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Filter functions for the Glauber-Sudarshan P-function regularization
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The phase-space quasiprobability distribution formalism for representing quantum states provides practical
tools for various applications in quantum optics such as identifying the nonclassicality of quantum states. We
study filter functions that are introduced to regularize the Glauber-Sudarshan P function. We show that the
quantum map associated with a filter function is completely positive and trace preserving and hence physically
realizable if and only if the Fourier transform of this function is a probability density distribution. We also
derive a lower bound on the fidelity between the input and output states of a physical quantum filtering map.
Therefore, based on these results, we show that any quantum state can be approximated, to arbitrary accuracy,
by a quantum state with a regular Glauber-Sudarshan P function. We propose applications of our results for
estimating the output state of an unknown quantum process and estimating the outcome probabilities of quantum
measurements.
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I. INTRODUCTION

The well-developed theory of phase-space quasiproba-
bility distributions (PQDs) plays an indispensable role in
representing the quantum states of optical systems with
infinite-dimensional Hilbert spaces. In particular, by using the
Glauber-Sudarshan representation [1,2], the density operator
ρ of a single-mode system can be expressed in terms of
coherent states |α〉,

ρ =
∫

d 2α P(α) |α〉 〈α| , (1)

where P(α) is called the Glauber-Sudarshan P function (GSP)
and the integration is over the entire complex plane. This
representation is central in quantum optics, in particular, for
defining nonclassical states, whose GSP is not a probability
density [3]. Nonclassicality is an important quantum feature
that is related to entanglement generation in linear-optical
networks [4–6] and is a resource for quantum computation
[7–9], quantum metrology [10,11], and the incompatibility of
quantum measurements [12].

The Glauber-Sudarshan representation has been widely
used in quantum optics. It provides an interesting way of
calculating the expectation values of normally ordered op-
erators, which are relevant in the context of photodetection
and measuring correlation functions [13,14], and it is also
useful in describing the evolution of open quantum systems
[15]. Moreover, this representation allows us to express the
action of any quantum process on a quantum state, by us-
ing the linearity property, in terms of its action on coherent
states, E (ρ) = ∫

d 2α P(α)E (|α〉 〈α|). This relation is useful

for quantum information applications, in particular, for prob-
ing unknown quantum processes using coherent states, which
are readily available from a laser source [16,17]. However,
the main obstacle in using the Glauber-Sudarshan represen-
tation is that for most nonclassical states the GSP is highly
singular, existing only as a generalized distribution [18,19].
Therefore, an interesting question is whether this problem can
be obviated by approximating any state, to arbitrary accuracy,
by another state with a regular GSP.

A general strategy for regularizing the GSP of a quantum
state is to multiply its Fourier transform with a filter function
[20]. This filtering procedure can be viewed as a map that
transforms any density operator ρ with a singular GSP to
an operator ρ� = E�(ρ) whose GSP is regularized. Using a
specific class of filter functions, Klauder showed that ρ� can
be close to ρ within an arbitrary accuracy [20]. However,
as we show in this paper, the filtering map associated with
Klauder’s filter cannot be described as a physical process, and
hence the operator ρ� may not be a physical state.

The physical filtering maps are important as they can, in
principle, be realized and used in quantum experiments [21].
In addition, the physicality of a filtering map E� guarantees
that the output state ρ� is a physical density operator, and
therefore, the states before and after filtering can be compared
using standard distance measures with operational interpreta-
tions in quantum information, such as the fidelity and the trace
distance [22].

Nonclassicality filters are another class of filter functions
that are proposed to verify the nonclassicality of quantum
states [23,24]. The filtering maps associated with nonclassi-
cality filters are physical [21]; they preserve the classicality
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of quantum states and convert the GSP of nonclassical states
into a regular function with some negativity. However, to use
these filter functions for quantum state approximation, it is
important to bound the distance between states before and
after filtering.

In this paper, we identify the general class of filters that can
be described by completely positive trace-preserving (CPTP)
linear maps, which are hence physically implementable.
Specifically, we show that the filtering map is CPTP if and
only if the filter function is the Fourier transform of a proba-
bility density distribution. Thus, following the method in [21],
the filtering can be realized by a random application of the dis-
placement operator on the initial state according to the Fourier
transform of the filter function. We apply this condition to
several examples of filter functions and also identify a class
of positive, but not completely positive, maps. In addition, we
derive a lower bound on the fidelity between the input and
output states of CPTP filters. Therefore, for an arbitrary bound
on the accuracy, we can approximate any nonclassical state
with a highly singular GSP with a quantum state whose GSP
is regular and can be expressed more easily in the Glauber-
Sudarshan representation. We discuss some applications of
this formalism in quantum information processing, such as
estimating the output of a quantum channel and estimating
the outcome probabilities of a general measurement given the
heterodyne record.

The outline of this paper is as follows. We start by re-
viewing the general phase-space formalism and the filtering
procedure in Sec. II. In Sec. III, we introduce the necessary
and sufficient condition for a filtering map, induced by the
filter function, to be a physical quantum process, i.e., a CPTP
map. Examples of various filter functions are discussed in
Sec. IV. Then we derive a lower bound on the fidelity between
the filtered and unfiltered states in Sec. V. We discuss two
applications of physical filters for regularizing the GSP in
Sec. VI and conclude the paper in Sec. VII.

II. PHASE-SPACE QUASIPROBABILITY DISTRIBUTIONS
AND FILTER FUNCTIONS

A density operator describing the physical state of a single-
mode bosonic system can be expressed as [25]

ρ = 1

π

∫
d 2ξ �(ξ ) D(−ξ ), (2)

where the integral is over the entire complex plane; D(ξ ) =
exp(ξa† − ξ ∗a) is the displacement operator, with a† and a
being the creation and annihilation operators, respectively;
and �(ξ ) = Tr[ρD(ξ )] is the characteristic function [26].
The physicality conditions of density operators (ρ � 0 and
Tr[ρ] = 1) translate into the following conditions for physical
characteristic functions: �(ξ ) is continuous, �(0) = 1, and
for every finite set of points {ξi} the matrix Mjk = �(ξ j −
ξk ) exp[(ξ jξ

∗
k − ξ ∗

j ξk )/2] is non-negative [27–30].
Equation (2) can also be formulated as

ρ =
∫

d 2α W (s)(α) T (−s)(α), (3)

where the operators T (−s)(α) are given by

T (−s)(α) = 1

π

∫
d 2ξ e−s|ξ |2/2D(−ξ ) eαξ∗−ξα∗

(4)

and

W (s)(α) = 1

π2

∫
d 2ξ �(ξ ) es|ξ |2/2eαξ∗−ξα∗

(5)

is known as the s-ordered phase-space quasiprobability distri-
butions [(s)-PQDs] [31,32]. Here, s is the ordering parameter,
and for s = 1, Eq. (3) becomes the Glauber-Sudarshan rep-
resentation with T (−1)(α) = |α〉 〈α|. For s = 0, the (s)-PQD
is the Wigner function [33], which is a regular function that
may take on negative values for some nonclassical states. For
s = −1, the (s)-PQD is the Husimi Q function [34], which is
always non-negative for positive operators. Note that for all
values of s < 1 the operator T (−s)(α) does not correspond to a
physical density operator, and for 0 < s � 1 the (s)-PQD can
be highly singular.

Because of the many applications that phase-space rep-
resentation offers, it is very useful to tame the singularities
arising in (s)-PQDs, in particular, in the case of s = 1 for the
Glauber-Sudarshan representation. A general way to do that is
to introduce a filter function that can regularize highly singular
(s)-PQDs [20]. Specifically, the filtering procedure is defined
by multiplying the characteristic function with a filter function
�(ξ ),

��(ξ ) = �(ξ ) �(ξ ). (6)

In this case, ��(ξ ) can be thought of as the characteristic
function of another operator ρ� that is formally given by a
linear map E�,

ρ� = E�(ρ) =
∫

d 2α �̃(α)D(α)ρD†(α), (7)

where �̃(α) is the Fourier transform of the filter function. If
this condition is satisfied, which is evident from Eq. (7), the
filtering process can be realized by applying a displacement
operator chosen randomly according to the probability den-
sity distribution �̃(α). One can verify this equation by using
Eq. (2) and D(α)D(−ξ )D†(α) = exp(ξα∗ − αξ ∗)D(−ξ ). No-
tice that ρ� may not necessarily be a density operator, as we
discuss in the next section. By taking the Fourier transforma-
tion of Eq. (6) the (s)-PQD of operator ρ� reads

W (s)
� (α) = W (s) ∗ �̃(α) =

∫
d 2β W (s)(α − β ) �̃(β ), (8)

which is the convolution of the (s)-PQD of density operator
ρ and Fourier transform of the filter function. Using this, the
output operator of the filtering map, Eq. (7), is given by

ρ� =
∫

d 2α W (s)
� (α) T (−s)(α). (9)

This shows that the filtering map, in general, can be de-
scribed in terms of the (s)-PQDs. However, of our particular
interest in this paper is the case s = 1, corresponding to the
Glauber-Sudarshan representation (1), where Eq. (8) becomes
P(s)

� (α) = P(s) ∗ �̃(α).
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III. NECESSARY AND SUFFICIENT CONDITION
FOR PHYSICALITY OF A FILTERING MAP

A quantum process, described by a CPTP map, transforms
density operators to density operators and, in principle, can
be realized in the laboratory [22]. However, in general, the
filtering map (7) generated by the filter function �(ξ ) may not
be a physical quantum process. Here, we lay out the necessary
and sufficient condition for a filter function to be CPTP, hence
preserving the physicality of quantum states.

Theorem 1. A filtering map E� is CPTP iff the filter function
�(ξ ) is the Fourier transform of a probability density func-
tion.

Proof. If the Fourier transform of the filter function
�̃(α) is a probability density, then according to Eq. (7),
E�(ρ) is a statistical mixture of displaced density operators
D(α)ρD†(α), a valid density operator. Therefore, �̃(α) being
a probability density function is sufficient for E� to be a CPTP
map.

To prove that this condition is also necessary, suppose
that our system is a subsystem S of a bipartite system in the
joint state ρSE . If E� is completely positive, then the state of
the joint system after applying the map to subsystem S and
the identity I on subsystem E , (E� ⊗ I )ρSE , must remain a
positive operator for any ρSE , where the other subsystem E
can be any arbitrary quantum system. However, if �̃(α) takes
on negative values, meaning it is not a probability density, we
show that (E� ⊗ I )ρSE � 0 does not hold by a counterex-
ample. Consider a bipartite bosonic system in a two-mode
squeezed vacuum state

|ψSE 〉 =
√

1 − χ2
∞∑

n=0

χn |n〉S ⊗ |n〉E , (10)

where |n〉 are the number states and 0 � χ < 1 is the squeez-
ing parameter. By using Eq. (7), we calculate the fidelity
between the output operator σSE = (E� ⊗ I ) |ψSE 〉 〈ψSE | and
the state |φSE 〉 = D(β ) ⊗ I |ψSE 〉,

〈φSE | σSE |φSE 〉 =
∫

d 2α �̃(α)

× ∣∣ 〈ψSE | [D(α − β ) ⊗ I] |ψSE 〉 ∣∣2
. (11)

Having the identity 〈n| D(γ ) |n〉 = exp(−|γ |2/2)Ln(|γ |2),
with Ln(x) being the Laguerre polynomial of order n and its
generating function

∑∞
n=0 t nLn(x) = 1/(1 − t ) exp[−tx/(1 −

t )], we obtain

〈ψSE | [D(γ ) ⊗ I] |ψSE 〉 = (1 − χ2)
∞∑

n=0

χ2n 〈n| D(γ ) |n〉

= exp

(
−|γ |2

2
− χ2|γ |2

1 − χ2

)
. (12)

Therefore, the fidelity (11) becomes

〈φSE | σSE |φSE 〉 =
∫

d 2α �̃(α) e−(1+2n̄)|α−β|2 , (13)

where n̄ = χ2/(1 − χ2) is the mean photon number of the
reduced density operator (traced over E ) of |ψSE 〉 that is a
thermal state. By noting that the Dirac delta function can

be defined as the limit of a Gaussian function, δ2(γ ) =
δ( Re(γ ))δ( Im(γ )) = limn̄→∞(2n̄/π ) exp(−2n̄|γ |2), we see
that if �̃(α0) < 0 for some α0, by choosing β = α0 in
Eq. (13), we get

lim
n̄→∞

2n̄

π
〈φSE | σSE |φSE 〉 = �̃(α0) < 0. (14)

This implies that by choosing a sufficiently large value of n̄ the
fidelity 〈φSE | σSE |φSE 〉 becomes negative, indicating that σSE

is not a positive operator. Therefore, if the Fourier transform
of the filter function takes on negative values, the filtering
map does not preserve the physicality of the entangled state
|ψSE 〉 and is not completely positive. Also, for the filtering
map E� to be trace preserving, �̃(α) must also be normal-
ized, as Tr[E�(ρ)] = ∫

d 2α �̃(α) = �(0) = 1. Therefore, the
filtering map is CPTP if and only if the function �̃(α) is a
probability density distribution. �

If this condition is satisfied, as we can see from Eq. (7), the
filtering process can be realized by applying a displacement
operator chosen randomly according to the probability density
distribution �̃(α). In practice, to implement a displacement
operation on a quantum state, one can overlap the state on a
highly transmissive beam splitter with a coherent state [21].
So in this case, the filtered state ρ� is always mixed and can
be viewed as a noisy version of the original state ρ.

IV. EXAMPLES OF FILTER FUNCTIONS

In this section, we consider several examples of filter func-
tions that were previously studied in the literature and check
whether the associated filtering maps are CPTP or not.

A. Gaussian filters

One simple example of filter functions corresponding to
CPTP maps is the Gaussian function �r (ξ ) = exp(−r|ξ |2/2),
where r is a positive number. The Fourier transform is a
Gaussian function �̃(α) = 2 exp(−2|α|2/r)/(rπ ), which is
already a probability density. In fact, by using Eq. (5),
we can see that this is the filter function that relates
the (s)-PQDs of the density operator in terms of the
convolution (8),

W (s)
� (α) = W (s−r)(α) = W (s) ∗ 2

πr
exp

(−2|α|2
r

)
. (15)

Note that for 1 � r � 2, the filtered (s)-PQD corresponds to
quasiprobability distributions between the Wigner function
and the Husimi Q function, which are regular functions.

We can make some observations based on Eq. (15) for r �
0. First, the (s−r)-PQD of a density operator ρ can be thought
of as the (s)-PQD of a filtered density operator ρ�, which is
obtained by applying random displacements to ρ according
to the Gaussian probability density �̃(α). For example, by
setting s = r, this implies that the (0)-PQD, i.e., the Wigner
function of a quantum state, can be viewed as the (r)-PQD
of the filtered state. The second observation is that a density
operator ρ is mixed if its (s)-PQD is equal to the (s − r)-PQD
of another density operator; this is because ρ can be thought of
as the output of the Gaussian filtering process with parameter
r, which is always mixed. For instance, we can immediately
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see that ρ is mixed if its GSP is equal to the Wigner function
of a number state. The last observation is that the (s)-PQD
of a pure state cannot be the (s−r)-PQD of any other physical
state because the latter is equivalent to the (s)-PQD of a mixed
filtered state ρ�. As an interesting example, setting s = r = 1
implies that the Wigner function cannot be a Dirac δ function
that is the GSP of a coherent state.

B. Nonclassicality filters

As another class of filter functions that can be described by
CPTP maps, we consider the nonclassicality filter functions
that regularize singular GSPs of all nonclassical states. A
nonclassicality filter can be defined as the autocorrelation of
an infinitely differentiable function ωL(ξ ) [23],

�L(ξ ) =
∫

d2ζ ωL(ζ ) ωL(ξ − ζ ), (16)

where 0 � L � ∞ is the width parameter such that
limL→∞ �L(ξ ) = �L(0) = 1. Therefore, the Fourier trans-
form of the filter function �̃L(ξ ) is always guaranteed to be
a probability density, and the negativity in the regularized
GSPP�(α), which is the GSP of ρ� [21] and can be experi-
mentally measured, indicates the nonclassicality of the state
ρ. The nonclassicality can also be verified by measuring the
moments of ρ� [35].

A class of nonclassicality filters is defined using

ωL(ξ ) = 1

L
21/q

√
q

2π�(2/q)
exp

(
− |ξ |q

Lq

)
, (17)

where 2 < q < ∞ is a parameter characterizing the analytic
form of ωL(ξ ) and � is the gamma function [24]. The case
q = 2 corresponds to the Gaussian filters, which do not decay
fast enough to regularize the GSP of all nonclassical states
[23]. Hence, the nonclassicality filters are non-Gaussian.

Nonclassicality filters have been used to experimentally
verify the nonclassicality of single-photon-added thermal
states [36], squeezed states of light [37,38], an atomic spin-
squeezed state [39], and single- and two-photon states using
balanced homodyne detection [40]. These filters are also used
to define nonclassicality witnesses [39,41,42], and they can be
used to verify the nonclassicality of quantum processes, such
as the single-photon addition process [43].

C. Klauder’s filter

An example of a filter function whose filtering map is
not CPTP is the one introduced by Klauder to approximate
an arbitrary density operator by a bounded operator with an
infinity differentiable GSP [20]. We show that the associated
filtering map is not physical and therefore the bounded opera-
tors obtained by this particular filtering map may not be valid
density operators. Klauder’s filter is defined as

�K
L (u, v) = e−[ f (u−L)+ f (−u−L)+ f (v−L)+ f (−v−L)], (18)

where (u, v) = √
2( Re(ξ ), Im(ξ )) and f (x) is defined as

f (x) =
{

x4e−1/x2
x > 0,

0 x � 0.
(19)

This filter function decays rapidly such that it regularizes the
GSP of all quantum states.

According to Bochner’s theorem, the Fourier transform
of the filter function �̃(α) is probability density if and only
if for any finite set of points {ξi} the matrix Fjk = �(ξ j −
ξk ) is positive semidefinite. Using the set of points {u1 =
−L, u2 = 0, u3 = L} on the real axis, we can see that �K

L (u j −
uk, 0) is not positive semidefinite because its determinant is
negative,

det

⎛
⎝ 1 1 �K

L (−2L, 0)
1 1 1

�K
L (2L, 0) 1 1

⎞
⎠ = −(

�K
L (2L, 0) − 1

)2
,

where we used �K
L (−2L, 0) = �K

L (2L, 0). Therefore, the
Fourier transform of Klauder’s filter �̃K

L (ξ ) is not a probability
density and the associated filtering map is not CPTP.

Klauder’s filter function was introduced as a means to show
that one can still use the Glauber-Sudarshan representation,
despite the highly singular nature of the GSP, to approximate
the expectation value of any bounded operator with respect
to a quantum state. Specifically, Klauder showed that one can
always find a sequence of bounded operators whose GSPs are
regularized by this filter function that converge to the desired
density operator in the trace-class norm [20]. Klauder’s filter
function was later used for quantum process tomography us-
ing coherent states [16]. In this method, a quantum process is
represented by a rank-4 tensor, E jk

nm = 〈 j| E (|n〉 〈m|) |k〉, that
relates the matrix elements of the input and output density
matrices in the Fock basis, [E (ρ)] jk = ∑

nm E jk
nmρnm. Then, by

using a regularized GSP of |n〉 〈m| obtained with Klauder’s fil-
ter P�,nm(α) and measuring the output density matrix for input
coherent states 〈 j| E (|α〉 〈α|) |k〉, the process tensor is approx-
imated as E jk

nm ≈ ∫
d2αP�,nm(α) 〈 j| E (|α〉 〈α|) |k〉. However,

as we have shown, the filtering map associated with Klauder’s
filter does not necessarily preserve the physicality of quantum
states, and this may lead to a nonphysical process tensor. The
need to use a filter function was eliminated in an improved
version of coherent-state quantum process tomography [17].
It was based on the fact that the GSP of operators |n〉 〈m|
contains finite derivatives of the Dirac δ function, and singu-
larities of this type can be handled if one truncates the Hilbert
space in the Fock basis. In this case, by measuring a finite
number of samples from 〈 j| E (|α〉 〈α|) |k〉 for various α, the
process tensor can be estimated [17]. Also, by considering an
energy cutoff, the error introduced by the truncation of the
Hilbert space can be upper bounded [17].

D. Wigner smoothing filters

The marginals of the Wigner function are probability
densities associated with the phase-space quadratures [14],
but the Wigner function itself, in general, is not pointwise
non-negative and hence cannot be viewed as a classical-
like distribution over the phase space. This, in fact, reflects
a fundamental distinction between quantum and classical
phase-space theories. In this regard, methods for converting
the Wigner function into non-negative, classical-like distribu-
tions in phase space, known as smoothed Wigner functions,
have been of particular interest. Indeed, the Husimi Q of a
quantum state is one of those distributions that, according to
Eq. (15) for r = 1 and s = 0, can be viewed as the convolution
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of the Wigner function of the state and the Wigner function
of the vacuum state. However, in a more general context of
smoothing, one can convolve the Wigner function of the quan-
tum state with the Wigner function of another state, known as
the smoothing kernel [44],

Wsm(α) = W ∗ Wker(α). (20)

By comparing with Eq. (8), we can see that the character-
istic function of the smoothed Wigner function is given by
�sm(ξ ) = �(ξ )�ker(ξ ), and the smoothing procedure is, in
fact, a filtering map associated with the filter function �(ξ ) =
�ker(ξ ), which is the characteristic function of the smooth-
ing kernel. It was shown that Wsm(α) is always pointwise
non-negative [44]. Furthermore, if the smoothing kernel is a
non-negative Wigner function, then the smoothing procedure
corresponds to a CPTP map [44,45].

Interestingly, in this context, we can identify filtering maps
that are positive, i.e., preserve the physicality of single-mode
states, but are not completely positive. For this purpose, it is
necessary to introduce the concept of the Narcowich-Wigner
spectrum. Consider a function f (ξ ); the set of all real param-
eters η for which the matrix

Fjk = f (ξ j − ξk ) exp

[
η

4
(ξ jξ

∗
k − ξ ∗

j ξk )

]
� 0 (21)

is positive semidefinite for any finite set of complex numbers
{ξi} is called the Narcowich-Wigner spectrum of f (ξ ) and
is denoted by W{ f (ξ )}. Based on this definition, one can
verify the following properties: if η ∈ W{ f (ξ )}, then −η ∈
W{ f (ξ )}; if η1 ∈ W{ f (ξ )} and η2 ∈ W{g(ξ )}, then η1 + η2 ∈
W{ f (ξ )g(ξ )} [45].

As discussed in Sec. II, the characteristic function of
a density operator must be continuous, �(0) = 1, and 2 ∈
W{�(ξ )}. In addition, based on Bochner’s theorem, our
necessary and sufficient condition for a continuous filter
function �(ξ ) with �(0) = 1 to generate a CPTP filtering
map implies that 0 ∈ W{�(ξ )}. By using the above prop-
erties, one can show that if either {0, 2} ∈ W{�ker(ξ )} or
{2, 4} ∈ W{�ker(ξ )} is satisfied, then we always have {0, 2} ∈
W{�sm(ξ )}, and therefore, Wsm(α) is a physical and point-
wise non-negative Wigner function [45]. However, as we
have shown, if 0 /∈ W{�ker(ξ )}, then the filtering map is not
completely positive. Thus, we can identify a class of filter
functions whose filtering maps are positive but not completely
positive: filter functions that have element 4 but not element
0 in their Narcowich-Wigner spectrum. An example of such a
filter function is [45]

�ker(ξ ) = (
1 − 3

2 |ξ |2)e−|ξ |2 , (22)

whose Fourier transform takes on negative values.

V. BOUND ON THE DISTANCE BETWEEN ORIGINAL
AND FILTERED STATES

Having identified physical filtering processes described by
CPTP maps, the question is now how to compare the states
before and after the filtering process. In this section, we derive
a lower bound on the fidelity between these two states, which
are the output and input states of the CPTP filtering map E�.

The fidelity between two states is given by F (ρ1, ρ2) =
max |〈μ1|μ2〉|2, where the maximum is taken over all possible
purifications |μ1〉 and |μ2〉 of ρ1 and ρ2, respectively [22].
Suppose |μSE 〉 = ∑

j

√
λ j |s j〉S ⊗ |e j〉E is a purification of ρ,

where λ j are its eigenvalues and |s j〉S and |e j〉E are orthogonal
bases for subsystems S and E , respectively. Using this state
and the filtering map E� given in Eq. (7), we can calculate the
entanglement fidelity [46,47]

Fe(ρ, E�) = 〈μSE | (E� ⊗ I )(|μSE 〉 〈μSE |) |μSE 〉

=
∫

d 2α �̃L(α) | 〈μSE | (D(α) ⊗ I ) |μSE 〉 |2

=
∫

d 2α �̃L(α) |�(α)|2, (23)

where in the last line we have used the definition of
the characteristic function of ρ, 〈μSE | (D(α) ⊗ I ) |μSE 〉 =
Tr[ρD(α)] = �(α). Here, the width parameter L of the filter
function can be defined such that limL→∞ �̃L(α) = δ2(α), as
in the nonclassicality filters given by Eqs. (16) and (17), for
example. In this case, by choosing sufficiently large values of
L the entanglement fidelity (23) can be made arbitrarily close
to |�(0)|2 = 1.

The entanglement fidelity is always a lower bound on the
fidelity between the states before and after a quantum process
[47]. Therefore, Eq. (23) provides a lower bound on the fi-
delity between the filtered and unfiltered states, Fe(ρ, E�) �
F (ρ, ρ�), which can be adjusted by using the width parameter
L. For any ε > 0 one can choose L such that

1 − ε �
∫

d 2α �̃L(α)|�(α)|2 � F (ρ, ρ�). (24)

This relation provides an upper bound on the error associated
with the regularization of the GSP or, in other words, using
ρ� instead of ρ. Therefore, this bound makes physical filtering
maps a useful tool in quantum information applications, as we
discuss in the following section.

If the unfiltered state is pure, ρ = |ψ〉 〈ψ |, we have an
exact expression for the fidelity:

F (ρ, ρ�) = 〈ψ | E�(|ψ〉 〈ψ |) |ψ〉 =
∫

d 2α �̃L(α)|�(α)|2,
(25)

which can be simply verified using Eq. (7). Note also that if a
CPTP filtering map is applied to a subsystem of a joint system,
by using Eq. (23), one can still find a lower bound for the
fidelity between the joint states before and after the filtering
map.

We also know that the fidelity between two states ρ1

and ρ2 provides an upper bound on the trace distance,
D(ρ1, ρ2) � √

1 − F (ρ1, ρ2), where D(ρ1, ρ2) = 1
2 Tr[|ρ1 −

ρ2|], with |A| ≡
√

A†A [22]. Hence, the lower bound on the
fidelity (23) can also be used to obtain an upper bound on the
trace distance between filtered and unfiltered states,

D(ρ, ρ�) �
√

1 − Fe(ρ, E�), (26)

where, as discussed before, this bound can be made arbitrar-
ily small by choosing a sufficiently large value of the width
parameter L.
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VI. THE GSP REGULARIZATION
AND ITS APPLICATIONS

Our results for phase-space filtering maps have been, so
far, general and can be applied to the (s)-PQD representation
(3) for any value of s. We turn now to our main interest
in this paper, the Glauber-Sudarshan representation (1), and
consider physicality-preserving filter functions �L(α) with a
width parameter L [limL→∞ �L(α) = 1] that can regularize
the GSP of quantum states. An example of such a filter is the
nonclassicality filter, discussed in Sec. IV B. Based on this, an
important implication of our results is that any quantum state
ρ can be approximated by another state,

ρ� =
∫

d 2α P�(α) |α〉 〈α| , (27)

where P�(α) is a regular function and hence the integration
can be performed in the usual way. The bound on the ap-
proximation error is given by Eqs. (24) and (26) and can
be tuned by varying the width parameter L. In the follow-
ing, we discuss two interesting applications of this result for
estimating the output of a quantum process using coherent
states as a probe and estimating the outcome probability dis-
tribution of a general quantum measurement using heterodyne
measurement.

A. Estimating the output of quantum processes
with coherent states

Consider a known state ρ and an unknown CPTP process
E for which we are interested in estimating the state E (ρ),
i.e., the output of the channel. In standard quantum process
tomography [22,48], one sends a set of probe states to an
unknown process, and the output states are measured. Using
the effect of the process on the probe states, one can predict
the output state for any input state within the same Hilbert
space. This is done by considering a complete set of operators
{� j} that provides a basis for representing any input state
ρ = ∑

j c j� j . (� j may not necessarily be a set of physical
states.) By finding E (� j ) through the action of the quantum
process on the probe states and exploiting the linearity of
the process, the output state is given by E (ρ) = ∑

j c jE (� j ).
This procedure, in general, can be cumbersome since finding
E (� j ) may require probe states that are not easy to prepare
in the laboratory, especially for large dimensional Hilbert
spaces. Hence, as discussed, quantum process tomography
with coherent states based on the Glauber-Sudarshan repre-
sentation, E (ρ) = ∫

d 2α P(α) E (|α〉 〈α|), is of great interest,
as the coherent probe states are readily available in the labo-
ratory. However, for many quantum states, such as squeezed
states and cat states, the GSP exists as a highly singular
distribution, and hence, using this expression for the output
state is not useful, in general. As discussed in Sec. IV C, this
problem can be avoided by considering the Fock basis {�n,m =
|m〉〈n|} and estimating E (|m〉〈n|) from the effect of the pro-
cess on coherent states E (|α〉 〈α|) [16,17]. This approach is
limited to a truncated Hilbert space in the Fock basis, and the
Hilbert space truncation introduces an error in the estimation
of the output state for input states with nonzero high-order
photon-number components such as squeezed states and cat
states [17].

Our formalism provides a more direct approach for the
output estimation because by employing a physical filtering
procedure, we can directly use E (|α〉 〈α|) in the Glauber-
Sudarshan representation to estimate the output state of an
unknown quantum process. One can use a filter function,
such as the nonclassicality filter, whose Fourier transform is
a probability density and whose width can be adjusted by the
parameter L, to approximate any arbitrary input state ρ by a
filtered one ρ�. Then by using Eq. (27), the corresponding
output state,

E (ρ�) =
∫

d 2α P�(α)E (|α〉 〈α|), (28)

is an approximation of the actual output state E (ρ). To inves-
tigate the error associated with this approximation, we note
that for any CPTP map the trace distance between the two
output states is upper bounded by the trace distance between
the corresponding input states D(E (ρ1), E (ρ2)) � D(ρ1, ρ2)
[22]. Therefore, by using Eqs. (26) and (23) we can see that
for any δ > 0 there exists an L such that

D(E (ρ), E (ρ�)) �
√

1 − Fe(ρ, E�) � δ. (29)

As a consequence, the output estimation error can be made
arbitrarily small by adjusting the width of the filter function.

This formalism is particularly useful when the action of
the quantum process on all coherent states can be simply
described. As an example, consider a loss channel with trans-
missivity η which transforms coherent states into coherent
states with attenuated amplitudes ELoss(|α〉 〈α|) = |ηα〉 〈ηα|.
Hence, any quantum state under a loss channel can be approx-
imated by

ELoss(ρ�) = 1

η2

∫
d 2α P�(α/η) |α〉 〈α| , (30)

where P�(α) is the regularized GSP of the input state ρ. One
can similarly consider other examples such as squeezing and
amplification channels whose action on the coherent states is
known.

B. Estimating the outcome probabilities of measurements
using heterodyne measurement

In general, a quantum measurement is described by a
positive operator-valued measure (POVM) {�n}, where mea-
surement operators satisfy �n � 0 and

∑
n �n = I. Given a

quantum system in state ρ, the probabilities of measurement
outcomes are given by the Born rule, p(n|ρ) = Tr[ρ �n].
If the state is unknown, however, one has to perform a
set of informationally complete measurements on an ensem-
ble of identically prepared copies of the state in order to
estimate ρ through a procedure known as quantum state to-
mography. In general, quantum state tomography requires
many measurement settings that, particularly for systems with
infinite-dimensional Hilbert space, are very challenging. A
readily available, informationally complete measurement for
optical modes is a heterodyne whose POVM elements are
proportional to coherent states |α〉 〈α| /π and with which one
directly samples from the Husimi Q function of the quantum
state Q(α) = 〈α| ρ |α〉 /π . By using this measurement, for
instance, one can construct an estimate of the density matrix
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in the Fock basis by evaluating multiple derivatives of Q(α) at
the origin [13].

Another interesting application of our formalism is to es-
timate probabilities of outcomes of a quantum measurement,
such as photon counting, for an unknown quantum state us-
ing heterodyne measurement. For a given measurement with
POVM elements �n, whose GSPs can be highly singular, the
outcome probabilities p(n|ρ) can be approximated by

p(n|ρ�) = Tr[E�(ρ) �n] = Tr[ρ E∗
�(�n)]

= π

∫
d 2α P�(n|α) Q(α), (31)

where the dual of the filtering map E∗
� is equal to E�, assuming

�̃(−α) = �̃(α). In the above equation, we have used Eq. (7)
for the CPTP filtering map, and P�(n|α) is the regularized
GSP of the POVM element �n. Hence, by using an appro-
priate physical filtering map, the integral of highly singular
distributions can be converted into a regular one which, by
having samples of the Husimi Q function from a heterodyne
measurement, can be estimated using standard techniques.

For a given measurement, the trace distance between quan-
tum states (26) is an upper bound on the trace distance
between the corresponding probabilities [22]

1

2

∑
n

|p(n|ρ) − p(n|ρ�)| �
√

1 − Fe(ρ, E�) � δ. (32)

Therefore, by adjusting the width parameter of the filter func-
tion, one can achieve a desired level of accuracy δ in the
probability estimation.

VII. CONCLUSIONS

We have studied phase-space filter functions, which are
particularly useful for regularizing the Glauber-Sudarshan P
function, in the context of quantum maps in the space of
operators in an infinite-dimensional Hilbert space. We have
shown that the necessary and sufficient condition for such a
map to be a quantum process, meaning completely positive
and trace preserving, is positive semidefiniteness of the filter
function. This physicality condition guarantees that the output
of the filtering map is always a physical density operator with
a regular Glauber-Sudarshan P function. Examples of such a
filter function are Gaussian filters and nonclassicality filters,
whose Fourier transforms are probability densities. Note that
physical filtering maps not only can be used as a theoretical
tool for approximating quantum states but can also be imple-
mented and used in an experiment. For instance, following the
experimental method in [21], one can use physical filtering
maps to transform any nonclassical state to another nonclassi-
cal state with a regular Glauber-Sudarshan P function, which
can be used as a resource in quantum information science.
This state-preparation technique, in practice, can replace the
handling of highly singular Glauber-Sudarshan P functions by
an experimental procedure [21].

The physicality condition derived in this work enables us to
use the standard distance measures in quantum information to
compare the states before and after this filtering. Importantly,
we derived a lower bound on the fidelity between the states

before and after the filtering and showed that by adjusting the
width of the filter function this distance can be made arbi-
trarily small. Hence, using this formalism, any nonclassical
state with a highly singular Glauber-Sudarshan P function
can be approximated, to an arbitrary accuracy, by a quantum
state with a regular Glauber-Sudarshan P function. This result
makes the Glauber-Sudarshan representation a more practical
tool in quantum information processing. As an interesting
application in quantum information science, we considered
estimating the output state of an unknown quantum process
by knowing its action on coherent states. This experimental
method can be used for the tomography of quantum processes
for continuous-variable systems in setups similar to previ-
ous experiments [16,49–52]. In addition, we have shown that
physical filtering maps can also be used to estimate the out-
put probabilities of any measurement by using samples from
the Husimi Q function. For an unknown quantum state, the
samples can be obtained using a readily available heterodyne
measurement. This application can be useful for verifying the
outcome probabilities of quantum experiments.

We also studied Klauder’s filter functions, which were
originally proposed to regularize the Glauber-Sudarshan P
functions. We showed that the associated filtering map does
not meet the physicality requirement derived in this work.
This implies that the output of Klauder’s filtering map may be
unphysical and using the corresponding regularized Glauber-
Sudarshan P functions may lead to unphysical results, such
as negative probabilities. In this case, the output and input
of Klauder’s filtering maps cannot be compared using the
fidelity or the trace distance, which have useful operational
meanings in quantum information [22]. Hence, care must be
taken in employing Klauder’s filter functions in applications
such as quantum process tomography [16], and further steps
are required to impose the physicality, which can lead to an
additional error.

Moreover, we considered filter functions that are the
characteristic functions of density operators and have been
considered in the context of the Wigner-function smoothing
procedure. By using our criterion, we then identified a class
of filter functions whose associated maps are positive but not
completely positive. This class of filtering maps can be useful
for witnessing the entanglement of quantum states [53]. We
leave this as a subject for future research.

Another open question is to investigate the connection
between filtering maps and measures of nonclassicality.
Gaussian filtering has been used to define a measure of
nonclassicality [54]. This measure can be viewed as the min-
imum amount of Gaussian noise required to make the filtered
Glauber-Sudarshan P function non-negative. By using the
bound on the fidelity derived in this work, one can study
whether the minimum Gaussian noise corresponds to the
minimum distance between some states and the filtered ones
with non-negative Glauber-Sudarshan P or whether by using
a non-Gaussian filter function the distance between the two
states can be further minimized.
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