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In this paper we show how to generate multiple single-photon wave packets of arbitrary temporal shape from
an optical cavity coupled with N three-level atoms driven by a driving field in the non-Markovian regime.
We derive an exact analytical expression of the optimal driving field to generate such wave packets, which
depends on two detunings of the cavity and driving field with respect to the three-level atoms. The cavity
we use consists of two mirrors facing each other, where one is perfect and the other includes dissipation
(a one-sided cavity), which couples with the corresponding non-Markovian input-output fields. If the first
single-photon wave packet generated by the Markovian system is the same as the non-Markovian case, the
Markovian system cannot generate the same multiple single-photon wave packets as the non-Markovian system
when the spectral widths of the other environments take values different from the spectral width of the first
environment, while setting the equal spectral widths for the different environments can generate this. The
generated multiple different single-photon wave packets are not independent of each other, which satisfies certain
relations with non-Markovian spectral parameters. We analyze the transition from Markovian to non-Markovian
regimes and compare the differences between them, where the cavity interacts simultaneously with the multiple
non-Markovian environments. Finally, we extend the above results to a general non-Markovian quantum network
involving many cavities coupled with driven three-level atoms.
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I. INTRODUCTION

Quantum networks composed of local nodes, which are
connected by quantum channels, are essential for quantum
communication and desirable for scalable and distributed
quantum computation [1–12]. The stationary qubits in lo-
cal nodes can be provided by collective atomic excita-
tions [13–15]. A photon wave packet is an ideal carrier for
a flying qubit, with either the photon-number states or the
polarization forming the qubit. The controlled production of
single photons [16,17] is of fundamental and practical inter-
est, which denotes the lowest excited quantum states of the
radiation field, and has applications in quantum information
processing [18]. The single-photon generation [19–22] by a
coupled atom cavity [23–39] system has been demonstrated
in the Markovian case. After that, several similar schemes
were put forward [40–61]. The prototype quantum interface
for this purpose was proposed by Yao et al. [62], where the
presented Raman process can be made to generate or annihi-
late [62–66] an arbitrarily shaped single-photon wave packet
by pulse shaping the controlling laser field.

Markovian processes successfully describe many physi-
cal phenomena, especially in the field of quantum optics,
but they fail when they are applied to more complex
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system-environment couplings, where memory effects play
the dominating roles. Generally speaking, all realistic quan-
tum systems are open due to the unavoidable couplings to
environment (of memory or memoryless) [67–70]. Consider-
ing the non-Markovian [71–106] dynamics of open quantum
systems is essential in quantum information technology. In
particular, a notion of memory for quantum processes has
been introduced, which can be physically interpreted in
terms of information flow between the open system and its
environments. So far, several scenarios have been recog-
nized under which the non-Markovian dynamics can happen,
for example, strong system-environment coupling, structured
reservoirs, low temperatures, and initial system-environment
correlations [107–115]. Generally, people focus on the quan-
tum system coupled to a single environment, which has
been investigated theoretically [116–126] and experimen-
tally [127–134]. However, in the real world, there might be
a situation of many environments coupling to a system simul-
taneously [82,135–146].

The above two considerations motivate us to explore the
generations of multiple complex single-photon wave packets
from an optical cavity coupled to the driven three-level atoms
with non-Markovian input-output fields.

In this paper we present a scheme of generating the mul-
tiple complex single-photon wave packets from the cavity
coupled with N driven three-level atoms in the non-Markovian
regime. To generate such wave packets, we derive an analyt-
ical solution of the optimal driving field, which is affected
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FIG. 1. Multiple complex single-photon generations in three-
level atoms coupled to a cavity with non-Markovian effects. The
system is composed of a one-sided cavity coupled to N three-level
� atoms, where the cavity interacts simultaneously with M non-
Markovian input-output fields. Every atom has three levels, i.e., the
ground-state hyperfine levels |b〉 and |c〉 [152,153], and the excited
state |a〉. Three-level atoms interact with the cavity and are driven
by a classical field with the coupling strength gc

√
N and driving

field �(t ). The purple circles denote schematically that the atomic
population is concentrated in the state |c〉. The classical field and
cavity are detuned from the atoms denoted by δ1 and δ2, respectively.

by two detunings of the cavity and driving field with re-
spect to the three-level atoms. When the first single-photon
wave packets generated by the Markovian and non-Markovian
systems are equal, the same multiple single-photon wave
packets in the non-Markovian regime cannot be generated by
a Markovian system if all the other spectral widths do not
equal the first one, while setting the equal spectral widths for
the different environments can generate this. Moreover, we
study the non-Markovian dynamics of generating the multiple
output single-photon wave packets from one side of the cavity
coupled simultaneously with multiple identical and different
non-Markovian input-output fields, for which certain corre-
lations related to non-Markovian spectral parameters exist.
Finally, the above results are extended to a non-Markovian
input-output quantum network consisting of many cavities
containing driven three-level atoms.

Our paper is outlined as follows. In Sec. II we illustrate
a model to describe the driven three-level atoms coupled
to a cavity, which interacts simultaneously with multiple
non-Markovian input-output fields. In Sec. III we present
the exact solutions of the optimal driving field for gener-
ating the multiple single-photon wave packets. In Sec. IV
we compare the cases of a single-photon generation with
and without the Markovian approximations. In Sec. V we
study the multiple single-photon generations, where the cav-
ity simultaneously interacts with the multiple non-Markovian
input-output fields by taking the equal and nonequal values
for the spectral widths of the different environments in the
Markovian and non-Markovian systems. Section VI is devoted
to a discussion of the non-Markovian quantum input-output
network with many driven atom-cavity systems. In Sec. VII
we summarize the paper.

II. MODEL AND EXACT NON-MARKOVIAN DYNAMICS

The proposed scheme for the non-Markovian multiple
complex single-photon generations is depicted in Fig. 1,

where a Fabry-Pérot cavity couples to N identical three-level
�-type atoms in the basis of collective states. We now discuss
how to generate the shapes of the specified single-photon
wave packets if there are no incoming photons. The single-
photon pulse shapes, provided they are smooth enough, can
be arbitrarily specified. The total system is described by the
Hamiltonian Ĥ = ĤS + ĤB + V̂ in the rotating frame (setting
h̄ ≡ 1)

ĤS =
N∑

m=1

{[
�(t )eiδ1t σ̂ (m)

ac + gcσ̂
(m)
ab âeiδ2t + H.c.

] − iγ ′σ̂ (m)
aa

}
,

ĤB =
M∑

j=1

∫
dω j�ω j b̂

†
j (ω j )b̂ j (ω j ),

V̂ = i
M∑

j=1

∫
dω j[v j (ω j )âb̂†

j (ω j ) − H.c.], (1)

where σ̂ (m)
μ,ν = |μ〉mm〈ν| (μ, ν = a, b, c) is the flip operator of

the mth atom between states |μ〉 and 〈ν|, H.c. stands for the
Hermitian conjugate, b̂ j (ω j ) [b̂†

j (ω j )] is the annihilation (cre-
ation) operator for the frequency ω j in the jth continuum field
(it can also be called the jth environment), and â (â†) denotes
the annihilation (creation) operator of the cavity. The interac-
tion between the cavity and continuum field is described by
the Hamiltonian V̂ with the strength v j (ω j ) [68,72,147,148],
where [b̂ j (ω j ), b̂†

j (ω
′
j )] = δ(ω j − ω′

j ) and [â, â†] = 1. The
derivation of Eq. (1) can be found in Appendix A. In view
of the symmetry of the couplings, it is convenient to in-
troduce collective atomic operators σ̃ab = ∑N

m=1 σ̂
(m)
ab , σ̃ac =∑N

m=1 σ̂ (m)
ac , and σ̃aa = ∑N

m=1 σ̂ (m)
aa . When all atoms are pre-

pared initially in level |b〉, the only states coupled by the
interaction are totally symmetric Dicke-like states [149,150]

|b〉 ≡ |b1 · · · bm · · · bN 〉,

|a〉 ≡ 1√
N

N∑
m=1

∣∣∣∣∣∣am

N∏
⊗k=1

bk �=m

〉
,

|c〉 ≡ 1√
N

N∑
m=1

∣∣∣∣∣∣cm

N∏
⊗k=1

bk �=m

〉
, (2)

where the introduced factor 1/
√

N in front of Eq. (2) meets
the state normalization requirements, i.e., 〈a|a〉 = 〈c|c〉 = 1.
The |b〉 → |a〉 transition is coupled to the cavity with the
strength gc, which is assumed to be equal for all atoms. The
detuning δ2 is defined as δ2 = ωa − ωb − ωcav (ωcav is the
center frequency of the cavity). The |c〉 → |a〉 transition is
coupled by the time-dependent driving field �(t ) (i.e., the
Rabi frequency of the driving field) [151] with the detuning
δ1 = ωa − ωc − ωL, where ωL is the frequency of the classical
field;ωb, ωc, and ωa denote the eigenfrequencies of states
|b〉, |c〉, and |a〉, respectively; γ ′ is the atomic spontaneous
emission rate; and �ω j = ω j − ωcav denotes the detuning of
the ω j mode of the continuum fields from the center frequency
of the cavity.

The atom-cavity interacts with input-output fields by
bases |b, 1, 0〉, |c, 0, 0〉, |a, 0, 0〉, and |b, 0, 1ω j 〉, respectively,
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where |s, n, 0〉 = |s〉 ⊗ |n〉 ⊗ |0〉 and |s, n, 1ω j 〉 = |s〉 ⊗ |n〉 ⊗
|1ω j 〉 (s = a, b, c, and n is the number of photons
in the cavity), |0〉 = |· · · 01 , 02 , · · · 0M · · ·〉 corresponds to
the continuum fields at its vacuum state, and |1ω j 〉 =
|· · · 01 , 02 , · · · 1ω j · · · 0M · · ·〉 denotes the one-photon Fock
state of the continuum fields with frequency ω j . The state of
the total system can be expressed in the compact form

|	(t )〉 = βb(t )|b, 1, 0〉 + βc(t )|c, 0, 0〉 + βa(t )|a, 0, 0〉

+
M∑

j=1

∫
dω jαω j (t )|b, 0, 1ω j 〉. (3)

With these relations σ̃ba|a〉 = √
N |b〉, σ̃ab|b〉 = √

N |a〉,
σ̃ca|a〉 = |c〉, and σ̃ac|c〉 = |a〉, substituting Eqs. (1) and (3)
into Schrödinger equation i|	̇(t )〉 = Ĥ |	(t )〉, we obtain a set
of the differential equations for the probability amplitudes

β̇b(t ) = −igc

√
Ne−iδ2tβa(t ) −

M∑
j=1

∫ +∞

−∞
dω jv

∗
j (ω j )αω j (t ),

(4)

β̇c(t ) = −i�∗(t )e−iδ1tβa(t ), (5)

β̇a(t ) = −igc

√
Neiδ2tβb(t ) − i�(t )eiδ1tβc(t ) − γ ′βa(t ),

(6)

α̇ω j (t ) = −i�ω j αω j (t ) + v j (ω j )βb(t ). (7)

Integrating Eq. (7), we obtain

αω j (t ) = e−i�ω j tαω j (0) + v j (ω j )
∫ t

0
dτ βb(τ )e−i�ω j (t−τ )

(8)

or

αω j (t ) =e−i�ω j (t−t1 )
αω j (t1) − v j (ω j )

∫ t1

t
dτ βb(τ )e−i�ω j (t−τ )

,

(9)

where t1 � t . Substituting Eq. (8) into Eq. (4), we get the non-
Markovian integro-differential equations for the probability
amplitudes

β̇b(t ) = −igc

√
Ne−iδ2tβa(t ) −

M∑
j=1

∫ t

0
dτ Fj (t − τ )βb(τ )

+
M∑

j=1

∫
dτ k∗

j (τ − t )αin j (τ ),

β̇c(t ) = −i�∗(t )e−iδ1tβa(t ),

β̇a(t ) = −igc

√
Neiδ2tβb(t ) − γ ′βa(t ) − i�(t )eiδ1tβc(t ).

(10)

The input fields αin j (t ) in the non-Markovian regime related to
the output fields αout j (t ) by the multiple input-output relations
are derived as

αin j (t ) + αout j (t ) =
∫ t

0
dτ k j (t − τ )βb(τ ), (11)

where

αin j (t ) = − 1√
2π

∫ +∞

−∞
dω jαω j (0)e−i�ω j t (12)

and

αout j (t ) = 1√
2π

∫ +∞

−∞
dω jαω j (t1)e−i�ω j (t−t1 )

. (13)

The details of the derivation in Eqs. (10) and (11) can be found
in Appendixes B and C, respectively. The response function
and correlation function can be written as

k j (t ) = 1√
2π

∫ ∞

−∞
dω je

−i�ω j t
v j (ω j ) (14)

and

Fj (t − τ ) =
∫ +∞

−∞
dω jJ j (ω j )e

−i�ω j (t−τ )
, (15)

respectively, where Jj (ω j ) = |v j (ω j )|2 represents the spectral
density. We assume v j (ω j ) = λ j

√
γ j/2π/[λ j − i(ω j − ωcav)]

and

Jj (ω j ) = γ j

2π

λ2
j

λ2
j + (ω j − ωcav)2 , (16)

where γ j and λ j denote the decay rate and spectral width of the
jth environment, respectively. In the non-Markovian regime,
we have k j (t ) = λ j

√
γ ju(t )e−λ j t and Fj (t ) = 1

2λ jγ je−λ j |t |,
where u(t ) is the unit step function, i.e., u(t ) = 1 for t � 0
and otherwise u(t ) = 0. Under the Markovian approximation,
the spectral density Jj (ω j ) → γ j/2π and coupling strength
v j (ω j ) → √

γ j/2π lead to

k j (t ) = √
γ jδ(t ), Fj (t ) = γ jδ(t ). (17)

Substituting Eq. (17) into Eqs. (10) and (11), we obtain

β̇b(t ) = −igc

√
Ne−iδ2tβa(t )+

M∑
j=1

√
γ jαin j (t )

−
M∑

j=1

1
2γ jβb(t ),

β̇c(t ) = −i�∗(t )e−iδ1tβa(t ),

β̇a(t ) = −igc

√
Neiδ2tβb(t ) − γ ′βa(t )

− i�(t )eiδ1tβc(t ),

αin j (t ) + αout j (t ) = √
γ jβb(t ). (18)

We show that from Eq. (10) the probability amplitudes and
driving field are expressed in terms of αin j (t ) and αout j (t ),
which can be arbitrarily specified and generated on demand
by meeting the normalization condition of Eq. (3).

III. NON-MARKOVIAN MULTIPLE SINGLE-PHOTON
GENERATIONS AND OPTIMAL DRIVING FIELD

In the following we discuss in more detail that the sys-
tem can generate the multiple complex single-photon wave
packets. If initially the three-level system is entirely in state
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|c, 0, 0〉, this mapping operation can function as the deter-
ministic generation of the single-photon wave packets with
any desired pulse shape αout j (t ). The initial conditions for
the above scheme take αin j (t ) = 0, βb(0) = 0, βc(0) = 1, and
βa(0) = 0, together with Eqs. (10) and (11), which lead to

βb(t ) = α̇out j (t ) + λ jαout j (t )

λ j
√

γ j
, (19)

β̃a(t ) = −β̇b(t ) − ∑M
j=1

∫ t
0 dτ Fj (t − τ )βb(τ )

gc

√
N

, (20)

where we have defined β̃a(t ) = ie−iδ2tβa(t ). In order not to
lose generality, we assume that the target pulse shapes of the
output single-photon wave packets are specified to be complex
functions in time with the interaction picture so that βb(t ) and
β̃a(t ) are also complex functions in this case. According to
Eq. (10), we get

�(t )β̃c(t ) = ˙̃βa(t ) + iδ2β̃a(t ) − gc

√
Nβb(t ) + γ ′β̃a(t ),

(21)

�∗(t )β̃a(t ) = −iδ̃β̃c(t ) − ˙̃βc(t ), (22)

where β̃c(t ) = e−iδ̃tβc(t ) and δ̃ = δ2 − δ1. Based on Eqs. (21)
and (22), we obtain the population of the atom in the state |c〉
with non-Markovian effects

ρc(t ) = 1 − |β̃a(t )|2 +
∫ t

0
dt ′{2gc

√
NRe[β̃a(t ′)β∗

b (t ′)]

− 2γ ′|β̃a(t ′)|2}, (23)

where ρc(t ) = |β̃c(t )|2, which does not depend on the detun-
ings δ1 and δ2. The strategy is to design the driving field �(t )
from Eqs. (21) and (22) as

�(t ) = χ (t )[ ˙̃βa(t ) + iδ2β̃a(t ) − gc

√
Nβb(t ) + γ ′β̃a(t )]

(24)

to generate the multiple single-photon wave packets with
non-Markovian effects, where χ (t ) = exp

∫ t
0 dt ′{[iδ̃ρc(t ′) +

β̃a(t ′) ˙̃β∗
a (t ′) − iδ2|β̃a(t ′)|2 − gc

√
N β̃a(t ′)β∗

b (t ′) + γ ′|β̃a(t ′)|2]
/ρc(t ′)}. In this case, we find that the optimal driving field
�(t ) depends on two detunings δ1 and δ2 for the generations
of the multiple complex single-photon wave packets (it will
be exhibited at the ending of Sec. IV), which completely
differs from the previous proposals [6–8,49–51,62–66].

In particular, assuming that the output single-photon wave
packets are real functions with the time in the interaction
picture so that βb(t ) and β̃a(t ) also are real ones, we obtain
the exact analytical expression for the optimal driving field
to generate the desired output single-photon wave packets
as �(t ) = P(t ) + iQ(t ), whose argument and modulus are
expressed by

arg[�(t )] = arctan

(
Q(t )

P(t )

)
, (25)

|�(t )| =
√

[ ˙̃βa(t ) − gc

√
Nβb(t ) + γ ′β̃a(t )]2 + δ2

2 β̃
2
a (t )

ρc(t )
,

(26)

respectively, where P(t ) = [ ˙̃βa(t ) cos α(t )− gc

√
Nβb(t )

cos α(t ) + γ ′β̃a(t ) cos α(t ) + δ2β̃a(t ) sin α(t )]/
√

ρc(t ) and
Q(t )= [δ2β̃a(t ) cos α(t )+gc

√
Nβb(t ) sin α(t )− ˙̃βa(t ) sin α(t )

− γ ′β̃a(t ) sin α(t )]/
√

ρc(t ), with α(t ) = −δ̃t + δ2
∫ t

0 β̃2
a (t ′)/

ρc(t ′)dt ′. Equations (25) and (26) tell us that the modulus
of the optimal driving field �(t ) only has a bearing on
the detuning δ2, while the detunings δ1 and δ2 produce
the influences on the argument arg[�(t )]. Based on this,
we show that the scheme under study for any given
multiple single-photon wave packets requires the driving
field depending on two detunings (i.e., the detunings δ1 and δ2

of the cavity and driving field with respect to the three-level
atoms) and non-Markovian effects, which completely differs
from those of three-level system shown in Refs. [6–8,49–
51,62–66], where these schemes mainly focused on the
resonance case (δ1 = δ2 ≡ 0) and Markovian approximation.
Under the Markovian approximation with Eq. (18) (we
denote the quantities in the Markovian case by introducing
a subscript f to them), subjected to the initial conditions
αin j (t ) = 0, βb f (0) = 0, βc f (0) = 1, and βa f (0) = 0, we can
obtain

βb f (t ) = αout j f (t )
√

γ j
, β̃a f (t ) = −β̇b f (t ) − ∑M

j=1
1
2γ jβb f (τ )

gc

√
N

,

ρc f (t ) = 1 − |β̃a f (t )|2 +
∫ t

0
dt ′{2gc

√
NRe[β̃a f (t ′)β∗

b f (t ′)]

− 2γ ′|β̃a f (t ′)|2},
� f (t ) = Pf (t ) + iQ f (t ), (27)

with

Pf (t ) = [ ˙̃βa f (t ) cos α f (t ) − gc

√
Nβb f (t ) cos α f (t )

+ γ ′β̃a f (t ) cos α f (t ) + δ2β̃a f (t ) sin α f (t )]/
√

ρc f (t ),

Q f (t ) = [δ2β̃a f (t ) cos α f (t ) + gc

√
Nβb f (t ) sin α f (t )

− ˙̃βa f (t ) sin α f (t ) − γ ′β̃a f (t ) sin α f (t )]/
√

ρc f (t ),

α f (t ) = −δ̃t + δ2

∫ t

0

β̃2
a f (t ′)

ρc f (t ′)
dt ′, (28)

where we have defined β̃a f (t ) = ie−iδ2tβa f (t ), β̃c f (t ) =
e−iδ̃tβc f (t ), and ρc f (t ) = |β̃c f (t )|2.

IV. NUMERICAL INVESTIGATION OF MARKOVIAN
AND NON-MARKOVIAN CASES

As the memory effect may be helpful in quantum informa-
tion processing, the non-Markovian dynamics plays important
roles in the description of open systems. Among these top-
ics, the system consisting of N atoms interacting with the
multiple environments is of particular interest. Therefore,
we wish to derive the dynamics of the system coupled to
the multiple environments. Our aim is to control the pro-
duction of M output single-photon wave packets from the
cavity by tuning the driving field. In this section we set
M = 1, i.e., a single-photon generation in the non-Markovian
regime. The output single-photon wave packet needs
to satisfy βb(0) = [α̇out j (0) + λ jαout j (0)]/λ j

√
γ j ≡ 0 and
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FIG. 2. Generation of the single-photon pulse for the target
shape wave packet αout1 (t ). The parameters are γ ′ = 6π MHz and
gc = 30π MHz [152,153]. The other parameters are γ1 = 10 MHz,
δ1 = δ2 = 0, N = 40, B1 = 2 MHz, and �1 = 0.5 MHz. The system
initially is prepared in state |c, 0, 0〉. For comparison, |�(t )/gc

√
N |

(blue solid lines) and |αout1 (t )|2 (red dashed lines) are plotted, where
αout1 (t ) and �(t ) are given by Eqs. (29) and (30), respectively. Note
that, in this case, we choose (a) λ1 = 2.31 MHz (corresponding to
the non-Markovian regime) and (b) λ1 = 30 MHz (corresponding to
the Markovian approximation).

β̇b(0) = [α̈out j (0) + λ j α̇out j (0)]/λ j
√

γ j ≡ 0 [originating from
Eq. (19) and its derivative in Eq. (10) at t = 0 under
the initial conditions αin j (t ) = 0, βb(0) = 0, βc(0) = 1, and
βa(0) = 0], i.e., three conditions αout1 (0) = 0, α̇out1 (0) = 0,
and α̈out1 (0) = 0, where the output single-photon wave packet
is assumed as a real single-photon wave packet (meeting the
normalization condition)

αout1 (t ) = A1e−�1t sin3B1t, (29)

with the system being initially prepared in |c, 0, 0〉,
corresponding to βc(0) = 1 and population of the
atom in other states being initially zero. Here A1 =
2
√

2(36B6
1�1 + 49B4

1�
3
1 + 14B2

1�
5
1 + �7

1 )/3
√

5B3
1 is the

normalization coefficient. In addition, assuming δ1 = δ2 = 0,
leading to Q(t ) = 0 and α(t ) = 0, we get

�(t ) = [ ˙̃βa(t ) − gc

√
Nβb(t ) + γ ′β̃a(t )]/

√
ρc(t ). (30)

With the output single-photon pulse given by Eq. (29), we
assume B1 = 2 MHz and damped rate �1 = 0.5 MHz shown
in Figs. 2(a) and 2(b), which plot |αout1 (t )|2 and |�(t )/gc

√
N |

as functions of time t . It is found from Fig. 2 that the driving
field has different shapes when we control the generation of
an output single-photon wave packet in the Markovian and
non-Markovian regimes. Next we show that with a driving
field, one can manipulate and change the characteristics of the
photon generation.

Figure 3 compares the control schemes obtained with and
without the Markovian approximations. To be specific, the
population of the state |c〉 in the Markovian approximation is
compared with the case without the Markovian approximation
as shown in Fig. 3(a), while Fig. 3(c) shows the comparison
of the real driving field with and without the Markovian ap-
proximations. As shown in Figs. 3(a) and 3(c), the system
exhibits non-Markovian dynamics, and we easily see that
�(t ), � f (t ) and ρc(t ), ρc f (t ) [the subscript f corresponds
to the quantities under the Markovian approximation given
by Eq. (27)] have apparent differences, called backflowing
phenomena, when the spectral width of the environment is
small (λ1 = 2.31 MHz), which can be understood by mem-
ory effects in the photon emission of the non-Markovian
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(d)

FIG. 3. Populations ρc f (t ) and ρc(t ) of the state |c〉 (a) with
and (b) without the Markovian approximations are plotted with
blue solid and red dashed lines, where ρc(t ) and ρc f (t ) are given
by Eqs. (23) and (27), respectively. The real optimal driving field
designed (c) with and (d) without the Markovian approximations,
i.e., � f (t ) and �(t ), are plotted with blue solid and red dashed
lines, where �(t ) and � f (t ) are determined by Eqs. (30) and (27),
respectively. The parameters are γ1 = 10 MHz, γ ′ = 6π MHz, gc =
30π MHz, δ1 = δ2 = 0, N = 40, B1 = 2 MHz, �1 = 0.5 MHz, and
(a) and (c) λ1 = 2.31 MHz and (b) and (d) λ1 = 30 MHz.

environment. In addition, from Figs. 3(b) and 3(d) we see
that the optimal driving field and population of the state |c〉
in the non-Markovian case for a large spectral width λ1 are
in good agreement with those in the Markovian approxima-
tion. This also confirms that the single-photon wave packets
derived with the Markovian approximation have almost the
same results as those in the non-Markovian regime when the
spectral width λ1 equals 30 MHz in Figs. 3(b) and 3(d).

In order to see the continuous influence of the increase of
the spectral width on the single-photon generation, we plot
ρc(t ) and ρc f (t ) as functions of t and λ1 in Fig. 4. Figures 4(a)
and 4(b) show that the populations of the excited state ρc(t )
and ρc f (t ) have obvious differences when λ1 increases from
2 MHz to 10 MHz. As shown in Figs. 4(c) and 4(d), the
Markovian approximation produces almost the same results
as the exact case when λ1 increases from 10 MHz to 20 MHz.
Therefore, Fig. 4 has given the validity range of the Markovian
approximation.

FIG. 4. Evolution of the population of state |c〉 as a function of
t and λ1, where ρc(t ) and ρc f (t ) are given by Eqs. (23) and (27),
respectively. The parameters are γ1 = 10 MHz, γ ′ = 6π MHz, gc =
30π MHz, δ1 = δ2 = 0, N = 40, B1 = 2 MHz, and �1 = 0.5 MHz.
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FIG. 5. Influence of the generations of the complex single-
photon wave packet αout1 (t ) = A1e−�1t sin3(B1t )e−icet with A1 =
2
√

2(36B6
1�1 + 49B4

1�
3
1 + 14B2

1�
5
1 + �7

1 )/3
√

5B3
1 on the modulus

and argument for the optimal driving field �(t ) in the non-Markovian
regime, which can be obtained by Eq. (24). The parameters are
λ1 = 2.31 MHz, δ1 = 1 MHz, δ2 = 2 MHz, γ1 = 10 MHz, γ ′ =
6π MHz, gc = 30π MHz, N = 40, B1 = 2 MHz, �1 = 0.5 MHz,
and (a) and (b) ce = 0.01 MHz, (c) and (d) ce = 1.5 MHz, and (e)
and (f) ce = 1.9 MHz.

Before concluding the section we discuss complex single-
photon wave packet generations with non-Markovian effects,
where the two nonzero detunings δ1 = 1 MHz and δ2 =
2 MHz. We assume that the complex single-photon wave
packet takes αout1 (t ) = A1e−�1t sin3(B1t )e−icet , with A1 =
2
√

2(36B6
1�1 + 49B4

1�
3
1 + 14B2

1�
5
1 + �7

1 )/3
√

5B3
1 in Fig. 5,

which leads to the modulus and argument for the optimal
driving field �(t ) generating a single-photon wave packet of
arbitrary temporal shape from an optical cavity coupled with
N three-level atoms in the non-Markovian regime, which can
be obtained by Eq. (24). From Fig. 5 we find that a gradual in-
crease of phase ce for the complex single-photon wave packet
with all the other parameters fixed has a huge impact on the
modulus and argument for the optimal driving field.

V. MULTIPLE NON-MARKOVIAN ENVIRONMENTS
INTERACTING WITH THE ONE-SIDED CAVITY

In many realistic scenarios, the quantum system can si-
multaneously couple with multiple environments [154,155].
In this section we study that the cavity simultaneously

interacts with the multiple non-Markovian input-output fields
corresponding to Eq. (1). When the first single-photon wave
packet generated by the Markovian system is the same as the
non-Markovian case, setting all the other spectral widths not
equaling the first one will lead to the Markovian system not
generating the same multiple single-photon wave packets as
the non-Markovian one, while the spectral widths of the dif-
ferent environments taking the same values can generate this.
Now we go into the details. To generate the multiple single-
photon wave packets from the cavity, assuming αin j (t ) = 0
with Eq. (11), we have αout j (t ) = ∫ t

0 dτ k j (t − τ )βb(τ ) and

βb(t ) = α̇out1 (t ) + λ1αout1 (t )

λ1
√

γ1

...

= α̇out j (t ) + λ jαout j (t )

λ j
√

γ j

...

= α̇outm (t ) + λmαoutm (t )

λm
√

γm

...

= α̇outM (t ) + λMαoutM (t )

λM
√

γM
(31)

for the non-Markovian case, where j = 1, 2, . . ., M and m =
1, 2, . . ., M. Equation (31) shows that the generated single-
photon wave packets are not independent of each other but
satisfy certain correlations related to non-Markovian spectral
parameters. In particular, the Markovian approximation gives

βb f (t ) = αout1 f (t )√
γ1

= · · · = αout j f (t )
√

γ j

= · · · = αoutm f (t )√
γm

= · · · = αoutM f (t )√
γM

, (32)

where βb f (t ) and αout j f (t ) with the subscript f correspond to
the quantities under the Markovian approximation.

We discuss the multiple single-photon generations in the
Markovian and non-Markovian systems considering the fol-
lowing aspects.

(a) If the cavity only interacts with an input-output
field (M = 1), the Markovian system can generate the
same single-photon wave packet as the non-Markovian one,
i.e., αout1 f (t ) = αout1 (t ) [the initial conditions αout1 (0) = 0,
α̇out1 (0) = 0, and α̈out1 (0) = 0 need to be satisfied, which
can be seen from the first paragraph of Sec. IV], where
the optimal driving field �(t ) of Eq. (30) falls in the non-
Markovian regime, while the optimal driving field � f (t )
under the Markovian approximation is given by Eq. (27).

(b) Under some special conditions, the Markovian sys-
tem can generate the same (or different) multiple (M � 2)
single-photon wave packets as the non-Markovian one. Seven
possible situations should be considered, labeled (i)–(vii) be-
low.

We assume that the Markovian system can generate the
same single-photon wave packet as the non-Markovian one,
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e.g.,

αout1 (t ) = αout1 f (t )

≡
√

γ1

γ j
αout j f (t ), (33)

where the second identity originates from Eq. (32). Of course,
we can also set αout1 (t ) = αoutp f (t ) (p = 2, 3, . . ., M), which is
discussed in (v), while (vii) corresponds to the case of gener-
ating two of the same single-photon wave packets αout1 f (t ) =
αout1 (t ) and αout2 f (t ) = αout2 (t ) for M � 3. On the contrary,
if the Markovian system cannot generate any of the same
single-photon wave packets as the non-Markovian one, it is
not necessary to establish the relationship between Eqs. (31)
and (32).

Substituting Eq. (33) into the first equation of Eq. (31), we
get βb(t ) = α̇out j f (t ) + λ1αout j f (t )/λ1

√
γ j , which equals the

third equation of Eq. (31); then

α̇out j f (t ) + λ1αout j f (t )

λ1
√

γ j
= α̇outm (t ) + λmαoutm (t )

λm
√

γm
. (34)

If m = j, Eq. (34) is reduced to

α̇out j f (t )

λ1
− α̇out j (t )

λ j
+ αout j f (t ) − αout j (t ) = 0. (35)

(i) In the first case, we assume

αout1 f (t ) = αout1 (t ), . . . , αout j f (t ) = αout j (t ), . . . ,

αoutM f (t ) = αoutM (t ) (36)

and get from Eq. (35)

λ1 = · · · = λ j = · · · = λM ≡ λ, (37)

where the difference between the Markovian and non-
Markovian systems is that the optimal driving fields have
different forms, i.e., �(t ) is determined by Eq. (30), while
� f (t ) takes Eq. (27). According to Eq. (32) and normalization
condition

∑M
j=1 μ j = 1 with μ j = ∫

dt |αout j f (t )|2, we obtain
the relation between γ j and μ j as

γ j = μ jγ1

μ1
. (38)

For the identical output single-photon wave packets, i.e.,
αout1 f (t ) = · · · = αout j f (t ) = · · · = αoutM f (t ), we get μ1 =
· · ·μ j = · · · = μM = 1/M.

(ii) However, if all the other spectral widths do not equal
the first one, i.e.,

λ1 �= λ2, . . . , λ1 �= λ j, . . . , λ1 �= λM, (39)

we have

αout2 f (t ) �= αout2 (t ), . . . , αout j f (t ) �= αout j (t ), . . . ,

αoutM f (t ) �= αoutM (t ), (40)

which shows that the Markovian system cannot generate
the same multiple single-photon wave packets as the non-
Markovian one [a single-photon wave packet generated here
is assumed to be equal, e.g., αout1 f (t ) = αout1 (t ) in Eq. (33)].
In this case, the relations given by Eq. (31) between αout j (t )

and αout1 (t ) in the non-Markovian regime are determined as

αout j (t ) = λ j
√

γ j

λ1
√

γ1

∫ t

0
dt1[α̇out1 (t1) + λ1αout1 (t1)]e−λ j (t−t1 ),

(41)

which satisfies the normalization condition
∑M

j=1 ν j = 1 with

ν j =
∫

dt |αout j (t )|2. (42)

(iii) As can be seen from Eq. (35), the generated
single-photon wave packets can also be partially
equal, e.g., αout1 f (t ) = αout1 (t ), αout3 f (t ) = αout3 (t ), and
αout5 f (t ) = αout5 (t ) = · · · , with λ1 = λ3 = λ5 = · · · , and
αout2 f (t ) �=αout2 (t ), αout4 f (t ) �=αout4 (t ), and αout6 f (t ) �=αout6 (t ) =
· · · , with λ1 �= λ2, λ1 �= λ4, λ1 �= λ6, . . ..

(iv) Assuming m �= j and αout j f (t ) = αoutm (t ), based on
αout1 (t ) = αout1 f (t ), Eq. (34) leads to λ1 = λm and γ j = γm.
For λ1 �= λm or γ j �= γm, we have αout j f (t ) �= αoutm (t ).

(v) If αout1 (t ) = αoutp f (t ) (p = 2, 3, . . ., M), substituting
it into Eq. (31), we get [α̇outp f (t ) + λ1αoutp f (t )]/λ1

√
γ1 =

[α̇outm (t ) + λmαoutm (t )]/λm
√

γm, which gives λ1 = λm and
γ1 = γm when αoutp f (t ) = αoutm (t ). Setting λ1 �= λm or γ1 �=
γm, we obtain αoutp f (t ) �= αoutm (t ) when αout1 (t ) = αoutp f (t ).

(vi) When the same single-photon wave packet gen-
erated by the Markovian and non-Markovian systems in
Eq. (33) is not assumed to be αout1 (t ) = αout1 f (t ) but αout j (t ) =
αout j f (t ), we have λ j = λm if αoutm f (t ) = αoutm (t ) and then
αoutm f (t ) �=αoutm (t ) for λ j �= λm.

(vii) If the Markovian system can generate two of the
same single-photon wave packets αout1 f (t ) = αout1 (t ) and
αout2 f (t ) = αout2 (t ) (leading to λ1 = λ2) as the non-Markovian
one [corresponding to the case for generating the same
single-photon wave packet in Eq. (33)] for M � 3, Eqs. (36)
and (37) remain unchanged, while Eqs. (39) and (40) become
λ1 = λ2 �= λ3, . . . , λ1 = λ2 �= λ j, . . . , λ1 = λ2 �= λM and
αout3 f (t ) �= αout3 (t ), . . . , αout j f (t ) �= αout j (t ), . . . , αoutM f (t ) �=
αoutM (t ).

From the above discussion, the results in (i)–(vii) can also
be obtained from Eqs. (32) and (41), which in particular lead
to αout j (t )/αout1 (t ) = √

γ j/γ1 if λ1 = λ j [also derived from
αout j (t ) = λ j

√
γ j

∫ t
0 dτ e−λ j (t−τ )βb(τ ) above Eq. (31)]. Next

we are not going to discuss the situations (iii)–(vii) in detail,
but mainly focus on the cases (i) and (ii).

A. Multiple single-photon generations by setting the equal
spectral widths for different environments

If the spectral widths of the different environments take
the same values in Eq. (37), we show that the system under
the Markovian approximation can generate the same single-
photon wave packets as the non-Markovian one shown in
Figs. 6–9, i.e., αout j f (t ) = αout j (t ) given by Eq. (36). We
consider three types of working mechanisms: (I) The one-
sided cavity interacts with one input-output field (M = 1 and
μ1 = 1), (II) the one-sided cavity interacts simultaneously
with two identical input-output fields (M = 2, λ1 = λ2 ≡ λ,
and μ1 = μ2 = 1

2 ), and (III) the one-sided cavity interacts
simultaneously with two different input-output fields (M = 2,
λ1 = λ2 ≡ λ, μ1 = 1

3 , and μ2 = 2
3 ). We plot the system that
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FIG. 6. In order to compare the cavity interact-
ing with one [αout1 (t ) = A2e−�2t sin3B2t , where A2 =
2
√

2(36B6
2�2 + 49B4

2�
3
2 + 14B2

2�
5
2 + �7

2 )/3
√

5B3
2], two

identical [αout1 (t ) = αout2 (t ) = A3e−�3t sin3B3t , with A3 =
2
√

36B6
3�3 + 49B4

3�
3
3 + 14B2

3�
5
3 + �7

3/3
√

5B3
3], and two

different input-output fields (αout1 (t ) = A4e−�4t sin3B4t and
αout2 (t ) = √

γ2/γ1

∫ t
0 dt1[α̇out1 (t1) + λαout1 (t1)]e−λ(t−t1 ), with

A4 = 2
√

2(36B6
4�4 + 49B4

4�
3
4 + 14B2

4�
5
4 + �7

4 )/3
√

15B3
4) in the

Markovian and non-Markovian cases, we plot (a), (d), and (g) the
optimal driving field � f (t ) in Eq. (27) and �(t ) given by Eq. (30)
with and without the Markovian approximations; (b), (e), and
(h) output wavepackets; and (c), (f), and (i) population [ρc(t ) in
Eq. (23) and ρc f (t ) in Eq. (27)]. The parameters are γ1 = 10 MHz,
γ ′ = 6π MHz, gc = 30π MHz, λ = 2.31 MHz, δ1 = δ2 = 0,
N = 40, B2 = B3 = B4 = 2 MHz, and �2 = �3 = �4 = 0.5 MHz.

works in three working mechanisms in Fig. 6, which shows
the driving field, the output fields, and the population of state
|c〉 in the non-Markovian and Markovian cases with a compar-
ison when the parameter λ is fixed to the value 2.31 MHz in
three cases. Figures 6(a), 6(d), and 6(g) show that the control
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FIG. 7. Case of the Markovian approximation, where the param-
eters are the same as in Fig. 6 except λ = 30 MHz.

FIG. 8. Three different output single-photon wave packets
with non-Markovian effects: (a)–(c) αout1 (t ) = A2e−�2t sin3B2t ,
with A2 = 2

√
2(36B6

2�2 + 49B4
2�

3
2 + 14B2

2�
5
2 + �7

2 )/3
√

5B3
2;

(d)–(f) αout1 (t ) = αout2 (t ) = A3t3e−�3t sin3B3t , with A3 =
2
√

2/45
√

1/72�7
3 + �3(d1 + d2 + 240B4

3d3 + 72B2
3d4)/720, where

d1 = 6/(4B2
3 + �2

3 )4 − 1/(9B2
3 + �2

3 )4 − 15/(B2
3 + �2

3 )4, d2 =
192B6

3[5/(B2
3 + �2

3 )7 − 128/(4B2
3 + �2

3 )7 + 243/(9B2
3 + �2

3 )7],
d3 = 32/(4B2

3 + �2
3 )6 − 27/(9B2

3 + �2
3 )6 − 5/(B2

3 + �2
3 )6,

and d4 = 5/(B2
3 + �2

3 )5 − 8/(4B2
3 + �2

3 )5 + 3/(9B2
3 + �2

3 )5;
and (g)–(i) αout1 (t ) = A4e−�4t sin4B4t , with A4 =
2
√

576B8
4�4 + 820B6

4�
3
4 + 273B4

4�
5
4 + 30B2

4�
7
4 + �9

4/z,
z = 3

√
105B4

4, and αout2 (t ) =√
γ2/γ1

∫ t
0 dt1[α̇out1 (t1) + λαout1 (t1)]e−λ(t−t1 ). In this case, we

take B2 = B3 = B4 = 2 MHz, �2 = �3 = �4 = 0.5 MHz, and
λ = 2.31 MHz. The other parameters and vertical ordinates are
given in Fig. 6.

driving fields obtained with and without the Markovian ap-
proximations are different in three cases. Figures 6(b), 6(e),
and 6(h) show the shapes of an output single-photon wave
packet, two identical wave packets, and two different wave
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FIG. 9. Case of the Markovian approximation with λ = 30 MHz.
The other parameters are the same as in Fig. 8.
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packets, respectively. Figures 6(c), 6(f), and 6(i) show the
difference of the populations of the state |c〉 when the system
works in three cases. Compared with the Markovian case, we
learn that non-Markovianity-caused backflow to the state |c〉
occurs when the spectral width λ is small in three cases.

However, when the spectral width is tuned to λ = 30 MHz,
the results given by the non-Markovian regime are in good
agreement with those given in the Markovian approximation.
In Figs. 7(a), 7(d), and 7(g) the Markovian approximation
produces almost the same driving field results as the exact so-
lution (non-Markovian regime with λ = 30 MHz). Similarly,
the population of the state |c〉 in the non-Markovian regime
controlled by the driving field is consistent with that in the
Markovian approximation in three cases when λ = 30 MHz
in Figs. 7(c), 7(f), and 7(i).

As the second concrete example, we take different function
forms of output field envelops in Figs. 8 and 9, where the
three rows correspond to αout1 (t ) = A2e−�2t sin3B2t , αout1 (t ) =
αout2 (t ) = A3t3e−�3t sin3B3t , and αout1 (t ) = A4e−�4t sin4B4t
and αout2 (t ) = √

γ2/γ1
∫ t

0 dt1[α̇out1 (t1) + λαout1 (t1)]e−λ(t−t1 ),
respectively. The parameters are B2 = B3 = B4 = 2 MHz
and �2 = �3 = �4 = 0.5 MHz. We see that the output
field envelopes are obviously different from those of Fig. 6.
Similarly, the difference between Figs. 8 and 9 depends on the
value of spectral width λ, where λ = 2.31 MHz corresponds
to the non-Markovian regime, as shown in Fig. 8, while the
Markovian approximation is characterized by λ = 30 MHz in
Fig. 9.

B. Multiple single-photon generations for all other spectral
widths not equaling the first one

If the spectral widths satisfy Eq. (39), we take the first
output single-photon wave packet as αout1 (t ) = E1e−�t sin3Bt
and then obtain αout j (t ) from Eq. (41) as

αout j (t ) = Dje
−λ j t

(
24B3 λ1 − λ j

Cj
+ 3h( j)

1 − h( j)
3

)
, (43)

where Dj = E1λ j
√

γ j/γ1/4λ1, E1 =
2
√

2ν1(36B6� + 49B4�3 + 14B2�5 + �7)/3
√

5B3,
h( j)

n = et (λ j−�){nB(λ j − λ1) cos(nBt ) + [(nB)2 + (� −
λ1)(� − λ j )] sin(nBt )}/[(nB)2 + (� − λ j )2], and Cj =
[B2 + (� − λ j )2][9B2 + (� − λ j )2]. Similar to Eq. (38),
Eq. (42) gives

γ j = 5ν jγ1λ
2
1[B2 + (� + λ j )2][9B2 + (� + λ j )2]

λ jν1
[
16�(4B2 + �2)λ2

1 + a1λ j + 4�a2λ
2
j + a2λ

3
j

] ,

(44)

where a1 = 5(B2 + �2)(9B2 + �2) + (41B2 + 29�2)λ2
1 and

a2 = 9B2 + �2 + 5λ2
1. We show that the decay rate γ j in

Eq. (31) equals γ j given by Eq. (32), together with Eqs. (38)
and (44), which lead to M constraint conditions

5ν jμ1λ
2
1

μ jλ jν1
= 16�(4B2 + �2)λ2

1 + a1λ j + 4�a2λ
2
j + a2λ

3
j

[B2 + (� + λ j )2][9B2 + (� + λ j )2]
.

(45)

We show that the equality of different spectral widths is not
restricted [e.g., see λ2 = λ3 = 3.149 MHz �= λ1 in Fig. 13(a)]
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FIG. 10. To generate the multiple (M = 4) single-photon wave
packets with the normalization factors ν1 = 1

4 , ν2 = 1
5 , ν3 = 1

2 ,
and ν4 = 1

20 , we plot (a) four output single-photon wave packets
αout1 (t ), αout2 (t ), αout3 (t ), and αout4 (t ) given by Eq. (43) in the
non-Markovian regime, which are separated, and (c) four output
single-photon wave packets αout1 f (t ), αout2 f (t ), αout3 f (t ), and αout4 f (t )
under the Markovian approximation totally overlapped due to the
equal normalization factors μ1 = μ2 = μ3 = μ4 = 1

4 revealed from
Eq. (46). The (b) �(t ) and (d) � f (t ) are determined by Eqs. (30)
and (27), respectively. The other parameters are λ1 = 2 MHz,
B = 1.5 MHz, � = 0.5 MHz, γ1 = 10 MHz, γ ′ = 6π MHz, gc =
30π MHz, δ1 = δ2 = 0, and N = 40. With these parameters, we ob-
tain λ2 = 1.52 MHz, λ3 = 24.87 MHz, and λ4 = 0.439 MHz given
by Eq. (45).

as long as they satisfy Eqs. (39) and (45) when all the other
parameters are fixed [if j = 1, Eq. (45) giving 5λ1 = 5λ1 is
trivial, which results in the fact that Eq. (45) has M − 1 ef-
fective equations]. Moreover, assuming αout1 f (t ) = αout1 (t ) =
E1e−�t sin3Bt (i.e., ν1 = μ1), through Eqs. (32) and (38) we
obtain the output single-photon wave packet under the Marko-
vian approximation

αout j f (t ) = E1

√
γ j

γ1
e−�t sin3Bt ≡ E1

√
μ j

μ1
e−�t sin3Bt . (46)

We point out that the condition of generating any two equal
single-photon wave packets αout j f (t ) and αoutm f (t ) under the
Markovian approximation is μ j = μm, as seen from Eq. (46),
while the corresponding non-Markovian case for αout j (t ) =
αoutm (t ) requires

λ j = λm, μ j = μm, ν j = νm, (47)

which originate from Eqs. (38), (41), and (42).
When all the other spectral widths do not equal the first

one shown in Eq. (39), by setting M = 4, we find that four
output single-photon wave packets in the non-Markovian
regime in Fig. 10(a) are separated, which originates from the
normalization factors ν1 = 1

4 , ν2 = 1
5 , ν3 = 1

2 , and ν4 = 1
20

and the spectral widths λ1 = 2 MHz, λ2 = 1.52 MHz, λ3 =
24.87 MHz, and λ4 = 0.439 MHz not satisfying Eq. (47).
In contrast, the output single-photon wave packets αout1 f (t ),
αout2 f (t ), αout3 f (t ), and αout4 f (t ) under the Markovian approx-
imation are totally overlapped due to the equal normalization
factor μ1 = μ2 = μ3 = μ4 = 1

4 of Eq. (46) in Fig. 10(c).
However, in Fig. 11(c) the output single-photon wave
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FIG. 11. With the partially nonequal normalization factors μ1 =
1
4 , μ2 = 1

10 , μ3 = 13
40 , and μ4 = 13

40 (M = 4), (c) two output single-
photon wave packets αout3 f (t ) and αout4 f (t ) in Eq. (46) under the
Markovian approximation are overlapped, while (a) four output
single-photon wave packets αout1 (t ), αout2 (t ), αout3 (t ), and αout4 (t ) of
Eq. (43) in the non-Markovian regime are separated, where the nor-
malization factors ν1 = 1

4 , ν2 = 1
5 , ν3 = 1

2 , and ν4 = 1
20 . The (b) �(t )

and (d) � f (t ) are taken from Eqs. (30) and (27), respectively. The
other parameters are λ1 = 2 MHz, B = 1.5 MHz, � = 0.5 MHz,
γ1 = 10 MHz, γ ′ = 6π MHz, gc = 30π MHz, δ1 = δ2 = 0, and
N = 40, which lead to λ2 = 24.87 MHz, λ3 = 4.3 MHz, and λ4 =
0.36 MHz calculated by Eq. (45).

packets αout3 f (t ) and αout4 f (t ) under the Markovian approxi-
mation in Eq. (46) are overlapped, which differ from those
in the non-Markovian regime in Fig. 11(a), where the par-
tially nonequal normalization factors take μ1 = 1

4 , μ2 = 1
10 ,
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FIG. 12. Completely nonequal normalization factors μ1 = 1
4 ,

μ2 = 1
6 , μ3 = 1

8 , and μ4 = 11
24 (M = 4) lead to (c) four output single-

photon wave packets αout1 f (t ), αout2 f (t ), αout3 f (t ), and αout4 f (t ) given
by Eq. (46) under the Markovian approximation being completely
separated and (a) four output single-photon wave packets in the non-
Markovian regime given by αout1 (t ), αout2 (t ), αout3 (t ), and αout4 (t ) of
Eq. (43). The (b) �(t ) and (d) � f (t ) are determined by Eqs. (30)
and (27), respectively. The other parameters are ν1 = ν2 = ν3 =
ν4 = 1

4 , λ1 = 2 MHz, B = 1.5 MHz, � = 0.5 MHz, γ1 = 10 MHz,
γ ′ = 6π MHz, gc = 30π MHz, δ1 = δ2 = 0, and N = 40. With
these parameters, Eq. (45) gives λ2 = 4.047 MHz, λ3 = 24.87 MHz,
and λ4 = 1.028 MHz.
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FIG. 13. (a) Two equal single-photon wave packets αout2 (t ) and
αout3 (t ) of four single-photon wave packets in the non-Markovian
regime are generated, where λ2 = λ3 = 3.149 MHz, μ2 = μ3 = 1

4 ,
and ν2 = ν3 = 1

3 satisfy Eq. (47). (c) Four output single-photon wave
packets αout1 f (t ), αout2 f (t ), αout3 f (t ), and αout4 f (t ) given by Eq. (46)
under the Markovian approximation are totally overlapped. The pa-
rameters are μ1 = μ4 = 1

4 , ν1 = 1
4 , ν4 = 1

12 , and λ4 = 0.667 MHz,
from Eq. (45). The other parameters are the same as in Fig. 10.

μ3 = 13
40 , and μ4 = 13

40 . Moreover, the completely nonequal
normalization factors μ1 = 1

4 , μ2 = 1
6 , μ3 = 1

8 , and μ4 = 11
24

induce the complete separation of the multiple output single-
photon wave packets under the Markovian approximation in
Fig. 12(c), but they also have envelops different from those
in Fig. 12(a) in the non-Markovian regime. With the selected
parameters meeting the condition (47), two single-photon
wave packets αout2 (t ) and αout3 (t ) of four single-photon wave
packets in the non-Markovian regime are equal and shown in

(
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FIG. 14. (a) When the condition in Eq. (47) for generating two
equal single-photon wave packets is broken, i.e., μ2 = 1

6 , μ3 =
1
8 , ν2 = 1

3 , and ν3 = 1
4 do not satisfy Eq. (47), the single-photon

wave packets αout2 (t ) and αout3 (t ) in the non-Markovian regime are
separated compared with Fig. 13(a). (c) In this case, four output
single-photon wave packets αout1 f (t ), αout2 f (t ), αout3 f (t ), and αout4 f (t )
given by Eq. (46) under the Markovian approximation are completely
separated due to the completely nonequal normalization factors.
Equation (45) is satisfied by taking the parameters μ1 = 1

4 , μ4 = 11
24 ,

ν1 = 1
4 , ν4 = 1

6 , λ2 = λ3 = 24.87 MHz, and λ4 = 0.717 MHz. The
other parameters are the same as in Fig. 10.
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Fig. 13(a), while Fig. 14 shows the case for all single-photon
wave packets being separated.

To summarize, if the spectral widths of the different en-
vironments take the equal values in Eq. (37), we show that
the output single-photon wave packet αout j (t ) of Eq. (31) in
the non-Markovian regime equals αout j f (t ) of Eq. (32) under
the Markovian approximation [see Eq. (36)]. However, if all
the other spectral widths do not equal the first one in Eq. (39),
when the first single-photon wave packet generated by the
Markovian system is the same as the non-Markovian case,
the same single-photon wave packet αout j (t ) of Eq. (31) in
the non-Markovian regime cannot be generated [see Eq. (40)]
by αout j f (t ) of Eq. (32) under the Markovian approximation
because αout j f (t ) is independent of the spectral width λ j .
Moreover, we find that the jth output single-photon wave
packet αout j (t ) given by Eq. (41) can be expanded as a power
series of the spectral width λ j as

αout j (t ) =
∞∑

n=0

ε j,n(t )λn+1
j , (48)

where the time-dependent expansion coefficient ε j,n(t ) =
(−1)n√γ j/(λ1n!

√
γ1)

∫ t
0 (t − t1)n[α̇out1 (t1) + λ1αout1 (t1)]dt1

is determined when the first output single-photon wave packet
αout1 (t ) and decay rate γ j are given. After fixing αout1 (t )
and γ j , the output single-photon wave packet αout j (t ) can

be controlled by tuning the spectral width λ j [in particular,
when j = 1, Eq. (41) or (48) leads to αout1 (t ) = αout1 (t )],
which is induced by non-Markovian effects and has no
Markovian counterparts. That is to say, the system for
the multiple single-photon generations in the framework
of all the other spectral widths not equaling the first one
in the non-Markovian regime cannot be replaced by the
Markovian one, which is the reason we need to consider the
non-Markovian system.

Therefore, we point out that the points discussed above
may be lost due to making the Markovian approximation
when the multiple single-photon wave packets are generated
in the non-Markovian system via setting all the other spectral
widths not equaling the first one if the first single-photon
wave packets generated by the Markovian and non-Markovian
systems are equal.

VI. EXACT SOLUTIONS FOR THE QUANTUM NETWORK
DYNAMICS WITH NON-MARKOVIAN EFFECTS

A non-Markovian quantum network [72,154–157] is com-
posed of sending and receiving nodes, where the simplest
possible configuration of quantum transmission between two
nodes consists of two atoms which are strongly coupled to
their respective cavity modes. We consider in Fig. 15 non-
Markovian input-output fields coupled to a cavity chain with P
cavities, each of which contains a driven identical three-level
atom (e.g., cesium atom [152,153]), whose Hamiltonian reads

Ĥ =
P∑

q=1

ωq
cav â†

qâq +
P∑

q=1

(
ω

q
bσ

(q)
bb + ωq

cσ
(q)
cc + ωq

aσ
(q)
aa

) +
P∑

q=2

2∑
j=1

∫
ωq, j b̂

†
q, j (ωq, j )b̂q, j (ωq, j )dωq, j +

∫
ω1b̂†

1(ω1)b̂1(ω1)dω1

+ i
P∑

q=2

2∑
j=1

∫
dωq, j[âqb̂†

q, j (ωq, j )vq, j (ωq, j ) − H.c.] + i
∫

dω1[â1b̂1(ω1)v1(ω1) − H.c.]

+
P∑

q=1

[�q(t )e−iωq
Lt σ̂ (q)

ac + gc,qσ̂
(q)
ab âq + H.c.], (49)

where âq is the annihilation operator for the qth cavity with
frequency ω

q
cav, which couples with two non-Markovian input-

output fields by the coupling strength vq, j (with frequency
ωq, j) except the first atom-cavity system with v1(ω1); ω

q
b ,

ω
q
c , and ω

q
a are the frequencies of the ground-state hyperfine

levels |b〉q and |c〉q, and the excited state |a〉q for the atom
of the qth cavity, respectively. State |b〉q is coupled to the
intermediate |c〉q by the cavity with the coupling strength
gc,q, and |c〉q is coupled to |a〉q by the driving field �q(t ).
The atom is initially prepared in state |c〉1 in the first cav-
ity, while the atoms of the other cavities are all prepared
in state |b〉q, and cavities and input fields remain in their

vacuum states. We control the driving field �1(t ) to generate
an output single-photon wave packet from the first cavity.
By combining the sending and receiving processes, the trans-
fer of a photon from one node to another can be easily
accomplished, where the generated photon leaks out of the
first cavity, propagates along the transmission line, enters the
optical cavity at the second node, and so on. The cavity is
coupled with the electromagnetic continuum outside, forming
a photonic channel [62,63]. The state for the first system
can be written as |	(t )〉1 = βb1(t )|b, 1, 0〉 + βc1(t )|c, 0, 0〉 +
βa1(t )|a, 0, 0〉 + ∫

dω1αω1 (t )|b, 0, 1ω1〉. However, in the qth
(q ∈ [2, P]) cavity, the state becomes

|	(t )〉q = βbq(t )|b, 1〉q|01, 02〉 + βcq(t )|c, 0〉q|01, 02〉 + βaq(t )|a, 0〉q|01, 02〉 +
∫

dωq,1αωq,1 (t )|b, 0〉q|1ω1 , 02〉

+
∫

dωq,2αωq,2 (t )|b, 0〉q|01, 1ω2〉, (50)
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FIG. 15. Illustration of the multiple single-photon generations in driven three-level � atoms (e.g., cesium atom) coupled to cavities for
the non-Markovian quantum network. There are P cavities, where each cavity itself is coupled to the input-output fields forming photonic
channels. From the leftmost to rightmost cavities, each contains a driven three-level atom. The coupling parameters and operators defined in
the text are indicated. Two cavities are connected by the non-Markovian input-output fields in the following way: The output field of cavity 1
is directed to cavity 2 as its input field and so on.

with the initial conditions αin1 = 0, βb1(0) = 0, βc1(0) = 1, and βa1(0) = 0. When the photon producing and receiving processes
are completed, we have βc1(t1) = β̇c1(t1) = 0. If the initial states of the system in the sending and receiving nodes are |c〉1 and
|b〉q (q ∈ [2, P]), respectively, under the action of the driving field �q(t ) (q ∈ [1, P]), the operation will produce the entangled
states in the sending and receiving nodes by

|c1, b2, b3 · · · bP〉 ⊗ |0〉 �1(t )−−−→ αω1 |b1, b2, b3 · · · bP〉 ⊗ ∣∣αout1

〉 �2(t )−−−→ αω2,1 |b1, b2, b3 · · · bP〉 ⊗ ∣∣α(1)
out2

〉
+ αω2,2 |b1, b2, b3 · · · bP〉 ⊗ ∣∣α(2)

out2

〉 �3(t )−−−→ αω3,1 |b1, b2, b3 · · · bP〉 ⊗ ∣∣α(1)
out3

〉 + αω3,2 |b1, b2, b3 · · · bP〉

⊗ ∣∣α(2)
out3

〉 · · · �P (t )−−−→ αωP,1 |b1, b2, a3 · · · bP〉 ⊗ ∣∣α(1)
outP

〉 + αωP,2 |b1, b2, a3 · · · bP〉 ⊗ ∣∣α(2)
outP

〉
, (51)

where α
(1)
outq (t ) = ∫

dωq,1αωq,1 (t1)e−i�q,1(t−t1 )/
√

2π and

α
(2)
outq (t ) = ∫

dωq,2αωq,2 (t1)e−i�q,2(t−t1 )/
√

2π , with �q, j =
ωq, j − ω

q
cav, are the normalized wave packets of the emitted

photon. Here �q(t ) denotes the optimal driving field in the qth
cavity. In our scheme, there are no interactions between two
adjacent cavities (the two-sided cavity) [72,155–159], which
can be connected by the input and output fields. At the first
sending node, there is no incoming photon, i.e., αin1 (t ) = 0,
and we can control the driving field to generate an output
single-photon wave packet, where the probability amplitudes
for the first cavity in the sending node are determined by

β̇b1(t ) = −igc1 e−iδ2,1tβa1(t ) −
∫ t

0
dτ βb1(τ )F1,1(t − τ ),

β̇c1(t ) = −i�∗
1(t )e−iδ1,1tβa1(t ),

β̇a1(t ) = −igc1 eiδ2,1tβb1(t ) − γ ′
1βa1(t ) − i�1(t )eiδ1,1tβc1(t ),

αout1,1 (t ) =
∫ t

0
dτ k1,1(t − τ )βb1(τ ), (52)

where δ1,1 = ω1
a − ω1

c − ω1
L and δ2,1 = ω1

a − ω1
b − ω1

cav rep-
resent the detunings of the driving field and cavity, respec-
tively, from the atom. Here F1,1(t ) = ∫ |v1(ω1)|2e−i�1,1t dω1

and k1,1(t ) = ∫
v1(ω1)e−i�1,1t dω1, with �1,1 = ω1 − ω1

cav,
denote non-Markovian memory and response functions,
respectively.

The output field of the first cavity constitutes the input
for the second cavity with an appropriate time delay, i.e.,
α

(1)
outq (t − τ ) = α

(1)
inq+1

(t ), where τ is a constant related to re-
tardation in the propagation between the mirrors, which is
assumed as τ = 0 thereafter. The probability amplitudes with
the non-Markovian regime for the receiving node of the qth

(q ∈ [2, P]) cavity are given by

β̇bq(t ) = −igcq e−iδ2,qtβaq(t ) −
2∑

j=1

∫ t

0
dτ βbq(τ )Fq, j (t − τ )

+
2∑

j=1

∫
k∗

q, j (t − τ )α( j)
inq

(τ )dτ,

β̇cq(t ) = −i�∗
q(t )e−iδ1,qtβaq(t ),

β̇aq(t ) = −igcq eiδ2,qtβbq(t ) − i�q(t )eiδ1,qtβcq(t ) − γ ′
qβaq(t ),

(53)

where δ1,q = ω
q
a − ω

q
c − ω

q
L, δ2,q = ω

q
a − ω

q
b − ω

q
cav,

Fq, j (t ) = ∫ |vq, j (ωq, j )|2e−i�q, j t dωq, j , and kq, j (t ) =∫
vq, j (ωq, j )e−i�q, j t dωq, j . The non-Markovian input-output

relations can be written as

α
(1)
outq (t ) − α

(1)
inq

(t ) =
∫ t

0
dτ kq,1(t − τ )βbq(τ ),

α
(2)
outq (t ) =

∫ t

0
dτ kq,2(t − τ )βbq(τ ),

α
(1)
outq (t ) = α

(1)
inq+1

(t ), (54)

where α
(1)
out1 (t ) ≡ αout1 (t ). In the past, people in general fo-

cused on the sending and receiving processes between two
cavities [62,63]. Our scheme can happen between multiple
cavities, where each cavity has two input and output fields
except the first cavity, where the process of sending and re-
ceiving will be repeated all the time. To get the desired wave
packets form or state, we can choose which cavity to end the
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process. The presented results involving an arbitrary number
of driven atom-cavity might offer a way to better understand
single-photon generation for non-Markovian quantum net-
works.

VII. CONCLUSION

In summary, we have studied a general control scheme
of a quantum system consisting of N driven three-level
atoms coupled to a one-sided cavity interacting with
multiple non-Markovian input-output fields. Regarding
atoms, there are backflows in the population on the state |c〉
in the non-Markovian regime, while there are no backflows
in the Markovian case. Moreover, we calculated the optimal
driving field needed to produce arbitrarily shaped multiple
complex single-photon wave packets from the cavity in the
non-Markovian case, which depends on two detunings of
the cavity and driving field with respect to the three-level
atoms. Setting all the other spectral widths not equaling the
first one results in the Markovian system not being able to
generate the same multiple single-photon wave packets as
the non-Markovian one when the first single-photon wave
packet generated by the Markovian system is the same as the
non-Markovian case, while taking the equal spectral width
values for the different environments can generate this. The
scheme analyzes specifically the exact results of the cavity
interacting simultaneously with the multiple environments
in the non-Markovian regime, where the generated different
single-photon wave packets satisfy certain connections with
the spectral parameters. We showed that a transition occurs
from non-Markovian to Markovian regimes by controlling the
spectral widths of the environments. Finally, we discussed the
dynamics of quantum network consisting of many cavities
containing driven three-level atoms for non-Markovian input-
output fields.

The studies of non-Markovian multiple single-photon
generations in driven three-level atoms coupled to cav-
ity might offer a way to better understand the multiple
single-photon generations in quantum network and quantum
communications. As an outlook, it will be interesting to
explore multiple single-photon generation for the total exci-
tation number nonconserving systems beyond rotating-wave
approximations, e.g., isotropic non-rotating-wave interac-
tions �(t )σ̂ac + �∗(t )σ̂ca + g(σ̂ab + σ̂ba)(â + â†) [160,161]
plus

∑
k vk (â + â†)(b̂k + b̂†

k ) [162,163] for the case of
an atom, anisotropic nonrotating wave quantum sys-
tems

∑
k[αk (Ŝ†b̂k + Ŝb̂†

k ) + βk (Ŝb̂k + Ŝ†b̂†
k )] with Ŝ = σ̂ba or

â [164–170], and many-body systems [171–176], which are
worthy of future investigation.
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APPENDIX A: DERIVATION OF EQ. (1)

The total system is composed of a cavity coupled to N
three-level atoms driven by a driving field, where the cavity
interacts with M non-Markovian input-output fields in Fig. 1,
whose Hamiltonian is given by Ĥ ′ = Ĥ1 + Ĥ2, with

Ĥ1 = ωcavâ†â+
N∑

m=1

(
ωaσ̂

(m)
aa + ωbσ̂

(m)
bb + ωcσ̂

(m)
cc − iγ ′σ̂ (m)

aa

)
,

Ĥ2 =
M∑

j=1

∫
ω j b̂

†
j (ω j )b̂ j (ω j )dω j

+
N∑

m=1

[
�(t )e−iωLt σ̂ (m)

ac + gcâσ̂
(m)
ab + H.c.

]

+ i
M∑

j=1

∫
dω j[ν j (ω j )âb̂†

j (ω j ) − H.c.]. (A1)

In a rotating frame defined by Û = exp[−iĤ1t −
iωcavt

∑M
j=1

∫
b̂†

j (ω j )b̂ j (ω j )dω j] with eiωâ†ât âe−iωâ†ât =
âe−iωt and eiωσ̂aat σ̂ace−iωσ̂aat = σ̂aceiωt , we obtain Ĥ =
Û †Ĥ ′Û − iÛ † ˙̂U ≡ ĤS + ĤB + V̂ in Eq. (1).

APPENDIX B: DERIVATION OF EQ. (15)

Substituting Eq. (8) into Eq. (4), we have

β̇b(t ) = −ig∗
c

√
Ne−iδ2tβa(t )

−
M∑

j=1

∫ ∞

−∞
ν∗

j (ω j )αω j (0)e−i�ω j t dω j

−
M∑

j=1

∫ t

0

∫ ∞

−∞
|ν j (ω j )|2e−i�ω j (t−τ )

βb(τ )dω jdτ.

(B1)

The first equation of Eq. (10) can be derived by substituting
Eqs. (12)–(15) into Eq. (B1).

APPENDIX C: DERIVATION OF EQ. (11)

When t1 → t , with Eqs. (12) and (13), we obtain

αin j (t ) + αout j (t ) = − 1√
2π

∫ ∞

−∞
αω j (0)e−i�ω j t dω j

+ 1√
2π

∫ ∞

−∞
αω j (t )dω j . (C1)

Substituting Eq. (8) into Eq. (C1) results in

αin j (t ) + αout j (t ) = 1√
2π

∫ ∞

−∞
ν j (ω j )

∫ t

0
βb(τ )

× e−i�ω j (t−τ )dτ dω j, (C2)

which leads to Eq. (11) by substituting Eq. (14) into Eq. (C2).
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