3r′∇ · jB

eg(r)
1

4πk2
0R

∇′ · jA
ge(r′)

∣∣∣∣
2

=
∣∣∣∣ 1

4πε0

∫
d3r

∫
d3r′ρB

eg(r)g(r, r′)ρA
ge(r′)

∣∣∣∣
2

, (46)

where ρA
ge(r′) and ρB

eg(r) are transition densities of the entity A
and the entity B, respectively, and g(r, r′) = 1/|r − r′| is the
scalar Green’s function of the Poisson equation. Note that the
derivation of Eq. (46) requires the continuity equation. Ob-
viously, FTD is exactly the continuous form of the electronic
coupling corresponding to Eq. (5) in Ref. [53]. Incidentally,
to numerically perform the integral in Eq. (46), Krueger et al.
discretized the space into sufficiently small cubes shown in
Fig. 2(b), hence the name transition density cube. Further-
more, because FTD is independent of frequency, it can be taken
out from the generalized spectral overlap and the RET rate
becomes

� = 2π

h̄2 FTDJ, J =
∫ ∞

0
dωLabs

B (ω)Lem
A (ω), (47)

where FTD corresponds to |V |2 in Eq. (8) in Ref. [53]. Note
that the prefactor of Eq. (8) in Ref. [53] is slightly different
from that in Eq. (47) because of their spectral overlap integrals
in different units (J in Ref. [53] expressed in ν̄ = ω/2πc).
In addition, we would like to point out that J defined in
Eq. (47) is associated with the well-known spectral overlap in
Förster’s theory. In brief, the TDC method is the electrostatic
limit of our theory in free space (i.e., neglect of the retarda-
tion effect in homogeneous, nondispersive, and nonabsorbing
media).

B. Plasmon-coupled resonance energy transfer

Equation (44) is general for us to describe RET in lin-
ear, dispersive, and absorbing media. In other words, the
effect of plasmon polaritons can be included in our the-
ory, indicating that the main result of plasmon-coupled RET
should be able to be recovered. The influence of plasmon
polaritons on the RET rates under the EDA have been dis-
cussed in various electromagnetic environments [78–82]. To
obtain the RET rate [Eq. (2)] in Ref. [58], we start from

the definition of the current density and apply the relation
p̂ξ = −imξ h̄−1[r̂ξ , ĤM],

ĵM (r) =
∑
ξ∈M

qξ

2ih̄
{δ(r − r̂ξ )[r̂ξ , ĤM ] + H.c.}

≈
∑
ξ∈M

qξ

2ih̄
{δ(r − rM )[r̂ξ − rM , ĤM] + H.c.}

= 1

ih̄
[μ̂M, ĤM]δ(r − rM ). (48)

Here we introduce the center of mass rM for the entity M
and make the point-dipole approximation to get the dipole
operator μ̂M . Through calculating 〈m(m′)| ĵM (r) |m′(m)〉 =
jmm′(m′m)(r) in Eq. (48), where |m(m′)〉 is the mth (m′th) energy
eigenstate of an entity M, we can obtain

jmm′(m′m)(r) = ∓iωTμmm′(m′m)δ(r − rM ). (49)

Next we take the Condon approximation to the transition
dipole μmm′(m′m), it is straightforward to obtain

μmm′(m′m) ≈ μM
ge(eg) 〈χM,ν(ν ′ ) |χM,ν ′(ν)〉, (50)

where μM
ge(eg) is the electronic transition dipole. Substituting

Eqs. (49) and (50) into Eq. (37), we obtain that

� = 2π

h̄2

∫ ∞

0
dωLabs

B (ω)FRDDI(ω)Lem
A (ω), (51)

where

FRDDI(ω) =
∣∣∣∣ ω2

ε0c2
μB

eg · G(rB, rA, ω) · μA
ge

∣∣∣∣
2

(52)

is exactly the form of the resonant dipole-dipole interac-
tion (RDDI) in Ref. [58]. Here we would like to mention
that the definition of FRDDI(ω) is slightly different from that
of the coupling factor in Ref. [58] because the magnitudes of
the transition dipoles of molecules A and B in Ref. [58] have
been incorporated into the emission and absorption lineshape
functions, i.e.,

W em
A (ω) = 2π

h̄2

∣∣μA
ge

∣∣2Lem
A (ω), (53a)

W abs
B (ω) = 2π

h̄2

∣∣μB
eg

∣∣2Labs
B (ω). (53b)

According to Eq. (53), it is obvious that Eq. (44) covers the
main result in Ref. [58]. Also, it is worth mentioning that
FRDDI(ω) in Eq. (52) is consistent with the transition tensor
deduced from the framework of microscopic (or molecular)
QED [33], which requires the entities in the homogeneous
dilute media or in vacuum. In such a case, the electromagnetic
coupling factor becomes

F dil
RDDI(ω) =

∣∣∣∣ ω2

ε0c2
μB

eg · Gdil(rB, rA, ω) · μA
ge

∣∣∣∣
2

, (54)

with

Gdil(rB, rA, ω) = eikR

4πR

{
[3êR ⊗ êR − I]

(
1

(kR)2
− i

kR

)

+ [I − êR ⊗ êR]

}
. (55)
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TABLE I. Summary of RET theories with and without approximations. We use the following denotations: TCD, transition current density;
TDM-1, transition dipole moment (macroscopic QED); TDM-2, transition dipole moment (molecular QED); FRET, Förster resonance energy
transfer; and κ , orientation factor.

Method Approximation Rate Coupling form

TCD � = 2π

h̄2

∫ ∞
0 dωLabs

B (ω)F (ω)Lem
A (ω) F (ω) = ∣∣ 1

ε0c2

∫
d3r

∫
d3r′jB

eg(r) · G(r, r′, ω) · jA
ge(r′)

∣∣2

TD Electrostatic � = 2π

h̄2 FTD

∫ ∞
0 dωLabs

B (ω)Lem
A (ω) FTD = ∣∣ 1

4πε0

∫
d3r

∫
d3r′ρB

eg(r)g(r, r′)ρA
ge(r′)

∣∣2

TDM-1 Point dipole � = 2π

h̄2

∫ ∞
0 dωLabs

B (ω)FRDDI(ω)Lem
A (ω) FRDDI(ω) = ∣∣ ω2

ε0c2 μB
eg · G(rB, rA, ω) · μA

ge

∣∣2

TDM-2 Point dipole � = 2π

h̄2

∫ ∞
0 dωLabs

B (ω)F dil
RDDI(ω)Lem

A (ω) F dil
RDDI(ω) = ∣∣ ω2

ε0c2 μB
eg · Gdil (rB, rA, ω) · μA

ge

∣∣2

(dilute media)

FRET Electrostatic � = 2π

h̄2 FFRET

∫ ∞
0 dωLabs

B (ω)Lem
A (ω) FFRET = κ2

16π2ε2
0 R6

∣∣μB
eg

∣∣2∣∣μA
ge

∣∣2

& point dipole

Note that k = nω/c, rB − rA = R êR, and n is the refractive
index for dilute media. Moreover, if we further impose the
electrostatic limit on Eq. (51), we can obtain the famous
Förster theory, as discussed in Ref. [58]. To emphasize the
difference among these RET theories, we provide a schematic
diagram, shown in Fig. 2, that depicts the key concepts of the
three electromagnetic coupling factors in RET theories.

IV. CONCLUSION

The resonant dipole-dipole interaction has been widely
used to describe light-matter interaction in physics, chemistry,
and materials science; however, the RDDI is only a first-step
approximation because it cannot fully contain the structural
information of entities (e.g., atoms, molecules, quantum dots,
and two-dimensional materials) when describing light-matter
interactions. To include a spatially dependent light-matter in-
teraction, we developed the generalized RET theory based on
the concept of transition current density in the presence of
linear, dispersive, and absorbing media within the framework
of macroscopic QED. By expanding the Born series up to the
second order in the time-dependent perturbation theory, we
successfully derived the RET rate in the generalized-coupling
expression of the transition dipole moment. Furthermore, by
applying the Condon-like approximation to the transition cur-
rent density, we separated the electronic and nuclear degrees
of freedom and showed that the transition current density
can be described by the HOMO and LUMO, which can be
obtained from ab initio calculations. Moreover, we expressed
the RET rates in terms of the generalized spectral overlap,
as shown in Eq. (44). Finally, to demonstrate the validity
and generality of Eq. (44), we proved that the present theory
can be reduced to the main results in the previous studies,
including TDC and plasmon-coupled RET. The comparison
of several representative RET theories are summarized in
Table I. In short, in the framework of macroscopic QED, the
current approach provides one key step beyond the traditional
RET theory based on RDDI [35,36,58] because Eq. (44) not
only serves as a generalized version (i.e., containing retarda-
tion effect) of the TDC method, but also includes the influence
of photonic environments, e.g., polaritons.

The generalized RET theory beyond the RDDI has been
presented in this work. However, this study is just the begin-
ning, and several issues are worth further exploration. First,

in the present theory, we do not consider the mechanism of
Dexter energy transfer [20–23] (i.e., electron exchange be-
tween two entities). This mechanism becomes important when
the wave-function overlap of two entities cannot be negligible.
Second, the quantum dynamics of RET cannot be described in
the present theory due to the limitation of Fermi’s golden rule.
How to generalize the theory to include quantum dynamics is
an intriguing but challenging issue. In the end, we leave the
numerical demonstration to the future study and hope that the
present theory will inspire further investigation into the basic
theory of energy transfer and its applications.
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APPENDIX A: CONTINUOUS FORM
OF Â(r̂ξ ) · p̂ξ IN EQ. (13)

In this Appendix we prove that the order of momentum
operator and Dirac δ function do not affect the result in the
Coulomb gauge, i.e.,∑

ξ∈M

qξ

2mξ

∫
d3r Â(r) · p̂ξ δ(r − r̂ξ )

=
∑
ξ∈M

qξ

2mξ

∫
d3r Â(r) · δ(r − r̂ξ )p̂ξ . (A1)

We start from the Fourier expression of Dirac δ functions,

δ(r − r̂ξ ) = 1

(2π h̄)3

∫
d3p eip·(r−r̂ξ )/h̄. (A2)

According to Eq. (A2), the product of p̂ξ and δ(r − r̂ξ ) be-
comes

p̂ξ δ(r − r̂ξ ) = 1

(2π h̄)3

∫
d3p p̂ξ

∞∑
n=0

[ip · (r − r̂ξ )/h̄]n

n!
,

(A3)

where we take the Maclaurin series of the exponential func-
tion. Next we exchange the order of operators p̂ξ and r̂ξ .
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For the term of the nth power, we obtain the recursive
relation

p̂ξ [ip · (r − r̂ξ )/h̄]n

= {[ip · (r − r̂ξ )/h̄]p̂ξ − p}[ip · (r − r̂ξ )/h̄]n−1, (A4)

with the canonical commutation relation [r̂ξ, j, p̂ξ,k] = ih̄δ jk .
Using Eq. (A4), we can show that

p̂ξ [ip · (r − r̂ξ )/h̄]n

= [ip · (r − r̂ξ )/h̄]np̂ξ − np[ip · (r − r̂ξ )/h̄]n−1. (A5)

Hence, Eq. (A3) becomes

p̂ξ δ(r − r̂ξ ) = 1

(2π h̄)3

∫
d3p eip·(r−r̂ξ )/h̄p̂ξ

− 1

(2π h̄)3

∫
d3p peip·(r−r̂ξ )/h̄. (A6)

In Eq. (A6) we convert the infinite series back to exponen-
tial functions. Note that the integrand of the second term in
Eq. (A6) can be further rewritten as

−peip·(r−r̂ξ )/h̄ = ih̄∇eip·(r−r̂ξ )/h̄, (A7)

where the gradient operator acts on functions containing r.
Taking the momentum integral, we obtain the identity

p̂ξ δ(r − r̂ξ ) = δ(r − r̂ξ )p̂ξ + ih̄∇δ(r − r̂ξ ). (A8)

Finally, it is straightforward to obtain that

∑
ξ∈M

qξ

2mξ

∫
d3r Â(r) · p̂ξ δ(r − r̂ξ )

=
∑
ξ∈M

qξ

2mξ

∫
d3r Â(r) · δ(r − r̂ξ )p̂ξ

+
∑
ξ∈M

qξ

2mξ

∫
d3r(−ih̄)δ(r − r̂ξ )∇ · Â(r) (A9)

=
∑
ξ∈M

qξ

2mξ

∫
d3r Â(r) · [δ(r − r̂ξ )p̂ξ ], (A10)

where we utilize integration by parts to get ∇ · Â(r). More-
over, the choice of the Coulomb gauge makes ∇ · Â(r) = 0.
Thus, the order of δ(r − r̂ξ ) and p̂ξ does not alter the result in
the Coulomb gauge.

APPENDIX B: DERIVATION OF EQ. (26)

In this Appendix we show the detailed derivation of
Eq. (26). According to the definition in Eq. (13), we divide
the discussion into two parts, the scalar coupling [ϕ̂(r)ρ̂M (r)]
and the vector coupling [Â(r) · ĵM (r)]. The key step to deriv-
ing Eq. (26) is to express the scalar coupling in terms of a
currentlike operator. Because the scalar coupling is associated

with the longitudinal interaction, we begin with the quantity∫
d3r 〈{0}| Ê(r) |{1l (s, ω)}〉 · j‖mm′(m′m)(r)

=
∫

d3r 〈{0}| Ê‖(r) |{1l (s, ω)}〉 · jmm′(m′m)(r)

=
∫

d3r 〈{0}| ϕ̂(r) |{1l (s, ω)}〉 [∇ · jmm′(m′m)(r)]

= −
∫

d3r 〈{0}| ϕ̂(r) |{1l (s, ω)}〉 ρ̇mm′(m′m)(r), (B1)

where

jmm′(m′m)(r) ≡ 〈m(m′)| ĵM (r) |m′(m)〉 , (B2a)

ρmm′(m′m)(r) ≡ 〈m(m′)| ρ̂M (r) |m′(m)〉 (B2b)

are the elements of the transition charge density and transition
current density for the entity M. To obtain Eq. (B1), we first
use the symmetry of orthogonal projections to get the longi-
tudinal electric field and then take the integration by parts to
get the divergence of the transition current density. Further-
more, by utilizing the continuity equation ∇ · jmm′(m′m)(r) =
−ρ̇mm′(m′m)(r), we replace the divergence of the transition
current density by the time derivative of transition charge
density. It is worth noting that the continuity equation is
valid as we suppose that charge transfer processes do not
happen between entities, i.e., the number of charges for each
entity is conserved. In addition, the time derivative transition
charge density ρ̇mm′(m′m)(r) can be replaced according to the
relation

ρ̇mm′(m′m)(r) = 〈m(m′)| 1

ih̄
[ρ̂M (r), ĤM ] |m′(m)〉

= ∓ iωm′mρmm′(m′m)(r), (B3)

where ωm′m = ωm′ − ωm and h̄ωm′(m) is the energy of the state
|m′(m)〉. Substituting Eq. (B3) into Eq. (B1), we obtain the
relation∫

d3r 〈{0}| ϕ̂(r) |{1l (s, ω)}〉 ρmm′(m′m)(r)

=
∫

d3r 〈{0}| Ê(r) |{1l (s, ω)}〉 · j‖mm′(m′m)(r)

±iωm′m
. (B4)

Moreover, it is convenient to express the couplings in the
frequency domain because the polariton states are portrayed
in the frequency domain. By definition, the electric-field op-
erator is the integral of the auxiliary electric-field operator
[defined in Eq. (6)] and its Hermitian conjugate

Ê(r) =
∫ ∞

0
dω[Ê(r, ω) + H.c.]. (B5)

By inserting Eq. (B5) into Eq. (B4) and defining the longitu-
dinal auxiliary transition current density as

J ‖
mm′ (r; −ω) ≡ −ω

ωm′m
j‖mm′ (r), (B6a)

J ‖
m′m(r; +ω) ≡ +ω

ωm′m
j‖m′m(r), (B6b)
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we obtain that∫
d3r 〈{0}| ϕ̂(r) |{1l (s, ω)}〉 ρmm′ (r) = −

∫
d3r

∫
dω′(iω′)−1 〈{0}| Ê(r, ω′) |{1l (s, ω)}〉 · J ‖

mm′ (r; −ω′), (B7a)∫
d3r 〈{0}| ϕ̂(r) |{1l (s, ω)}〉 ρm′m(r) = −

∫
d3r

∫
dω′(iω′)−1 〈{0}| Ê(r; ω′) |{1l (s, ω)}〉 · J ‖

m′m(r; ω′). (B7b)

Note that the denominator ωm′m in Eq. (B6) is always defined as the positive transition frequency whatever the initial and
final eigenkets are. Note that the electric-field operator in the frequency domain contains Ê(r, ω) and its Hermitian conjugate
Ê†(r, ω). Here, only the operator Ê(r, ω) is preserved because the element of Ê†(r, ω) gives a zero, i.e.,

〈{0}| Ê†(r, ω′) |{1l (s, ω)}〉 ∝ 〈{0}| f̂†(r, ω′) |{1l (s, ω)}〉 = 0. (B8)

Similarly, by using the definition of the vector potential operator in Eq. (4b), we rewrite the vector coupling [Â(r) · ĵM (r)] in
the frequency domain∫

d3r 〈{0}| Â(r) |{1l (s, ω)}〉 jmm′ (r) =
∫

d3r
∫ ∞

0
dω′(iω′)−1 〈{0}| Ê(r, ω′) |{1l (s, ω)}〉 · J ⊥

mm′ (r; −ω′), (B9a)

∫
d3r 〈{0}| Â(r) |{1l (s, ω)}〉 jm′m(r) =

∫
d3r

∫ ∞

0
dω′(iω′)−1 〈{0}| Ê(r, ω′) |{1l (s, ω)}〉 · J ⊥

m′m(r; ω′), (B9b)

where we use

j⊥mm′(m′m)(r) = J ⊥
mm′(m′m)(r; ω) (B10)

to denote the transverse auxiliary transition current density because the transverse part of the auxiliary transition current density
is independent of ω. From Eqs. (B6) and (B10), the total auxiliary transition current density finally becomes

Jmm′(m′m)(r; ω) = J ‖
mm′(m′m)(r; ω) + J ⊥

mm′(m′m)(r; ω). (B11)

According to Eqs. (B7), (B9), (B11), and (13), the above elements of V̂pol,M become

〈a; {0}| V̂pol,A |a′; {1l (s, ω)}〉 = −
∫

d3r
∫ ∞

0
dω′(iω′)−1 〈{0}| Ê(r, ω′) |{1l (s, ω)}〉 · Jaa′ (r; −ω′), (B12a)

〈b′; {0}| V̂pol,B |b; {1l (s, ω)}〉 = −
∫

d3r
∫ ∞

0
dω′(iω′)−1 〈{0}| Ê(r, ω′) |{1l (s, ω)}〉 · Jb′b(r; ω′). (B12b)

Similarly, by taking the same procedure addressed above, we can obtain the rest of the elements listed in Eq. (26),

〈b′; {1l (s, ω)}| V̂pol,B |b; {0}〉 =
∫

d3r
∫ ∞

0
dω′(iω′)−1 〈{1l (s, ω)}| Ê†(r, ω′) |{0}〉 · Jb′b(r; −ω′), (B13a)

〈a; {1l (s, ω)}| V̂pol,A |a′; {0}〉 =
∫

d3r
∫ ∞

0
dω′(iω′)−1 〈{1l (s, ω)}| Ê†(r, ω′) |{0}〉 · Jaa′ (r; ω′). (B13b)

Incidentally, it is easy to check the correctness of Eq. (B13) by taking the complex conjugate of Eq. (B12).

APPENDIX C: INTEGRAL ω ALONG PATH C2

In this Appendix we present the details of evaluating the
line integral of I (r, r′, ω) along the semicircular path C2 in
the upper half plane. By definition, the integral is equal to∫

C2

I (r, r′,
)d
 = lim
|
|→∞

∫ π

0
I (r, r′,
)i
 dθ. (C1)

Recall that 
 = ωeiθ . Here we define I (r, r′,
) =
I1(r, r′,
) + I2(r, r′,
), where the two functions are

I1(r, r′,
) = 1

2ic2

Jb′b(r; 
) · G(r, r′,
) · Jaa′ (r′; 
)

h̄(ωT − 
) + iη sgn(
)
,

I2(r, r′,
) = −1

2ic2

Jb′b(r; 
) · G∗(r, r′,
) · Jaa′ (r′; 
)

h̄(ωT − 
) + iη sgn(
)
,

respectively. Using the identity of the dyadic Green’s function

lim
|
|→∞


2

c2
G(r, r′,
) = −Iδ(r − r′), (C2)

we evaluate the limit of i
I1(r, r′,
) and obtain that

lim
|
|→∞

i
I1(r, r′,
) = 1

2ω2
T

j‖b′b(r) · j‖aa′ (r′)δ(r − r′). (C3)

Note that the asymptotic behavior of the auxiliary current
density is

Jm′m(mm′ )(r; 
) ∼ 


ωm′m
j‖m′m(mm′ )(r), |
| → ∞,

and recall that ωa′a = ωb′b = ωT. A similar procedure is done
on I2(r, r′, ω), but we should utilize the Schwarz reflection
principle of the dyadic Green’s function [57] and transform
the integral variable to 
 → −
∗ first. Finally, we obtain the
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same result

lim
|
|→∞

i
I2(r, r′,
) = 1

2ω2
T

j‖b′b(r) · j‖aa′ (r′)δ(r − r′). (C4)

It is obvious that the integrand in Eq. (C1) is no longer depen-
dent of θ after taking the limit, as shown in Eqs. (C3) and (C4).
Thus, the integral associated with I1(r, r′, ω) is π . Moreover,
because we take the transformation 
 → −
∗, the integral
becomes ∫ π

0
dθ → −

∫ −π

0
dθ = π. (C5)

According to Eqs. (C3)–(C5), Eq. (C1) eventually becomes∫
C2

I (r, r′,
)d
 = π

h̄ω2
T

j‖b′b(r) · j‖aa′ (r′)δ(r − r′). (C6)

APPENDIX D: INTERACTION OF LONGITUDINAL
TRANSITION CURRENT DENSITIES

We prove that the interaction between two longitudinal
transition current densities is exactly the Coulomb interaction,
namely,

1

ε0ω
2
T

∫
d3r j‖b′b(r) · j‖aa′ (r) = 〈a; b′| V̂AB |a′; b〉 . (D1)

According to the definition of longitudinal fields [83], the
longitudinal transition current density can be described as

j‖m′m(mm′ )(r) ≡ −1

4π
∇

∫
d3r′ ∇′ · jm′m(mm′ )(r′)

|r − r′|

= ±1

4π
∇

∫
d3r′ iωTρm′m(mm′ )(r′)

|r − r′| . (D2)

Note that ∇ · jm′m(r) = −iωTρm′m(r) and ∇ · jmm′ (r) =
iωTρmm′ (r) [recall Eq. (B3)]. By using the definition of charge
density operator [Eq. (11)], the longitudinal transition current
density of the molecule M becomes

j‖m′m(mm′ )(r) = ± iωT

4π
∇ 〈m′(m)|

∑
ξ∈M

qξ

|r − r̂ξ | |m(m′)〉 . (D3)

Thus, the left-hand side of Eq. (D1) becomes

1

ε0ω
2
T

∫
d3r j‖b′b(r) · j‖aa′ (r)

= 1

16π2ε0

∫
d3r 〈a; b′|

∑
ξ∈A

∑
ζ∈B

qξ qζ K (r, r̂ξ , r̂ζ ) |a′; b〉 ,

(D4)

where

K (r, r̂ξ , r̂ζ ) = ∇g(r, r̂ξ ) · ∇g(r, r̂ζ ), (D5)

with g(r, r̂ξ ) = 1/|r − r̂ξ | the Green’s function of Poisson’s
equation

∇2g(r, r̂ξ ) = −4πδ(r − r̂ξ ). (D6)

By using the Green’s identity, K (r, r̂α, r̂β ) becomes

K (r, r̂ξ , r̂ζ ) = ∇ · [g(r, r̂ξ ) · ∇g(r, r̂ζ )] − g(r, r̂ξ )∇2g(r, r̂ζ ).
(D7)

Plugging the result of K (r, r̂ξ , r̂ζ ) into Eq. (D4) and using the
definition of the Green’s function in Eq. (D6), we obtain that

1

ε0ω
2
T

∫
d3r j‖b′b(r) · j‖aa′ (r)

= 1

4πε0
〈a; b′|

∑
ξ∈A

∑
ζ∈B

qξ qζ g(r̂ξ , r̂ζ ) |a′; b〉

= 〈a; b′| V̂AB |a′; b〉 , (D8)

which is exactly the Coulomb interaction between molecules
A and B. Note that the first term in Eq. (D7) is associated with
a surface integral at r → ∞; thus it converges to zero after the
integration.

APPENDIX E: TRANSITION CURRENT DENSITY
AND SINGLE-ELECTRON REDUCED WAVEFUNCTION

In the Appendix we show that the transition current density
can be expressed by single-electron reduced wavefunctions.
Beginning from the consequence of the Condon-like approxi-
mation in Eq. (38), we separate the nuclear degrees of freedom
and define the electronic transition current density as

jM
γ γ ′ (r)

≡ 〈φM,γ |ĵM (r)|φM,γ ′ 〉{R}

= 〈φM,γ |
∑
ξ∈Mel

qξ

2mξ

[δ(r − r̂ξ )p̂ξ + H.c.] |φM,γ ′ 〉{R} , (E1)

where Mel is the set of electrons in the entity M. To project the
states to the position-spin coordinates, we use the fermionic
completeness relation [84]

1

N!

∫
D{xμ}|{xμ}〉〈{xμ}| = Î, (E2)

where N is the total number of position-spin coordinates, Î is
the identity operator, and the integration symbol is defined as∫

D{xμ} ≡
∫

dx1· · ·
∫

dxN . (E3)

Here the μth position-spin coordinate is denoted by xμ ≡
(rμ, ωμ), where ωμ is the spin coordinate. Moreover, the
antisymmetrized state |{xμ}〉 ≡ |x1, . . . , xN 〉 is the collection
of position-spin coordinates. After inserting the identity into
Eq. (E1), the electronic transition current density becomes

jM
γ γ ′ (r) = 1

(Nel!)3

∫
D{xμ}

∫
D{x′

μ}
∫

D{x′′
μ}

×
∑
ξ∈Mel

qξ

2mξ

〈φM,γ |{xμ}〉{R}[〈{xμ}| δ(r − r̂ξ )|{x′
μ}〉〈{x′

μ}|p̂ξ |{x′′
μ}〉 + c.c.]〈{x′′

μ}|φM,γ ′ 〉{R}. (E4)
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Recall that Nel is the total number of electrons in the entity M and the subscript {R} represents that the electronic state is based
on specific nuclear coordinates. In Eq. (E4) the projection of states to position-spin coordinates is related to the multielectron
wavefunction. According to the previous study [84], the multielectron wavefunction can be expressed as

φM,γ (γ ′ )({xμ}; {R}) = 1√
N!

〈{xμ}|φM,γ (γ ′ )〉{R}. (E5)

Note that φM,γ (γ ′ )({xμ}) is normalized. Furthermore, according to the two identities [84]

〈{xμ}| δ(r − r̂ξ ) |{x′
μ}〉 = δ(r − rξ )

∑
P

(−1)P
∏

μ∈Mel

δ
(
xμ − x′

P(μ)

)
(E6)

and

〈{x′
μ}| p̂ξ |{x′′

μ}〉 = −ih̄∇′
ξ

∑
P

(−1)P
∏

μ∈Mel

δ
(
x′

μ − x′′
P(μ)

)
, (E7)

we can simplify the electronic transition current density to

jM
γ γ ′ (r) = − ih̄eNel

2mel

∫
D{x′

μ}δ(r − r1)[φ∗
M,γ ({x′

μ}; {R})∇′
1φM,γ ′ ({x′

μ}; {R}) − φM,γ ′ ({x′
μ}; {R})∇′

1φ
∗
M,γ ({x′

μ}; {R})], (E8)

where e is the elementary charge of an electron and mel is electron mass. Note that the summations of P in Eqs. (E6) and (E7)
denote the summations of all different permutations. To obtain Eq. (E8), we simplify the summation of ξ ∈ Mel by multiplying
Nel because electrons are indistinguishable, i.e., the total electronic transition current density is Nel times of the single-electron
transition current density. Therefore, we express the single-electron transition current density by choosing ξ = 1 (rξ = r1 and
∇′

ξ = ∇′
1). The other electronic degrees of freedoms for μ �= ξ in multielectron wavefunctions (φM,γ ′ and φ∗

M,γ ) have been taken
account in the overlap integral in Eq. (40),

φ̃∗
M,γ (x1; {R})φ̃M,γ ′ (x1; {R}) ≡

∫
D{xμ �=1}φ∗

M,γ ({xμ}; {R})φM,γ ′ ({xμ}; {R}),

and finally we derive the electronic transition current density as

jM
γ γ ′ (r) = −ih̄eNel

2mel
[φ̃∗

M,γ (r; {R})∇φ̃M,γ ′ (r; {R}) − φ̃M,γ ′ (r; {R})∇φ̃∗
M,γ (r; {R})]. (E9)
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