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Optimized laser models with Heisenberg-limited coherence
and sub-Poissonian beam photon statistics

L. A. Ostrowski,* T. J. Baker , S. N. Saadatmand , and H. M. Wiseman †

Centre for Quantum Dynamics, Griffith University, Yuggera Country, Brisbane, Queensland 4111, Australia

(Received 6 September 2022; revised 24 March 2023; accepted 28 March 2023; published 3 May 2023)

Recently it has been shown that it is possible for a laser to produce a stationary beam with a coherence
(quantified as the mean photon number at spectral peak) which scales as the fourth power of the mean number
of excitations stored within the laser, this being quadratically larger than the standard or Schawlow-Townes limit
[Baker et al., Nat. Phys. 17, 179 (2021)]. Moreover, this was analytically proven to be the ultimate quantum
limit (Heisenberg limit) scaling under defining conditions for CW lasers, plus a strong assumption about the
properties of the output beam. In our related work [Ostrowski et al., Phys. Rev. Lett. 130, 183602 (2023)] we
show that the latter can be replaced by a weaker assumption, which allows for highly sub-Poissonian output
beams, without changing the upper bound scaling or its achievability. In this paper we provide details of the
calculations given in our related paper and introduce three families of laser models which may be considered
as generalizations of those presented in that work. Each of these families of laser models is parameterized by
a real number, p, with p = 4 corresponding to the original models. The parameter space of these laser families
is numerically investigated in detail, where we explore the influence of these parameters on both the coherence
and photon statistics of the laser beams. Two distinct regimes for the coherence may be identified based on the
choice of p, where for p > 3, each family of models exhibits Heisenberg-limited beam coherence, while for
p < 3, the Heisenberg limit is no longer attained. Moreover, in the former regime, we derive formulas for the
beam coherence of each of these three laser families which agree with the numerics. We find that the optimal
parameter is in fact p ≈ 4.15, not p = 4.
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I. INTRODUCTION

As the frontier of quantum technology enters the noisy
intermediate-scale quantum (NISQ) era, remarkable levels of
control over quantum systems have been demonstrated [1,2],
bringing us to the point at which the properties of quantum
mechanics are exploited to achieve feats that would be im-
practical with any classical device [3–9]. However, in striving
towards the quantum technologies of the future and the pow-
erful applications they potentially offer, it remains imperative
that quantum scientists and engineers alike continue pushing
the envelope of discovery towards the enhanced control over
quantum systems [10].

Recent work regarding the limit to the amount of optical
coherence that can be produced by a laser marks an example
of this [11]. Coherence is a quantity that is of fundamental im-
portance not only in the field of quantum technology [12,13]
but to precision technology in general [14]. In that work, the
authors demonstrated that a quantum enhancement is possible
for the coherence, denoted by C, of a continuous wave (CW)
laser. In this context, a quantum enhancement is said to exist if
the ultimate limit imposed by quantum theory, or Heisenberg
limit, for the performance of a device scales better in terms of
a particular resource when compared to the standard quantum
limit (SQL).

*lucas.ostrowski@griffithuni.edu.au
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The principled definition in Ref. [11] of coherence—the
mean photon number of the maximally populated mode of
a field—implies that it is proportional to the product of the
photon flux, N , and the coherence time, 1/�, for “ideal” laser
beams. The authors of [11] then derived the Heisenberg limit
for a laser with such “ideal” properties (see below), Cideal

HL =
�(μ4). Here μ is the mean number of photons within the
laser and is a critical resource for the production of a highly
coherent beam of light. Thus, a quadratic enhancement over
the Schawlow-Townes limit [15], Cideal

STL = �(μ2), was theo-
retically demonstrated, forcing one to adopt the notion that
this historic limit is only a SQL and could be far surpassed by
the Heisenberg limit. Note that throughout this paper we make
use of Bachmann-Landau notation to describe the limiting
behavior of particular functions [16]. The � notation given
above means that Cideal

HL , for instance, is bounded both above
and below by μ4 asymptotically. Formally, this is to say that
there exist two positive constants, k1 and k2, and a μ0, such
that, for all μ > μ0, we have k1μ

4 � |Cideal
HL (μ)| � k2μ

4.
A model for a laser that produces a beam with Heisenberg-

limited scaling of C was also put forward in that work. The key
element in that model is that both the input (gain) and output
coupling are highly nonlinear. A potential implementation of
such couplings on the platform of circuit-QED was given [11].
Parallel to this, an independent group also demonstrated the-
oretically that the SQL for C can be surpassed via a different
proposal with a circuit-QED architecture [17]. Like the former
model, the key element in the design was that the input and
output coupling of the laser to its environment contains a
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nonlinear component. The circuit proposed in Ref. [17] may
be more practical than that in Ref. [11], but, while it surpasses
the SQL, with C = �(μ3), it does not achieve the Heisenberg
limit.

In light of these recent theoretical results, the general focus
of this paper, along with our companion Letter [18], is to
advance the understanding of lasers that perform at these
extreme limits. We make the upper bound for C more robust,
where we rigorously demonstrate that C = �(μ4) remains the
Heisenberg limit under much more relaxed conditions on the
beam. This generalization has two motivations, as follows.

First, it is quite likely that the most feasible laser model
to implement on near-term experimental hardware which sur-
passes the SQL for C would not exactly satisfy the strict
criterion placed on the beam in Ref. [11]. This is because,
unlike standard lasers, there is no intrinsic reason that en-
gineered systems which produce a Heisenberg-limited beam
should exhibit Poissonian beam photon statistics, for example.
In particular, to have a Poissonian beam for a Heisenberg-
limited laser requires specific engineering of the gain and
loss processes [18]. Because the implementation of these pro-
cesses will be less than perfect in any experimental system,
deviations in the photon statistics are to be expected. It is
therefore important to consider bounds on the coherence for
a broader class of beam statistics that would apply in such
experiments.

Second, with this more general Heisenberg limit, we are
able to provide a fundamental insight into the nature of laser
radiation. This is because it does not rule out beams that can be
highly sub-Poissonian [19] and therefore permits a study into
nonclassical photon statistics of lasers which perform at these
extreme limits. Sub-Poissonian light generated from laser
devices has been a topic of interest among quantum optics
communities for decades due to its potential applications in
precision technology, including quantum-enhanced measure-
ment, sensing, communication, and information processing
[19–30]. Early work on sub-Poissonian light generation from
lasers was pioneered by the theoretical work of Golubev and
Sokolov [31], who showed that this can be achieved by reg-
ularizing the pumping of excitations into the laser system.
This was demonstrated in experiments shortly thereafter, con-
ducted by Machida et al. [32] and Richardson and Shelby
[33] with semiconductor lasers. More recent interest in the
production of sub-Poissonian laser light has centered on uti-
lizing novel gain attributes made available on cavity- and
circuit-QED platforms [34–37].

Our particular focus here is the question of whether
a tradeoff exists between coherence and the degree of
sub-Poissonianity in a Heisenberg-limited laser beam, two
properties that are of predominant importance in precision
technology. One might expect that such a tradeoff exists based
on a rough intuition that the former property is greatest when
phase noise is minimized, while the latter is greatest when
the intensity noise is minimized; in a single-mode field there
is certainly a tradeoff between phase and intensity variance
because of the uncertainty principle [38,39]. However, this
single-mode argument does not straight-forwardly general-
ize to a laser beam. Older studies addressed this question
for lasers limited by the SQL for coherence. It was shown
that for laser models with a linear output coupling [which

necessarily achieve C = �(μ2) at best], it is possible to mod-
ify the pumping such that a sub-Poissonian output is achieved
without significantly changing the rate of phase diffusion
[40–43]. That is, there is no tradeoff between coherence and
sub-Poissonianity for these SQL-coherence laser models (note
that in other standard laser models, where a sub-Poissonian
beam is instead generated through nonlinear absorption pro-
cesses, a tradeoff between these two quantities does exist
[44]). In this work, we aim to generalize these results for
Heisenberg-limited lasers; because these lasers operate with
a vastly smaller phase diffusion rate to begin with, this funda-
mental question of whether a tradeoff exists is not obvious.

Answering this query is a primary goal of our com-
panion Letter [18], where two families of laser models
were developed that exhibit both Heisenberg-limited coher-
ence and sub-Poissonian beam photon statistics (quantified
by the Mandel-Q parameter) for specific values of param-
eters. There it is shown that there is a perfect correlation
between an increase in the coherence and a decrease in the
Mandel-Q parameter of the beam within those families of
models. Moreover, the maximum coherence attained in those
families is significantly larger than that of the original model
presented in Ref. [11]. This demonstrates the opposite of a
tradeoff: there is a “win-win” situation between coherence
and sub-Poissonianity in a Heisenberg-limited laser beam;
that is, it appears to be advantageous for the optimization
of the coherence if measures are taken to reduce the number
fluctuations in the beam.

As well as fleshing out many of the proofs and results in
the Letter [18], we present a host of additional results for
three families of laser models that exhibit Heisenberg-limited
coherence. We provide a detailed exploration of the parameter
spaces characterizing these families, as well as a formula for
the coherence of the laser beams that agrees with numerical
calculations. From this, we are able to gain physical insight
into the compatible relationship between coherence and sub-
Poissonianity for some of these laser models. We note here
that all of these models could, in principle, be realized ex-
perimentally, following the method of Ref. [11]. However, the
primary motivation for their development here is to explore
the aforementioned tradeoff question.

The three families of laser models we consider may be
regarded as generalizations of those given in Ref. [18] and
are conceived by making modifications to the gain and loss
mechanisms between the laser and its surrounding environ-
ment from the original laser model of Ref. [11]. Each can be
aptly distinguished from one another by considering only their
pumping mechanisms: The first involves a randomly pumped
(Markovian), quasi-isometric gain; the second involves a ran-
domly pumped, nonisometric gain; and the third involves a
regularly pumped (non-Markovian), quasi-isometric gain. For
ease of reference, these will be referred to according to the
key parameters that characterize them, being the p-family, the
λ, p-family, and the q, p-family of Heisenberg-limited laser
models, respectively. Both of the last two of these are shown
to exhibit sub-Poissonian beam photon statistics, and both
reduce to the first family in the Poissonian limit.

An important aspect of the three families of laser models
is the parameter p. This controls the variance of the steady-
state laser cavity distribution and is shown to have a strong
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influence on the coherence, as two distinct regimes may be
identified for each family with respect to this parameter. For
values p � 3, we find the scaling of the coherence for all
families is C = �(μ4). That is to say that C is Heisenberg-
limited within this regime. Moreover, we find that a peak
in the coherence in this regime is found at p ≈ 4.15 for
each family, slightly different from the value p = 4 used in
Refs. [11,18]. On the other hand, for values p � 3 (which
means even broader cavity distributions), we find a change in
exponent of the power law for the coherence, and Heisenberg-
limited scaling is lost. Here we instead find the relationship
between C and μ to be approximately C = �(μp+1). We
were able to reproduce all of this behavior with heuristic
arguments.

The remainder of this paper is structured as follows. In
Sec. II we introduce and discuss the key concepts and quanti-
ties of interest: the coherence and sub-Poissonianity of a laser
beam and our adopted measures of them. The conditions we
place on a laser and its beam to derive the Heisenberg limit
for the coherence are also summarized here, and we outline
the differences between these and those given in Ref. [11].
In Sec. III we derive an upper bound for C under these four
conditions, which allows for beams that can be highly sub-
Poissonian. In Sec. IV we briefly review the basic description
of a laser in an iMPS framework and the numerical methods
employed to compute the physical quantities of interest within
this framework. In Sec. V we briefly provide some comments
on practicality for the implementation of Heisenberg-limited
laser dynamics, and we provide some further justification
to our claim regarding importance of considering the beam
photon statistics for these efforts. In Sec. VI we introduce
the three families of laser models which will be the subject
of analysis for the subsequent sections. Section VII provides
a numerical analysis of these three families of laser mod-
els, where we explore the parameter spaces characterizing
each family in detail and identify interesting behavior of the
physical quantities which quantify the beam coherence and
degree of beam sub-Poissonianity. In Sec. VIII we provide
an analysis of the coherence, where we are able to derive
formulas for our three families of models in the “Heisenberg-
limited regime” characterized by p � 3. We are able to show
that these formulas accurately reproduce our numerical results
given in Sec. VII, and based on this analysis, we are able to
provide arguments as to why Heisenberg-limited coherence is
lost for p � 3. Finally, in Sec. IX we discuss our results and
provide concluding remarks.

II. LASERS, COHERENCE, AND SUB-POISSONIANITY

A. Laser coherence

Consider a one-dimensional bosonic beam traveling at
fixed speed with translationally invariant statistics, which can
be described by the single-parameter field operator b̂(t ). Our
adopted measure of coherence for such a beam may be defined
generally as the mean number of photons in the maximally
populated spatial mode [11]. This amounts to the mathemati-
cal statement

C := max
u∈u 〈b̂†

ub̂u〉, (1)

where b̂u = (1/
√

Iu)
∫ ∞
−∞ dtu(t )b̂(t ) defines the annihilation

operator for mode u. Here Iu = ∫ ∞
−∞ dt |u(t )|2 is a normaliza-

tion factor, while the maximization is over the modes u within
a particular frequency band; this avoids the trouble associated
with a thermal state with arbitrarily low frequency having an
exceedingly large coherence.

For a beam with translationally invariant statistics, the
mode u which attains the maximum in Eq. (1) is characterized
by a flat waveform. Strictly, such a mode is not in u as it
is not square integrable, but we can consider uT (t ) ∝ e−|t |/T

and afterwards take the limit T −→ ∞. Consequently, C is
directly proportional to the maximum of the power spectrum
[11], and as it is possible to redefine b̂(t ) so as to absorb the
rotation at the spectral peak frequency, the coherence may be
expressed as

C =
∫ ∞

−∞
dsG(1)(t, s). (2)

Here the nth-order Glauber coherence functions are defined in
the usual way [45]:

G(n)(s1, . . . , s2n) := 〈b̂†(s1) · · · b̂†(sn)b̂(sn+1) · · · b̂(s2n)〉, (3)

with corresponding normalized forms

g(n)(s1, . . . , s2n) := 〈b̂†(s1) · · · b̂†(sn)b̂(sn+1) · · · b̂(s2n)〉
�2n

i=1|G(1)(si, si )|1/2
. (4)

With translationally invariant statistics, the denominator of
Eq. (4) can be expressed as �2n

i=1|G(1)(si, si )|1/2 = N n, where
we define

N := G(1)(t, t ). (5)

This quantity is interpreted as the photon flux from the laser.
It is well established that, far above threshold, the state

produced by an ideal standard CW laser in the absence of any
technical noise can be described by a coherent state under-
going pure phase diffusion [46–48]. That is, the beam can be
described by an eigenstate

|β(t )〉 = |
√
N ei

√
�W (t )〉 (6)

of b̂(t ), where W (t ) represents a Wiener process. For such
beams, the coherence may be evaluated in terms of N and the
full width at half-maximum (FWHM) of its Lorentzian Power
spectrum (or linewidth), �, as

C = 4N
�

. (7)

In this instance, we see that C is has a straightforward inter-
pretation, as roughly the number of photons that are emitted
into the beam that are mutually coherent.

A noteworthy point regarding this measure of coherence is
that it does not require an absolute phase or mean field, but is
instead a statement of the beam’s relative coherence, and can
be thought of the ability of the beam to act as a classical phase
reference. By considering the action on the field imposed by
a beamsplitter [11], this coherence measure may be shown
to be a monotonic function of the relative entropy of asym-
metry [49], which is a well-established coherence measure
employed in quantum information theory [50,51].
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B. Beam photon statistics

As we have already alluded to, a key concept within this
paper is with regard to sub-Poissonian light in the output field.
The degree to which the output field is sub-Poissonian may be
quantified by the Mandel-Q parameter defined over the time
duration T [52,53],

QT ;T0 := 〈(�n̂T ;T0 )2〉 − 〈n̂T ;T0〉
〈n̂T ;T0〉

, (8)

where n̂T ;T0 := ∫ T0+T
T0

dsb̂†(s)b̂(s) is the number operator for
the beam over the interval (T0, T0 + T ]. This quantity may
be interpreted as the normalized variance in the number of
detections made by an ideal photodetector monitoring the
beam over this time interval. For example, −1 � QT ;T0 < 0
would imply that the variance in photodetections made be-
tween successive measurements is less than the mean, which
is the defining property of sub-Poissonian light.

For time-stationary fields, this quantity may be expressed
in terms of the second-order Glauber coherence function
[19,54]

QT = 〈n̂T 〉
T 2

∫ T

−T
ds(T − |s|)[g(2)

ps (s) − 1
]
, (9)

where g(2)
ps (s) := g(2)(T0, T0 + s, T0 + s, T0). Here the sub-

script “ps” stands for photon statistics, and we have dropped
the redundant initial time T0 from the notation for the case
of a stationary field. Expressing QT in this manner will be
useful for calculations made in the following sections. Of
particular interest to us is the long-time limit, where T −→ ∞,
as this is the counting duration that gives the smallest Q-
parameter. We therefore drop the subscript for further ease
of notation, such that Q := QT−→∞, and use this quantity as
our measure of the degree of sub-Poissonianity in the laser
beam.

C. Conditions on the laser and its beam

In order to speak of the Heisenberg limit for the coherence
of a CW laser beam, we must define the problem by specifying
the constraints placed on the device and the beam it produces.
In Ref. [11] the constraints which led to the derivation of the
Heisenberg limit were expressed as four precise conditions.
To arrive at a more robust upper bound on C that encom-
passes a more general class of laser models, we adopt the first
three of these outright, while relaxing the fourth as much as
possible such that an upper bound on the scaling law for C

with μ can still be derived based on the same methodology of
proof.

Together, these conditions encapsulate the most fundamen-
tal aspects of the radiation that is produced from the laser
models developed throughout the 1960s and 1970s [46,47,55],
while also being as general as possible about the mechanism
by which this coherent beam is produced with the proviso
that the laser does produce the beam. That is, it cannot, for
example, be an empty box through which a beam, from some
other source, is shone (how this restriction is achieved will
become clear). Instead, the conditions require one to place
a box around all the devices and processes that are used to
produce the coherent (and possibly sub-Poissonian) beam, and

treat that as the laser device. Accordingly, our interchangeable
use of the terms “laser” and “laser device” throughout this
work is shorthand for “the entire set of systems inside the box
that carry coherent excitations whose phase gives rise to the
laser phase.”

Explicitly, the four conditions are as follows:
(1) One-dimensional beam—The beam propagates away

from the laser in one direction at a constant speed, occu-
pying a single transverse mode and polarization. The beam
can therefore be described by a scalar quantum field with the
annihilation operator b̂(t ) satisfying [b̂(t ), b̂†(t ′)] = δ(t − t ′).

The notion of such a field characterized by the annihilation
operator b̂(t ) was used in the above definition of C. Essen-
tially, b̂(t ) represents the bit of the beam which was emitted
from the device at time t , which propagates away from the
laser at the speed of light.

(2) Endogenous phase—Coherence in the beam proceeds
from coherence in the excitations within the laser. Formally,
a phase shift imposed on the laser state at some time T0 will
lead, in the future, to the same phase shift on the beam emitted
after time T0, as well as on the laser state.

Imposing a phase shift at time T0 can be described by
the action of the superoperator U θ

c := Û θ
c • Û θ†

c on the laser
state, with the unitary Û θ

c := exp iθ n̂c and the generator n̂c

being the number operator for the excitations stored within
the laser. While this operator must have nonnegative integer
eigenvalues, there is notably no assumption that the laser
device consists of a single mode. Condition 2 requires that
the effect of this phase shift at any later time T0 + T can be
described by the superoperator U θ

cb = Û θ
cb • Û θ†

cb acting on the
laser state as well as the beam segment generated over the
interval (T0, T0 + T ], where Û θ

cb := exp iθ (n̂c + n̂T ;T0 ).
When considering bounds on the coherence, this condition

is imperative as it guarantees that no external sources add
phase information to to beam; if they did, they would be
required to be treated as part of the laser and hence contribute
to the mean excitation number, μ, stored within the device.
This number is guaranteed to exist by the third condition:

(3) Stationary beam statistics—The statistics of the laser
and beam have a long-time limit that is unique and invariant
under time translation. This means that the mean excitation
number within the laser, 〈n̂c〉, has a unique stationary value μ.

The fourth condition that we impose on the beam is similar
to the “Ideal Glauber (1),(2)-coherence” condition of Ref. [11].
This original condition stated that the first- and second-order
Glauber coherence functions of Eq. (4) for the laser beam be
well approximated by that of a coherent state undergoing pure
phase diffusion [Eq. (6)]. By defining it in this manner, an
upper bound for C with a specific prefactor for the scaling law
was able to be derived, namely, C � 2.975μ4. However, this
condition is rather restrictive on the beam’s Glauber coherence
properties; we therefore seek to relax this condition as much
as possible, while still being able to obtain a bound on the
scaling law for C. The fourth condition that we impose on the
beam which achieves this is as follows:

(4) Passably ideal Glauber (1),(2) coherence—The first- and
second-order Glauber coherence functions are passably close
to that produced by the state of an ideal laser, i.e., an eigenstate
|β(t )〉 of b̂(t ) with eigenvalue β(t ) = √

N ei
√

�W (t ) and W (t )
representing a Wiener process.
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Here the addition of “passably” in the above definition is
to distinguish this condition from the original Condition 4.
Explicitly, what we mean by our Condition 4 is∣∣g(1)

laser (s, t ) − g(1)
ideal(s, t )

∣∣ = O(1), (10a)∣∣g(2)
laser (s, s′, t ′, t ) − g(2)

ideal(s, s′, t ′, t )
∣∣ = O(C−1/2), (10b)

for all values of the time arguments such that the difference
between any two times is O(

√
C/N ). Consideration of this

time difference is to yield the tightest upper bound for the co-
herence of such a laser (see Theorem 1 below). The subscripts
“ideal” and “laser” seen in Eqs. (10a) and (10b) denote the
coherence functions pertaining to an ideal laser beam [i.e., that
which is described exactly by Eq. (6)] and those for a specific
laser model, respectively.

The difference between the current Condition 4 and the
original one conceived in Ref. [11] is that the latter would
replace O on the r.h.s. of Eqs. (10a) and (10b) with o. With
Bachmann-Landau notation, f (y) = o(g(y)) formally means
that for all positive constants, k, there exists a y0, such that,
for all y > y0, then | f (y)| < kg(y), while f (y) = O(g(y)) in-
stead means | f (y)| � kg(y), with k and y specified in the
same manner [16]. The former condition is thus a much
stricter requirement on the beam. The most important impli-
cation of this change is that this updated condition permits
g(2)

laser (s, s′, t ′, t ) to deviate considerably from an ideal laser
beam, therefore including models with sub-Poissonian beam
photon statistics. As we will see, this allows beams with
corresponding values of Q arbitrarily close to the minimum
of −1 to satisfy these four conditions.

In order for Condition 4 to be meaningful, such that one
may compare the coherence of a given laser beam and that of
an ideal beam, we define the “linewidth,” �, as

� := 4N /C, (11)

with C and N , respectively, given by Eqs. (1) and (5). This
does not necessarily imply that this quantity � corresponds to
the FWHM of a Lorentzian power spectrum as suggested from
the argument leading to Eq. (7). However, for the families of
laser models that we consider in this paper, g(1)

laser (s, t ) will
be shown to have an exponential decay to a good approxi-
mation, even in scenarios with maximal sub-Poissonianity in
the beam. Therefore, we can still identify the quantity 1/�

with the time in which it takes the phase inside the device
to become fairly randomized. Thus the intuition we provide
above for the coherence, that C is the number of mutually
coherent photons emitted into the beam, is still valid.

III. THE HEISENBERG LIMIT FOR C

We now move on to present a proof of the upper bound
for C, under the revised conditions discussed previously. This
proof closely follows that for Theorem 1 in Ref. [11], with
the difference here being that it is modified according to
Eqs. (10a) and (10b), such that a more general Heisenberg
limit for C is derived. Therefore, this limit encompasses laser
models that exhibit highly sub-Poissonian beam statistics. A
consequence of this generalization is that an upper bound with
a specific prefactor is no longer able to be obtained, only the
scaling C = O(μ4), which is nevertheless sufficient to talk

of the Heisenberg limit. The proof of the following theorem
bears a good deal of resemblance with that of Ref. [11],
and we will therefore utilize the lemmas involved within that
proof; these are stated explicitly in Appendix A.

Theorem 1: (Generalization of the upper bound on C).
For a laser which satisfies conditions 1–4 stated above, the
coherence is bounded from above:

C = O(μ4), (12)

with μ, the mean number of excitations within the laser.
Proof. This involves an observer, Effie, to first perform a

filtering heterodyne measurement on the beam over the time
interval [T − τ, T ). A second observer, Rod, is then tasked
with estimating the optical phase, φF , that is encoded on the
laser state at time T by Effie’s measurement. The methods
that Rod considers to carry this out are to either make a
retrofiltering heterodyne measurement on the beam over the
time interval (T, T + τ ] to obtain the estimate φR, or perform
a direct measurement on the laser to obtain the estimate φD.
The proof works by verifying that the result φR cannot outper-
form φD as an estimate of φF , such that an upper bound on
C will follow from known results on optimal covariant phase
estimation [56].

In order to describe the two heterodyne measurements in
this problem, the unitary operators eiφ̂R and eiφ̂F are defined,
which have unit-modulus complex eigenvalues and arguments
that give the phase estimates φF and φR for the respective fil-
tering and retrofiltering measurements. These operators may
be expressed as [57]

eiφ̂F = F̂/
√

F̂ †F̂ , (13a)

eiφ̂R = R̂/
√

R̂†R̂, (13b)

with

F̂ :=
∫ T

T −τ

dtuF (t )b̂(t ) + â†
F , (14a)

R̂ :=
∫ T +τ

T
dtuR(t )b̂(t ) + â†

R. (14b)

Here âF (R) are annihilation operators for the ancillary vac-
uum modes that enter into heterodyne detection and uF (R) are
normalized filter functions, which, for simplicity, are taken
as uF (t ) = uR(−t ) = τ−1/2[H (t ) − H (t − τ )], where H (t ) is
the Heaviside step function. By Lemma 4, we know that the
operators F̂ and R̂ are phase covariant (see Appendix A).

First, with Condition 3 (Stationary Beam Statistics), we
let the laser device be in its unique steady state, ρss

c . If Con-
dition 2 (Endogenous Phase) holds, then Lemma 2 implies
that this steady state will be invariant under all optical phase
shifts. Effie performs her filtering measurement to encode an
optical phase, φF , on the laser device corresponding to her
measurement outcome. Because this measurement is phase
covariant, and is being performed on a phase-invariant laser
state, Lemma 1 applies. This means that the conditioned state
of the laser following Effie’s measurement is equivalent to a
fiducial state (i.e., a state independent of the outcome φF ),
ρ0, with φF encoded by the generator n̂c. Crucially, this con-
ditioned state, ρc|φF = eiφF n̂cρ0e−iφF n̂c , has a mean excitation
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number μ regardless of the measurement outcome φF ; this is
verified from Lemma 3.

We now consider Rod’s heterodyne measurement. To com-
pare how correlated this retrofiltering measurement result,
φR, is with Effie’s result, φF , we consider the quantity 1 −
|〈ei(φ̂R−φ̂F )〉|2. This provides a convenient measure of the phase
spread by recognizing that, for small errors θ , 1 − |〈eiθ 〉| ≈

〈θ2〉 − 〈θ〉2 is the mean-square error (MSE) for an unbiased
estimate of θ . With the definitions provided in Eqs. (13)
and (14), it is possible to express this quantity as being
asymptotically equivalent to an expression involving the first-
and second-order Glauber coherence functions defined in
Eqs. (3a) and (3b) [11]; that is, for �τ � 1 and N τ � 1, one
has

1 − |〈ei(φ̂R−φ̂F )〉|2 ∼ 1

2N 2τ 2
+ 1

N τ 3

∫ τ

0
dt

∫ τ

0
dsg(1)(s, t ) + 1

2τ 4

[∫ τ

0
ds

∫ 0

−τ

ds′
∫ τ

0
dt ′

∫ 0

−τ

dtg(2)(s, s′, t ′, t )

−
∫ τ

0
ds

∫ τ

0
ds′

∫ 0

−τ

dt ′
∫ 0

−τ

dtg(2)(s, s′, t ′, t )

]
. (15)

It is straightforward to evaluate Eq. (15) for an ideal laser
described by the state |β(t )〉, as defined in Eq. (6). To leading
order in �/N , we find

1 − |〈ei(φ̂R−φ̂F )〉|2ideal ∼ 2

√
2�

3N . (16)

To arrive at this expression we have chosen τ = √
3C/2/N ,

as this choice for the time interval minimizes the error in
the retrofiltering measurement. This is done such that the
tightest possible bound for the coherence is obtained from this
method of proof. It is worth noting that while this prefactor
of

√
3/2 has been included for completeness, it is irrelevant

for what we require here. In fact, one could just as well set
τ = �(

√
C/N ) and arrive at the same result. This is because,

unlike Theorem 1 of Ref. [11], we are concerned only with
the scaling of the upper bound for C, rather than obtaining a
specific prefactor.

If one now considers an arbitrary laser model that satisfies
Conditions 1–4, it may be seen from Eqs. (15) and (16) that
the relative difference, �, in the MSE, between this model
and an ideal laser for the retrofiltering measurement, can be
bounded above:

� = O
(

max
s,t∈[0,τ ]

|δg(1)(s, t )|)
+ O

(√
N /� max

s,s′,t ′,t∈[−τ,τ ]
|δg(2)(s, s′, t ′, t )|), (17)

where

δg(n)(s1, . . . , s2n) := g(n)
laser(s1, . . . , s2n) − g(n)

ideal(s1, . . . , s2n).
(18)

From here we may write an expression for an upper bound
on the MSE from a retrofiltering measurement for such laser
models,

1 − |〈ei(φ̂R−φ̂F )〉|2laser � 2

√
2�

3N (1 + |�|). (19)

Invoking Condition 4, the relative difference � becomes O(1),
and the r.h.s. of Eq. (19) becomes O(

√
�/N ). Rewriting this

in terms of the coherence, from Eq. (11), we have

1 − |〈ei(φ̂R−φ̂F )〉|2laser = O(C−1/2). (20)

Rod’s second method of estimating φF is now considered.
This involves performing a direct optical phase measurement

on the laser. As stated above, the mean excitation number, μ,
of the laser is preserved after Effie performs filtering. This
means that Lemma 5 can be applied, and from this we can
identify from Eq (A4) φ̂ with φ̂D and φ̄ with φF plus the
average phase value of the fiducial state ρ0. Hence, we may
write

1 − |〈ei(φ̂D−φF )〉|2 � 4|zA/3|3μ−2, (21)

where zA ≈ −2.338 is the first zero of the Airy function [56].
The direct measurement that would achieve equality in

the above equation for the MSE would outperform any other
measurement of the phase at time T . This is because the
phase information imprinted onto the laser by Effie’s filtering
measurement is encoded only by the generator n̂c, as shown
by Lemma 1. We can therefore state that φD outperforms φR

as an estimate of φF . In terms of our measures of phase spread,
this amounts to the mathematical statement

1 − |〈ei(φ̂R−φ̂F )〉|2 � 1 − |〈ei(φ̂D−φ̂F )〉|2 (22)

for μ � 1. The upper bound on C then follows readily upon
applying Eqs. (20) and (21) to Eq. (22), that is,

C = O(μ4). (23)

�
It will be demonstrated numerically that C ∝ μ4 for three

specific families of laser models considered in this paper.
Asserting that this scaling is indeed at the Heisenberg limit,
Eqs. (10a) and (10b) are required to be verified; this is also to
be shown numerically.

IV. NUMERICAL METHODS

Calculating the observable quantities of interest, namely,
the coherence and Q parameter, for the laser models that we
are to introduce requires the evaluation of correlation func-
tions of the beam. Given the large size of the Hilbert space
of these systems, evaluating such functions using standard
numerical methods is a computationally expensive task. We
use infinite matrix product state (iMPS) techniques that have
been developed over recent decades, which make simulating
large systems more tractable by providing efficient ways of
describing the entanglement content of the wave function (see,
e.g., Refs. [58,59] for reviews). In this section we briefly
review the treatment of a laser in the context of an MPS
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FIG. 1. Basic schematic of the laser model applicable to the p-
and p, λ-families. A D-level cavity converts a pair of input qubits
(pump and vacuum) into a pair of output qubits (beam and sink) at
each time step of duration δt . Green arrows indicate the movement
of the input and output qubits from one time step to the next. The
chain of output qubits, of indefinite length, is described by an iMPS
with bond dimension D, equal to the Hilbert space dimension of the
laser cavity.

sequential quantum factory [60,61], which is outlined in detail
in Ref. [11], and discuss how particular physical quantities are
calculated within this framework.

A. iMPS of a laser beam

In order to describe a laser beam in an iMPS framework,
it is necessary to discretize the laser process by which in-
coherent excitations pumped into a cavity are converted into
coherent excitations within the output beam. To this end, we
consider the most basic form of a laser system as shown in
Fig. 1, which consists of five elements that are all essential for
operation: a “cavity” (c), pump (p), vacuum input (v), beam
(b), and sink (s). In this model of a laser, the pump and vacuum
inputs may be considered as a stream of incoming qubits into
the cavity, which itself is treated as a D-level system with the
nondegenerate number operator n̂c = ∑D−1

n=0 = n|n〉c〈n|. The
beam and sink are taken as a joint four-level system (o), such
that the laser consists of a single output in alignment with the
requirements of an MPS sequential generation scheme. Ad-
dressing the beam alone is thus achieved by tracing over the
sink. In this discretized approximation, a single-beam qubit
corresponds to an arbitrarily short beam segment of duration
δt , such that it is occupied by at most one photon, where the
bosonic operator for the beam is transformed as

√
δt b̂ −→ σ−

b ,
with σ−

b = |1〉b〈0|.
This discretized time evolution of the cavity and its outputs

is governed by the generative interaction

V̂q =
∑

jq+1,m,n

A
[ jq+1]
mn |m〉c〈n| ⊗ | jq+1〉o, (24)

where | jq+1〉o := |� j/2�q+1〉b ⊗ |( j mod 2)〉s is defined on
the output space. This generative interaction corresponds to
an isometry (a purity-preserving, completely positive, trace-
preserving map) from a D-dimensional vector space to a
4 × D-dimensional one. The isometry condition, V̂ †V̂ = ID,
with Im as the m × m identity matrix, translates to a complete-
ness orthonormality relation

3∑
j=0

A[ j]†A[ j] = ID. (25)

Of particular interest is the one-site unit-cell infinite MPS
(iMPS) that V̂ eventually creates. In terms of the A matrices,

this is given by

|�MPS〉 =
∑

..., jq0 , jq0−1, jq0−2,...

〈�(q = +∞)|c · · · A
[ jq0 ]
(q0 )

× A
[ jq0−1]
(q0−1)A

[ jq0−2]
(q0−2) · · · |�(q = −∞)〉c|

× . . . , jq0 , jq0−1, jq0−2, . . . 〉. (26)

Here |�(q)〉 represents the state of the cavity at the discrete
time q, and it is assumed that in the last step q = +∞ the
cavity decouples from the output. The (qi ) subscripts shown
above may also be dropped, which is permitted given that
the outputs are translationally invariant. It is the case for
all of our laser models that the largest-magnitude eigenvalue
of the iMPS identity transfer matrix in its flattened space,
T = ∑3

j=0 A[ j]∗ ⊗ A[ j], is nondegenerate. This ensures that
a unique steady state of the cavity exists and additionally
renders the boundary states, |�(q = ±∞)〉c, to be irrelevant,
in the sense that they will not appear in any calculations of the
correlation functions.

It is possible to relate this picture to one which is more
familiar to a traditional quantum optics framework by defining
a generative unitary interaction, Ûint, according to

V̂ |ψ〉c ≡ Ûint (|ψ〉c|1〉p|0〉v). (27)

Here the unitary would act on the Hilbert space of the cavity
and two input (pump and vacuum) qubits, to produce the
evolved cavity state along with the two output (beam and
sink) qubits. In doing so, this unitary describes the processes
by which excitations are gained and subsequently lost from
the laser system in a single, discretized time step of evo-
lution. In the typical case, for standard laser systems, Ûint

would describe a linear (in â and â†) interaction between a
harmonic oscillator storing the excitations ([â, â†] = 1) and
its surrounding environment [62]. The key change that is
necessary to surpass the SQL for laser coherence is to make
the interactions between the device and its environment highly
nonlinear.

For the models considered in this paper, we impose conser-
vation of energy on the unitary Ûint, i.e., n̂c + n̂v + n̂p = n̂′

c +
n̂′

v + n̂′
p (with primes denoting the operators following the

application of Ûint). In doing so, we ensure that Condition 2 is
satisfied, which requires that all phase information imprinted
on the beam proceeds only from the laser [11]. This results in
the D × D dimension A matrices being highly sparse, where
each matrix has at most a single nonzero diagonal, with O(D)
free parameters. For each matrix, these nonzero elements cor-
respond to the entries A[0]

m+1,m, A[1]
m,m, A[2]

m,m, and A[3]
m,m+1 and are

taken to be real and nonnegative, consistent with a spectral
peak at ω = 0.

These A matrices have clear physical interpretations: A[0]

describes the gain process into the cavity, relating to the am-
plitude of the cavity receiving an uncorrelated photon from
the pump without emitting a photon to the output. A[1] and
A[2] relate to the amplitude of the process where the cavity
receives a pump photon and sends it directly into the sink
and beam, respectively. A[2] is therefore set to zero, as the
photons emitted into the beam by this process add noise in-
stead of contributing to the beam’s coherence, therefore A[1] =√

ID − A[0]†A[0] − A[3]†A[3] in accordance with Eq. (25).
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Finally, A[3] describes the process of laser loss, which creates
the beam, and relates to the amplitude of the cavity receiving
an uncorrelated pump photon and emitting a single photon to
both the beam and the sink, de-exciting the cavity by a single
level.

It is furthermore possible to draw a connection between the
laser dynamics in the framework presented above and that of
a master equation for the cavity state, ρ̇ = Lρ. This may be
seen by considering the cavity state evolved by a single time
step δt in the iMPS framework,

ρ(t + δt ) =
∑

j

A[ j]ρ(t )A[ j]†. (28)

By taking the length of this discrete time interval to be in-
finitesimal, δt −→ 0+, a master equation is obtained with the
Liouvillian, L, taking the form

dρ

dt
= Lρ = N

(
D[Ĝ] + D[L̂]

)
ρ, (29)

where D[ĉ] := ĉ • ĉ† − 1
2 (ĉ†ĉ • + • ĉ†ĉ) is the usual Lind-

blad superoperator, and Ĝ and L̂ are “gain” and “loss”
operators, respectively, which specify how energy is added
and released from the cavity. These gain and loss operators
directly correspond to the iMPS operators B[0] := A[0]/

√
γ

and B[3] := A[3]/
√

γ , respectively, with γ = N δt . Explicit
forms of these are given in Sec. VI.

B. iMPS calculations of C, Q, and Glauber (1),(2) correlators

For the discretized laser model introduced above, calculat-
ing the coherence amounts to evaluating the quantity

C =
∞∑

q′=−∞
〈σ+

b (q + q′)σ−
b (q)〉. (30)

The method that is employed here to achieve this, as well as
the calculation of the first- and second-order Glauber correla-
tion functions, is the well-established method of manipulating
MPS transfer operators [58]. In Ref. [11] it was demonstrated
that, from this method, Eq. (30) may be reexpressed as

C = −2(1|(B[3]∗ ⊗ ID) · inv(QLQ) · (ID ⊗ B[3] )|1), (31)

which is written in flattened space, where superoperators such
as the transfer-type operators become D2 × D2-sized matrices
and D × D-sized operators are transformed into flattened D2-
sized vectors. Under this notation, inv(•) represents the matrix
inverse operation, and (1| ↔ ID and |1) ↔ ρss are the left-
and right-leading eigenvectors of T , both of which have their
eigenvalues equal to unity. This implies that the latter eigen-
vector satisfies the steady-state equation

∑
j Â[ j]ρssÂ[ j]† =

ρss. Finally, Q = ID2 − |1)(1|, and L represents the flattened
space version of the superoperator defined in Eq. (29).

A simplified expression for the Q parameter may also be
found in terms of this flattened space iMPS language. Starting
from Eq. (9), Q may be reexpressed as

Q = 2γ (1|(B[3]∗ ⊗ B[3] )inv(ID2 − QT Q) · (B[3]∗ ⊗ B[3] )|1).
(32)

Additionally, the first- and second-order Glauber coher-
ence functions are

G(1)(s, 0) = (1|(B[3]∗ ⊗ ID)E(s)(ID ⊗ B[3] )|1), (33a)

G(2)(s, s′, t ′, t ) = (1|(B[3]∗ ⊗ ID)E(s′ − s)(B[3]∗ ⊗ ID)

×E(t ′ − s′)(ID ⊗ B[3] )

×E(t − t ′)(ID ⊗ B[3] )|1), (33b)

where E(t ) := exp(N tL). It is also worth noting that
Eq. (33b) is for the specific time ordering s < s′ < t ′ < t , but
other time orderings may be calculated in a similar manner
following an appropriate permutation of the bosonic opera-
tors. Equations (33a) and (33b) will be of use when verifying
that our laser models satisfy Condition 4, details of which are
given in Appendix C.

V. COMMENTS ON PRACTICALITY

As we have touched upon in the previous section, in order
for a laser model to produce a beam with Heisenberg-limited
scaling of C, the interaction between the cavity and its en-
vironment must be highly nonlinear. In theory, this can be
achieved by choosing atypical forms of operators Ĝ and L̂
entering into the Lindblad terms of Eq. (29) [11]. While the
structure of these is similar to the standard creation and anni-
hilation operators, in the sense that they will raise and lower
the excitation number by one, respectively, their coefficients in
the number basis of the cavity would be considerably different
from the usual 〈n − 1|â|n〉 = √

n.
Engineering the unitary Ûint that would give rise to these

dynamics has been shown to be achievable in principle on a
circuit-QED architecture [11]. In that work, this was demon-
strated by considering two qubits that mediate an interaction
between a microwave resonator and its environment. Specifi-
cally, by having a standard Jaynes-Cummings-type interaction
between both qubits and the resonator, the required exotic
gain and loss processes may be controlled by modulating
the detuning of these qubits from cavity resonance. Although
this model is relatively straightforward to describe mathe-
matically, it would be technically challenging to implement
on near-term experimental hardware and was developed pri-
marily as a proof of principle to demonstrate achievability
of the Heisenberg limit for C. A potential alternative route
to implement these dynamics, which may be more feasible,
would be to work with a similar circuit-QED architecture,
but instead exploiting the disperse shift between a series of
microwave resonators and artificial atoms, and employing
reservoir engineering techniques similar to those utilized in
Ref. [63].

As we have shown in Ref. [18] and will also proceed
to demonstrate in this paper, there is no reason that these
engineered systems should produce a beam that exhibits Pois-
sonian beam photon statistics. This is unlike regular laser
devices, where the Poissonian photon statistics of the beam
is largely inherently ensured due to the standard gain mech-
anisms and linearity in â of cavity loss. To yield such beam
statistics would require exact tailoring of the gain and loss
processes that are specified by Ĝ and L̂, respectively. To attest
to this, we refer the reader to the red curve of Fig. 2(c)
in Ref. [18] for an example. This plots the behavior of the
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Mandel-Q parameter for a particular family of Heisenberg-
limited laser models as a function a model parameter that
modifies the flatness of the coefficients (in the number basis)
of the gain and loss operators. There we see that there is
there is nothing special about the Poissonain case (Q = 0)
within that curve. In particular, it is neither a maximum nor
a minimum, so a deviation in the operators that give rise
to that particular value of Q will lead to a deviation in the
photon statistics of the same size, and deviations in the sub-
Poissonian direction seem just as likely as deviations in the
super-Poissonian direction.

The current proofs of the upper bound for C in a given
device require constraints to be placed on the photon statistics.
In any practical system, the controls that would give rise to
the desired engineered unitary Ûint are of course expected to
be susceptible to technical imperfections. These imperfections
would cause deviations from the desired gain and loss pro-
cesses and, in turn, given the reasoning presented in above,
deviations away from the Poissonain beam photon statistics.
This means that when considering ultimate achievable bounds
on the production of coherence by a laser device, it is im-
portant, from both theoretical and practical perspectives, to
account for the photon statistics of a given laser model in
order to assert that it meets the criterion for the beam to be
considered Heisenberg-limited.

VI. FAMILIES OF LASER MODELS

A. Quasi-isometric, Markovian gain (p-family)

In this section we introduce three families of laser models,
each of which will be shown to to produce a beam with
Heisenberg-limited scaling of C for some range of parameter
values. The first family may be characterized by the master
equation

dρ

dt
= L(p,0)

M ρ = N (D[Ĝ(p,0)] + D[L̂(p,0)])ρ, (34)

describing the evolution of a D-level cavity introduced in the
preceding section. Here the subscript “M” in the Liouvil-
lain superoperator stands for “Markov,” p ∈ (0,∞), and the
nonzero elements of the gain and loss operators are defined
generally as

G(p,x)
n ∝

(
sin

(
π n+1

D+1

)
sin

(
π n

D+1

)
) px

2

, (35a)

L(p,x)
n ∝

(
sin

(
π n

D+1

)
sin

(
π n+1

D+1

)
) p(1−x)

2

, (35b)

which are expressed here in the number basis of the cavity for
(0 < n < D), where

G(p,x)
n ≡ 〈n|Ĝ(p,x)|n − 1〉, L(p,x)

n ≡ 〈n − 1|L̂(p,x)|n〉. (36)

The parameter x in Eqs. (35a)–(35b) can be any real number;
however, for the case at hand we set x = 0 therefore imposing
a “flat” gain operator with Ĝ(p,0)

n ∝ 1.

For this master equation (34), the steady-state cavity pho-
ton distribution may be found with ρn = |G(p,x)

n /L(p,x)
n |2ρn−1,

such that

ρn = α sinp

(
π

n + 1

D + 1

)
, (0 � n < D), (37)

where ρn = 〈n|ρss|n〉 and L(p,0)
M ρss = 0. For this distribu-

tion, the mean photon number is μ = (D − 1)/2, and in the
asymptotic limit, as D −→ ∞, the normalization factor has a
straightforward expression,

lim
D−→∞

Dα = √
π

�
( 2+p

2

)
�
( 1+p

2

) . (38)

This family of laser models, defined by Eqs. (34) and (35),
is a generalization of the original laser model that exhibited
Heisenberg-limited coherence. That model was found via an
optimization of the iMPS A matrices to maximize C, for D
finite, which suggested the ansatz (37) with p = 4 [11]. This
value of p was also used in the companion Letter [18] for
the additional two families of models discussed below. In
introducing this additional parameter, p, we are now able to
modify the variance of the steady-state cavity distribution and
thus explore the implications of this on the various physical
properties of the system. Comparing this with the two other
families of models that are to be introduced, we may dis-
tinguish this one by taking note of the gain process into the
laser. In this situation, we identify this family as having a
quasi-isometric, Markovian gain. Recalling that an isometric
operator, V̂ , requires V̂ †V̂ = ÎD, we deem the use of the term
“quasi-isometric” to be appropriate because Ĝ(p,0)†Ĝ(p,0) =
ÎD − �̂top, where �̂top is the projector onto the uppermost
cavity state,

�̂top := |D − 1〉〈D − 1|. (39)

Therefore, in taking the limit where the dimension of
the Hilbert space of the cavity tends to infinity, Ĝ(p,0) is
approximately isometric for the particular types of states we
concern ourselves with in this work; that is, for states with
negligible population in the uppermost cavity state in this
large-D limit. This point is addressed in more detail in Ap-
pendix B. Throughout this paper, this family of laser models
will be referred to as the p-family.

B. Nonisometric, Markovian gain (p, λ-family)

The second family of laser models we introduce may also
be characterized by a master equation in the form of Eq. (29),
with the Liouvillian L(p,λ)

M , such that

dρ

dt
= L(p,λ)

M ρ = N (D[Ĝ(p,λ)] + D[L̂(p,λ)])ρ. (40)

In addition to p, we have introduced another continuous
parameter, with x −→ λ ∈ R, which allows for a significant
modification to the form of the gain and loss operators of the
system, while preserving the steady-state cavity distribution
given in Eq. (37). Although λ may take any value within the
set of real numbers, of particular interest to us are values
falling within the range 0 � λ � 1. Here one may interchange
smoothly between a flat gain operator, with λ −→ 0.0, to a
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FIG. 2. (a–c) Nonzero matrix elements of the gain (green dots)
and loss (red crosses) operators for the laser family exhibiting a non-
isometric, Markovian gain model (i.e., the p, λ-family), for various
choices of λ and cavity dimension D = 500. (d) Steady-state cavity
photon distribution of the three laser families (37) for p = 3 (solid
red line), p = 4 (blue dashed-dotted line), and p = 4μ/π 2 (green
dashed line), with cavity dimension D = 500. Optimal coherence is
obtained in each family of models for p ≈ 4.15.

flat loss, with λ −→ 1.0. This relationship between λ and
the gain and loss operators is depicted in Figs. 2(a)–2(c),
while the influence of p on the cavity distribution may be
seen in in Fig. 2(d). As will be shown both numerically and
from heuristic arguments, modification of the gain and loss
operators in this manner will have notable implications on
both the coherence and photon statistics of the system. This
family of laser models, exhibiting in general a nonisometric
(Ĝ(p,λ)†Ĝ(p,λ) �≈ ÎD for λ �= 0), Markovian gain mechanism,
will be referred to as the p, λ-family according to the two key
parameters which characterize it.

C. Quasi-isometric, non-Markovian gain (p, q-family)

For the p, λ-family introduced above, we will demonstrate
that the beam exhibits sub-Poissonian photon statistics under
particular choices of parameter, but the maximum attainable
reduction in photon noise in the output field (that is, Q = −1)
is not achieved within this family. However, it is possible for
complete noise reduction to be attained, at least in principle,
for laser systems by introducing a mechanism by which the
pumping of excitations into the cavity is done so in a regular
manner [31–33,42,64–66]. The basic idea behind this can be
understood simply by a consideration of particle number con-
servation. That is, if every pumped excitation will sooner or
later be emitted as a photon into the beam, then the long-time
photon statistics of the output field will mirror that of the
pumping mechanism. Hence, for a completely regular pump,
complete photon noise reduction would be possible in the
output field for long counting intervals [64,65,67].

Over the years a number of models have been proposed
which can achieve this, for example, by making modifications
to the Scully and Lamb theory [68] to account for a regular
stream of excited atoms into the laser (see, e.g., Ref. [25] and

FIG. 3. (a) Basic schematic of the laser model applicable to the
p, q-family. The elements of this model are much the same as that
of Fig. 1. However, in this situation the pumping sequence has been
altered in order to facilitate the process by which pump excitations
are deposited in the laser in a regular manner. (b) Qualitative depic-
tions of particular examples of pumping sequences. Top row shows
the pumping sequence for the choice of parameter q = 0.0, where
the number of excitations absorbed by the cavity in some time �t is
sampled from a Poisson distribution. Bottom row shows the pumping
sequence where the entry of excitations into the cavity is made to be
perfectly regular by choosing q = −1.0. Here there is no variance in
the number of excitations absorbed by the cavity in the time �t .

references therein). Similar effects can be achieved through
internal mechanisms by which pump electrons are recycled
through a number of rate-matched energy levels [69,70].
To conclude this section we derive a master equation for a
laser which incorporates a regular pumping mechanism, with
the goal of producing a family of models that exhibit both
Heisenberg-limited coherence, as well as complete photon
noise reduction in the output field for long counting intervals
for a specific choice of parameter. Our derivation follows
closely that given in Ref. [42]; the aim here is to incorpo-
rate a continuous parameter into the model that allows for
a smooth interchange between a Poissonian and regular in-
jection of excitations into the D-level laser cavity mentioned
above.

In order to aptly model this process within an iMPS frame-
work, modifications must necessarily be made to the laser
model introduced in the previous section. This modified sys-
tem is depicted in Fig. 3(a). Comparing this with Fig. 1,
the most notable change is that that the pump qubits are no
longer exclusively in the excited |1〉p state. Although this is
the case, this scenario represents a much more energy-efficient
process as it is formulated in such a way so that essentially
every excited pump qubit will be converted into an excita-
tion within the cavity. In particular, we define two unitary
operators, Ûloss and Ûgain, which evolve system by a single
time step, δt , given that the pump qubit is in the state |0〉p

or |1〉p, respectively. Like the generative unitary interaction
for the previous iMPS laser model, these two unitary op-
erators map the 4 × D-dimensional vector space consisting
of the pump and vacuum input qubits, and the cavity, to a
4 × D-dimensional one corresponding to the beam and sink
generated by the cavity in δt , along with the evolved cavity
state.
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Explicitly, these operators are

Ûloss = exp [
√

γ (L̂(p,−q/2) ⊗ Îp ⊗ σ̂+
v

− L̂†(p,−q/2) ⊗ Îp ⊗ σ̂−
v )], (41a)

Ûgain = Ĝ(p,0) ⊗ σ̂−
p ⊗ Îv + Ĝ†(p,0) ⊗ σ̂+

p ⊗ Îv

+ �̂top ⊗ |1〉p〈1| ⊗ Îv + �̂bot ⊗ |0〉p〈0| ⊗ Îv. (41b)

Here Îp and Îv are 2 × 2 identity matrices acting on the
space of the input pump and vacuum qubits, respectively. �̂bot

is the projector onto the ground state of the cavity, |0〉c. The
nonzero elements of the gain and loss operators (G(p,0)

n and
L(p,−q/2)

n ) are the same as those given in Eqs. (35a)–(35b),
where we set x −→ 0 and x −→ −q/2 ∈ (−∞, 1/2), respec-
tively. Defining G(p,0)

n in this manner ensures that the process
of gain into the cavity corresponds to a completely positive,
trace-preserving operation, while L(p,−q/2)

n is defined in this
manner to preserve the steady-state cavity distribution (37)
(see Appendix B for details).

Considering generally a mixed cavity state, ρ(t ), the action
of each of these gain and loss unitary operators lead to the
incrementally evolved states

ρloss(t + δt ) = (1 + γD[L̂(p,−q/2)])ρ(t ), (42a)

ρgain(t + δt ) = [1 + (G − 1)]ρ(t ), (42b)

respectively, where G• = Ĝ(p,0) • Ĝ†(p,0) + �̂top • �̂top. To ar-
rive at these equations, we have traced over the beam and sink,
as well as neglected terms of order O(γ 3/2) and higher.

From here, we are in a position to incorporate pumping
statistics which differ from the standard Poissonian case. To
this end, we consider a short time, �t , such that a large
number, n(�t ), of pump excitations have entered the cavity.
Let us express this quantity in the following way:

n(�t ) = N�t +
√
N (q + 1)�W, (43)

where �W represents a Wiener increment [42] and q is the
Mandel-Q parameter of the gain process; that is, q −→ 0 cor-
responds to a Poissonian process and q −→ −1.0 corresponds
to a completely regular process [see Fig. 3(b) for a depiction
of each of these scenarios]. The change to the cavity state as a
result of the gain process in this time is then given by

ρgain(t + �t ) = (1 + D[Ĝ(p,0)] + D[�̂top])n(�t )ρ(t ). (44)

Here we are treating the gain and loss processes inde-
pendently. This is justified under the assumption that 1 �
N�t � D, as the action of the superoperators D[L̂(p,−q/2)]
and (G − 1) on the particular cavity states we consider in this
work are of order O(D−1). Details regarding this assumption
may be found in Appendix B. Furthermore, given that the
action of these superoperators is small, a binomial expansion
of Eq. (44) is permitted, which, to second order in (G − 1), is

ρgain(t + �t ) ≈ {1 + n(�t )(G − 1)

+ (1/2)n(�t )[n(�t ) − 1](G − 1)2}ρ(t ).
(45)

Averaging over the uncertainty in the number of excitations
added to the cavity and taking the limit �t −→ 0+, one obtains

the master equation

dρ

dt
= L(p,q)

NM ρ = N
(
D[Ĝ(p,0)] + q

2
D[Ĝ(p,0)]2

+D[L̂(p,−q/2)]
)
ρ, (46)

where we have also reinstated the loss term, D[L̂(p,−q/2)]. Here
the subscript “NM” stands for “non-Markovian.” In order to
maintain consistency with Eq. (34), such that Eq. (46) reduces
to the master equation for the p-family for q −→ 0, we have
also let (G − 1) ≈ D[Ĝ(p,0)]. Strictly speaking, one should
have (G − 1) = D[Ĝ(p,0)] + D[�̂top]; however, though this
neglected term is significant in general, it may be ignored by
considering the same argument as before; that is, because the
edge elements for the class of states considered in this study
are negligible, the contribution of D[�̂top] in Eq. (46) will also
be negligible. The reader is again referred to Appendix B for
details.

Equation (46) is only an approximate description of a reg-
ularly pumped laser, being a Markovian equation describing
a generally non-Markovian process. However, equations of
the same form as this have commonly been employed in
laser theory [25,31,40,42,65], and we will indeed show that
reasonable results are obtained from our subsequent analysis.
This family of laser models can be thought of exhibiting a
quasi-isometric, non-Markovian gain mechanism. In line with
our notation for the other two families of laser models, we will
refer to this as the p, q-family.

VII. COHERENCE AND SUB-POISSONIANITY

In this section, we employ Eqs. (31) and (32) to compute
the quantities C and Q, respectively, for our three families of
laser models (34), (40), and (46). In doing so, we systemati-
cally explore the parameter space that is characteristic to each
family to ascertain the influence that these parameters have
on the coherence and Mandel-Q parameter for each of the
laser beams. We note that throughout this section, and for the
remainder of this paper, we let N = 1 to set a convenient unit
for time.

As an initial result, we show that Heisenberg-limited scal-
ing for the coherence may be realized in each of our three
families of laser models. Figure 4 shows iMPS calculations
of C for each family plotted against the “cavity” dimension,
D, ranging between D = 50 and D = 1000. In this plot, the
particular choice of the other parameters is p = 4.15 for
the p-family, p = 4.15 and λ = 0.5 for the p, λ-family, and
p = 4.15 and q = −1.0 for the p, q-family. These parameter
values are those which maximize C in each family. Fitting a
power law C = cμw [recalling that μ = (D − 1)/2] indicates
that the coherence scales with the fourth power of μ in each
case. By construction, each of these families of laser models
satisfies the first three conditions on the laser and its beam
(that is, One-Dimensional Beam, Endogenous Phase, and Sta-
tionary Statistics) [11]. In Appendix C we verify numerically
that Eqs. (10a) and (10b) are satisfied, therefore demonstrating
that Condition 4 is also fulfilled. From this, we may say that
for these particular parameter values, these laser families all
perform at the Heisenberg limit. Moreover, we find that the
largest coherence is attained within the p, q-family, with the
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FIG. 4. iMPS calculations of the beam coherence for our three
families of laser models as a function of dimension D = 2μ + 1.
Squares correspond to the laser family with the partially isometric,
Markovian gain model (p-family); triangles to the nonisometric,
Markovian gain model (p, λ-family); and diamonds to the partially
isometric, non-Markovian gain model (p, q-family). Parameters are
chosen such that beam coherence is maximized; these are p =
4.1479, (p, λ) = (4.1479, 0.5) and (p, q) = (4.1479, −1.0) for each
family, respectively. Solid black lines are fits to the data for D ∈
[550, 1000], assuming a power law. Respectively, these are C =
0.0040D4, C = 0.0082D4, and C = 0.0140D4.

prefactor c in this optimized model being approximately four
times larger than that for the p-family, and approximately
twice as large as that for the p, λ-family.

Looking at the influence of the characteristic parameters
in more detail, we first direct our focus towards the p-family,
which is the most straightforward of the three. Bringing one’s
attention to Fig. 5(a), a number of qualitative statements can
be made with regard to the behavior of the coherence for
this family from this plot. The red dots in Fig. 5(a) show
iMPS calculations of the coherence normalized to its maximal
value, C0, as a function of the parameter p for a “cavity” of
fixed dimension D = 1000. As p is increased from its lowest
value, a rapid increase in the coherence is seen before reaching
its maximum value at p ≈ 4.1479. Increasing p above this
optimal value, the coherence decreases monotonically from
C0 at a relatively gradual rate. Strictly speaking, the location
of the peak for the coherence has a small dependence on D;
however, from the analysis presented in Sec. VIII we find that
p = 4.1479 maximizes the coherence in the asymptotic limit
D −→ ∞. Aside from this, the overall qualitative behavior
of the coherence seen in Fig. 5(a) was found to be inde-
pendent of D for sufficiently large values of this parameter.
Moreover, apart from a multiplicative factor, this behavior
with respect to p is preserved in the p, λ- and p, q-families
regardless of λ and q [see Figs. 5(c) and 5(e)]. Determining
these multiplicative factors is the subject of the following sec-
tion within this paper, where analytical methods are employed
to compute the coherence for each of these families of laser
models.

This behavior of the coherence with respect to relatively
low values of p seen in Figs. 5(a), 5(c), and 5(e) can be elu-
cidated by considering what is shown in Figs. 5(b), 5(d), 5(f).
There each data point (red dots) indicates, for a given value of
p, the exponent w in a power law fitted to C when evaluated
as a function of μ. For instance, the plots in Fig. 4 show a
particular example of this for p = 4.15, and similar raw data
are used to determine each data point shown in Figs. 5(b),
5(d), 5(f) for the various values of p considered. We again

FIG. 5. (a, c, e) iMPS calculations of the beam coherence (red
dots) for the p-, p, λ-, and p, q-families of laser models described in
the text as a function of p for a cavity dimension D = 1000. These
values for the coherence have been normalized to the maximum value
of that obtained from the p-family, for which p = 4.1479. Solid black
curves show the corresponding formulas for each family of models
given by Eqs. (53), (58a), and (58b). Additional choice of parameters
for the sub-Poissonian laser families is λ = 0.5 for the p, λ-family
and q = −1.0 for the p, q-family, which yield maximum photon
noise reduction in the beam. (b, d, f) Exponent w (red dots) from
the result of fitting C = cμw for particular choices of p, obtained
for iMPS calculations up to bond dimension D = 1000 for the three
families of laser models shown in the left-hand panels. Solid black
lines depict w = min(p + 1, 4) as a guide for the eye.

make the point to emphasize that these plots are independent
of the parameters λ and q, and therefore the scaling of the
coherence with μ for each family depends only on p. In
particular, we find that two distinct regimes may be identified
for the behavior of the coherence with respect to p. For values
p � 3, the coherence appears to be sub-Heisenberg-limited,
with the exponent roughly obeying the formula w = p + 1.
This explains the rapid change in the coherence that is seen in
Figs. 5(a), 5(c), and 5(e) for these relatively low values of p.
On the other hand, for values p � 3, w becomes constant and
the coherence is Heisenberg-limited, being proportional to μ4.
Although values p > 6 are not shown here, it was found that
this scaling is preserved for larger choices of p. This implies
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FIG. 6. (a, c) iMPS calculations of beam coherence for the
p, λ-family and p, q-family, respectively, and with cavity dimension
D = 1000. These values of the coherence have been normalized to
the maximum of that obtained for the p-family of lasers for D =
1000. Crosses show the parameter choices which yield maximum
coherence, according to Eqs. (58a) and (58b), which are located at
(p, λ) = (4.1479, 0.5) and (p, q) = (4.1479, −1.0), respectively. (b,
d) Same as that shown for (a) and (c) but with normalized coherence
substituted with the Mandel-Q parameter of the beam. Dashed lines
show the parameter choices which yield minimum Q values, Q =
−0.5 and Q = −1.0 for the p, λ-family and p, q-family, respectively.

that the monotonic decrease in the coherence as a function of
p above the optimal value of p ≈ 4.1479 seen in Figs. 5(a),
5(c), and 5(e) is a result of the specific form of prefactor c in
the power law C = cμw, and not the exponent w. Heuristic
arguments to explain the behavior of w between these two
distinct regimes are provided in Sec. VIII.

It is more interesting, however, to view the behavior of
the coherence in conjunction with that of the Q parameter
of the output field shown in Fig. 6. In Fig. 6(a) we provide
a density plot of the coherence as a function of p and λ for
the p, λ-family for D = 1000. Recall that for λ = 0.0, the
p, λ-family reduces to the p-family. In this case, the system
exhibits a flat gain such that Ĝ(p,λ=0) is essentially a finite
version of the Susskind-Glogower operator [71]. Assuming a
cavity state with negligible coefficient in its top level, |n =
D − 1〉, the action of this operator will preserve the phase
statistics. Therefore, essentially no phase noise will be added
via the gain process in this scenario [72]. On the other hand,
Fig. 6(a) shows that for a given value of p, the coherence is
maximized by choosing λ = 0.5, for which C is twice that
for the p-family with the same value of p. In this situation, a
symmetry is imposed on the system where the matrix elements
for the gain and loss operators are defined as reciprocals to one

another. Given this observation, it is apparent that reducing
the phase noise induced by the loss mechanism at the expense
of that induced by the gain, to an extent, is advantageous to
increase the coherence.

In Fig. 6(b) we plot Q for the p, λ-family against the same
parameters in Fig. 6(a). This shows that the photon statistics
are independent of p, and that the beam for the p-family is al-
ways characterized by Poissonian photon statistics (Q = 0.0).
We, however, find that Q is minimized to a value of −0.5 when
λ = 0.5, which corresponds to a 50% reduction in the number
fluctuations of the laser beam below the shot noise limit for
long counting intervals. This minimum value of Q is found at
exactly the same values which maximize the coherence within
this family of laser models. Given this apparent “win-win”
situation between C and Q for the p, λ-family leads us to the
conclusion that there is no tradeoff between coherence and
sub-Poissonianity for Heisenberg-limited lasers.

As we have pointed out earlier, this minimum of Q = −0.5
seen for the p, λ-family can be surpassed, and complete noise
reduction for long times (Q = −1.0) is achievable by em-
ploying a regular pumping mechanism within the laser. This
is exactly what we demonstrate in Fig. 6(d), which displays
the Q parameter for our p, q-family against the parameters
p and q, again with D = 1000. As anticipated, we find that
the Q parameter of the output field mirrors exactly that of
q, the Mandel-Q parameter of the pumping mechanism. For
completely regular pumping, q −→ −1, we find Q −→ −1 (re-
gardless of p), corresponding to 100% reduction in the photon
number fluctuations in the beam for long counting times. In
addition to this, for a given p, we find that C is maximized
with q −→ −1, which is approximately four times that for
the p-family for the same value of p [see Fig. 6(c)]. This
takes the results for the p, λ-family a step further, by demon-
strating that this synergistic effect between coherence and
sub-Poissonianity in the output field persists in Heisenberg-
limited lasers, even when extreme measures are taken to
completely eliminate the photon noise in the beam. These
results together mark a generalization of the findings from
previous studies relating to lasers with linear loss [40–43],
where we have extended the notion that a tradeoff between
C and Q does not necessarily exist, even for lasers with a
phase diffusion rate that is far smaller than any laser model
previously studied. Moreover, these results show that there
is a “win-win” relationship between these two quantities, as
minimizing Q comes hand in hand with a maximization of C.

Another observation to make here is with regard to the cor-
relation time of the photon statistics. For the sub-Poissonian
laser models we consider, the correlation time of g(2)

ps (τ ) is
much shorter than the coherence time, such that a significant
degree of sub-Poissonianity in the beam may be observed
for counting intervals where the phase of the beam remains
fairly well defined. This can be seen by considering both the
p, λ- and p, q-families under the choice of parameters which
minimize Q; respectively, these are λ −→ 0.5 and q −→ −1
(regardless of the value of p). It is shown in Appendix C,
in both scenarios, that 1 − g(2)

ps (0) = �(C−1/2). Assuming an
exponential decay for these functions (this is not strictly true
for relatively small values of p, but is reasonable to assume
for this qualitative argument), obtaining values of Q = �(1)
with these parameter choices, as was demonstrated above,
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requires the correlation time to be �(C1/2) in accordance
with Eq. (9). Interestingly, this is of the same order as the
optimal time for the filtering or retrofiltering measurements
used in Theorem 1 (recalling the choice N = 1), which is
a factor of μ−2 shorter than the coherence time of these
laser models. This detail regarding the photon statistics of
these laser families will be explored in more depth in future
work.

VIII. GENERALIZED FORMULAS
FOR LASER COHERENCE

In this final section of results, we derive formulas for the
laser coherence of our three families of laser models for a
large range of values for p. These formulas are shown to be
valid in the asymptotic limit D −→ ∞ for values p � 3, for
which Heisenberg-limited scaling, C = �(μ4), is achieved as
indicated in Figs. 5(b), 5(d), and 5(f). In addition to this,
although expressions for C that are valid for p � 3 are unable
to be obtained here, this analysis does give insight into the
change in the exponent for the power law C = cμw to sub-
Heisenberg-limited scaling for these parameter values.

A. p-family

We begin by focusing on the p-family, which exhibits
Poissonian beam photon statistics. In order to derive an ex-
pression for the laser coherence, we appeal to the fact that the
first-order Glauber coherence function is well approximated
by that of an “ideal” laser state given by Eq. (6), that is,

g(1)(t ) ≈ exp (−�|t |/2). (47)

Moreover, we assume that this holds to a first-order approxi-
mation for an arbitrarily short time interval δt , which allows
one to write

Tr[L̂(p,0)†L(p,0)
M (L̂(p,0)ρss)] ≈ −�

2
. (48)

This is justified on inspection of Fig. 7(a), which shows
numerical calculations of g(1)(t ) overlapped with the func-
tion e−�|t |/2, with � = 4N /C computed numerically. For short
times, we see that the approximation of Eq. (48) is reasonable.

Using the photon-number basis {|n〉} to evaluate the trace
in Eq. (48), we can write it as the sum

D−1∑
n=0

f (p,0)
n ≡ Tr[L̂(p,0)†L(p,0)

M (L̂(p,0)ρss)]. (49)

The elements f (p,0)
n may be written in terms of the elements

of the steady-state cavity distribution,

f (p,0)
n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 n = 0,

−ρ2
0

2ρ1
n = 1,

ρD−2

2

(√
ρD−3

ρD−2
−

√
ρD−2

ρD−1

)2 − ρD−2

2 n = D − 1,

−ρn−1

2

(√
ρn−2

ρn−1
−

√
ρn−1

ρn

)2
otherwise.

(50)

If one can evaluate the sum given by Eq. (49), then an estimate
for the linewidth of the laser can be obtained. This does not ap-

FIG. 7. (a) iMPS calculations (red dots) of the first-order Glauber
coherence function g(1)(s, 0) for the p-family of laser models, with
p = 4.15 and D = 300 over 10 coherence times, 1/�. Green lines
show the first-order Glauber coherence function for an ideal laser
state, g(1)(s, 0) = exp(−�|s|/2). The inset gives the same as what is
shown in the larger panel, yet over a much shorter timescale such
that exp(−�|s|/2) ≈ −�|s|/2. (b) Same as that shown in (a), but for
the p, λ-family of laser models where λ = 0.5. We have omitted
showing this for the p, q-family of laser models as these results are
essentially the same as those shown for the p, λ-family in (b), where
deviations occur between the laser model’s and ideal laser’s g(1)(s, 0)
behavior for very short times when sub-Poissonian photon statistics
are imposed on the beam.

pear trivial at first glance. Luckily, significant simplifications
can be made by investigating the behavior of f (p,0)

n against
the parameter p, which is depicted in Figs. 8(a) and 8(b) for
two different choices of cavity dimension. The solid black
lines in these plots show the exact elements of the sum for
values of p = 3, 4, 5. From this, along with Eq. (50), we can
identify two distinct regimes based on the dominant terms in
the sum and how they change with p for D � 1. In particular,
terms near the midpoint (n ≈ μ) are of order O(D−5), and,
roughly speaking, there are O(D) elements that scale in this
manner. Therefore, it would be expected that together these
terms would contribute a quantity of order O(D−4) to the
total sum. On the other hand, we find that the edge elements
have a greater dependence on the parameter p, where in the
extreme cases (e.g., n = 1 and n = D − 1) they are of order
O(D−(p+1))—note the sudden “flip” in the plots in moving
from p > 4 to p < 4 as these edge elements suddenly be-
come the largest terms in f (p,0)

n . The first of these regimes is
therefore identified for values p > 3, where the sum is domi-
nated by the elements around the midpoint, while the second
is identified for values p < 3, where the edge elements are
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FIG. 8. (a) Absolute values of the diagonal elements defined
by f (p,0)

n = [L̂(p,0)†L(p,0)
M (L̂(p,0)ρss )]n,n for cavity dimension D = 300.

Solid black lines show the exact elements, while markers indicate
the elements obtained from the approximation given in Eq. (51).
Respectively, red crosses, green dots, and blue diamonds correspond
to the cases of p = 3, 4, 5, respectively. Note that only a subset of
equally spaced elements is marked here for clarity. (b) Same as
for (a), but with an increased cavity dimension to D = 10 000. (c,
d) Same as (a) and (b), respectively, but for the sum defined by
f (p,λ)
n = (L(p,λ)

M �φ=0
c )n,n+1 and with λ = 0.5. (e–f) Same as (a) and

(b), respectively, but for the sum defined by f (p,q)
n = (L(p,q)

NM �φ=0
c )n,n+1

and with q = −1.

instead dominant. As the coherence is directly proportional to
the inverse of

∑
n f (p,0)

n [assuming that Eq. (48) holds], from
this behavior one should expect a change in the scaling of C
with μ when moving between these regimes. This competition
between the central and edge elements of f (p,0)

n therefore
explains the behavior observed in Fig. 5(b), as the exponent
changes from w ≈ p + 1 for p < 3, to w ≈ 4 for p > 3.

Guided by this insight, we now attempt to evaluate Eq. (49)
for p > 3 by considering the elements 1 < n < D − 1, and
performing a Taylor series expansion of f (p,0)

n about the point
π/(D + 1) = 0, which, to leading order in π/(D + 1), is

f (p,0)
n ≈ − π9/2 p2

8(D + 1)5

�
( 2+p

2

)
�
( 1+p

2

)
×

[
1 + cot2

(
π

n + 1

D + 1

)]2

sinp

(
π

n + 1

D + 1

)
. (51)

The validity of this approximation can be visualized in
Figs. 8(a) and 8(b), where the marked points correspond to an
evenly spaced subset of the elements within the approximation
of Eq. (51). These are plotted on top of the exact elements of

the sum given by the solid lines. Even for moderately large
values of D, this approximation is very accurate for p > 3.

It is possible to evaluate the sum within this approximation
by taking the limit D −→ ∞ and converting it to an integral
by defining the continuous parameter x := π (n + 1)/(D + 1),
which takes values in [0, π ):

lim
D−→∞

D−1∑
n=0

f (p,0)
n = −π7/2 p2

8D4

�
( 2+p

2

)
�
( 1+p

2

)
×

∫ π

0
dx[1 + cot2 (x)]2 sinp (x). (52)

After evaluating the integral in the r.h.s. of this equation, a
formula for � is obtained from Eq. (48) and, in turn, the
coherence for the p-family,

C(p,0) = 256

π4 p2

�
( p+1

2

)
�
( p−2

2

)
�
( p+2

2

)
�
( p−3

2

)μ4, (D −→ ∞, p > 3). (53)

Equation (53) is compared with the numerical evaluation
of C for D = 1000 in Fig. 5(a). Excellent quantitative agree-
ment is observed between these two methods of analysis for
all values of p � 3. Indeed, Eq. (53) correctly predicts the
peak in the coefficient for the power law C = cμ4, being at
p = 4.1479. This optimal value can be found by evaluating
the stationary point for the prefactor in the above equation as
a function of p. We begin to see significant deviations between
our numerical and analytical results within the lower extreme
for which Eq. (53) is defined, where 3 < p < 4. We expect
that numerical results for larger system sizes would yield
better agreement with the analytical formula in this region,
although showing this is exceedingly computationally expen-
sive and therefore not addressed in the present paper.

B. Sub-Poissonian laser families

Unfortunately, one cannot directly apply the arguments de-
tailed above to obtain formulas for the coherence of the more
general p, λ- and p, q-families, which exhibit sub-Poissonian
beam photon statistics. The reason for this can be seen in
Fig. 7(b), which shows g(1)(τ ) for these two families for the
choice of parameters that maximize C and minimize Q, along
with that produced by an ideal beam, g(1)(τ ) = exp(−�|t |/2).
Here we can see that although the first-order Glauber co-
herence functions of these families are essentially identical
to the characteristic exponential decay exhibited by an ideal
laser for relatively long times, small deviations between these
two functions are observed for relatively short correlation
times. This invalidates the first-order approximation given in
Eq. (48).

In order to work around this, we take a heuristic approach
and find that replacing Eq. (48) with the ansatz

D−1∑
n=0

(
L�φ=0

c

)
n,n+1 ≈ −�

2
(54)

corrects the small deviation seen in the short-time behavior
observed in Fig. 7(b). Here we utilize the state �

φ
c , which is a
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projector onto the pure cavity state

|ψφ〉c =
D−1∑
n=0

√
ρneiφn|n〉, (55)

such that the uniformly weighted ensemble reproduces the
incoherent steady state of our families of laser models, i.e.,∫ 2π

0 �φ
c dφ/(2π ) = ∑D−1

n=0 ρn|n〉〈n|. The l.h.s. of Eq. (54) can
be thought of as an average of the decay of the off-diagonal
components of this pure cavity state; however, we do not
provide a rigorous justification for this equation. Regardless,
it will be shown that this expression provides a remarkably
powerful method of computing the coherence. In particular,
by starting with this instead of Eq. (48) and following the steps
which led to the general expression of the laser coherence for
the p-family, similar expressions are able to be derived for the
p, λ- and p, q-families, which are just as accurate.

With this caveat, we proceed to derive a general formula for
the coherence of our p, λ- and p, q-families of laser models.
Mirroring the steps outlined in Part A of this section, we
have the sum elements f (p,λ)

n = (L(p,λ)
M �φ=0

c )n,n+1 and f (p,q)
n =

(L(p,q)
NM �φ=0

c )n,n+1, which can be expressed as

f (p,λ)
n = −√

ρnρn+1

2

{[(
ρn−1

ρn

) (1−λ)
2

−
(

ρn

ρn+1

) (1−λ)
2

]2

+
[(

ρn+1

ρn

) λ
2

−
(

ρn+2

ρn+1

) λ
2

]2}
, (56a)

f (p,q)
n = −√

ρnρn+1

2

[(
ρn−1

ρn

) (2+q)
4

−
(

ρn

ρn+1

) (2+q)
4

]2

.

(56b)

Equation (56b) has been obtained slightly less rigorously
compared to Eq. (56a), which is largely due to the nontrivial
dynamics imposed by the non-Markovian pumping process.
Nonetheless, the resulting formula for C derived through these
means accurately matches our numerical evaluations. Per-
forming a Taylor series expansion about the point π/(D +
1) = 0 in Eqs. (56a) and (56b) gives, respectively,

f (p,λ)
n ≈ (2λ2 − 2λ + 1) f (p,0)

n , (57a)

f (p,q)
n ≈ (1 + q/2)2 f (p,0)

n . (57b)

Equations (56) are compared with Eqs. (57) in Figs. 8(c)–8(f).
It can be seen there that the behavior of the edge elements
for these sums with respect to p is the same as that for the
p-family, and the approximations given in Eq. (57) are very
accurate. Applying the same arguments as those used to move
from Eq. (51) to Eq. (53) leads directly to an expression of the
coherence for the p, λ- and p, q-families, respectively, with

C(p,λ) = C(p,0)

2(λ − 1/2)2 + 1/2
, (58a)

C(p,q) = C(p,0)

(1 + q/2)2
. (58b)

For D −→ ∞, p > 3 in both cases. Equations (58a) and
(58b) correctly predict the coherence for the respective fami-
lies of laser models for the same values of p for which Eq. (53)

is valid. This agreement is also shown in Figs. 5(c) and 5(e),
where the two equations given directly above are compared
with iMPS calculations of the coherence for D = 1000 for
specific parameter choices that minimize the Q parameter of
the beam.

IX. DISCUSSION AND CONCLUSIONS

In this paper we have expanded upon the seminal result
of Ref. [11] by providing a study of lasers which exhibit
Heisenberg-limited coherence as well as sub-Poissonian beam
photon statistics. Much of this serves to supplement the com-
panion Letter [18], which summarizes the key results of this
study, while also providing many additional findings that
substantially develop our understanding of laser models ex-
hibiting Heisenberg-limited coherence.

In particular, we have detailed the generalized proof of the
upper bound for laser coherence, showing that C = O(μ4) is
the Heisenberg limit for a much broader class of lasers. This
class of lasers encompasses particular beams which can have
a Mandel-Q parameter for long photon-counting durations on
the beam arbitrarily close to the minimum of Q = −1 [54].
From this result we introduced three families of laser models,
all of which were shown to demonstrate Heisenberg scaling of
C with μ under appropriate parameter choices. Two of these
families, namely, the p, λ-family and p, q-family, which re-
spectively exhibited a nonisometric, Markovian gain process
(parameterized by λ) and a partially isometric, non-Markovian
gain process (parameterized by q), were shown to have sub-
Poissonian beam photon statistics, with negative values of
Q under particular parameter values. For the p, λ-family, a
minimum of Q = −0.5 was obtained, corresponding to a 50%
reduction of the photon noise in the beam below the shot-
noise limit at cavity resonance. This was obtained for the
choice of parameter λ = 0.5, corresponding to a scenario
where the matrix elements specifying gain and loss into and
out of the laser device were defined as reciprocals to one
another. For the p, q-family, complete photon noise reduction
in the beam was acquired (Q = −1) when the pumping of
excitations into the cavity was done so in a completely regular
manner, corresponding to the choice of parameter q −→ −1.

This in turn led the to a central result of this paper, and
that of the companion Letter to this work [18], as it was
found that the exact choice of parameters which minimize
the Q parameter of the beam (i.e., those which maximize the
degree of sub-Poissonianity) within the two sub-Poissonian
families of laser models also maximized the coherence. In
particular, in the asymptotic limit μ −→ ∞, it was found that
λ influences the coherence of the p, λ-family by modulating
that of the p-family with a Lorentzian function centered at
λ = 0.5, with a peak of 2, and a FWHM of �λ = 1 [see
Eq. (58a)]. Furthermore, q was found to influence the coher-
ence of the p, q-family by modulating that of the p-family
with the function 1/(1 + q/2)2 [see Eq. (58b)]. This led to
the conclusion that a tradeoff between coherence and sub-
Poissonianity in Heisenberg-limited laser models does not
exist. To the contrary, taking measures to minimize Q also
gives rise an increase in C for the specific laser models studied
here. This tradeoff is well known to not exist in laser models
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with coherence at the SQL [43]. The result at hand therefore
marks a generalization of these results to laser models which
have a vastly smaller (Heisenberg-limited) rate of phase dif-
fusion.

Identifying why this “win-win” relationship occurs be-
tween coherence and sub-Poissonianity in general appears as
a subtle problem, because of the fact that the gain and loss
processes within these Heisenberg-limited laser systems are
highly nonlinear. However, there is a relatively straightfor-
ward interpretation for this behavior within the p, q-family
of models, where physical insight may be drawn from the
results gathered from Sec. VIII. It is clear for all the mod-
els presented above that achieving Heisenberg-limited laser
coherence requires the cavity number distribution to be much
broader than a Poissonian distribution. However, as indicated
in Fig. 8, there are constraints to how broad the optimal
distribution should be. There it can be seen that detrimental
effects of the edge elements in the dynamics become present
at relatively low values for p, while suggesting an optimal cav-
ity distribution of ρn ∝ sin4.15[π (n + 1)/(D + 1)]. The effect
of regularizing the pump within the p, q-family results in a
reduction in the intensity noise introduced to the system via
the pumping process; this will tend to narrow the intracavity
distribution. In order to compensate this, and preserve the
optimal cavity distribution, the elements of the loss operator,
L(p,−q/2)

n , defined in Eq. (35b) become “flatter” as a function
of n. Intuitively, this will decrease the phase noise added
to the system by the loss process, since we have seen that
both the gain and loss must be close to flat to achieve a
Heisenberg-limited coherence. Hence, having a more regular
pumping scenario will increase the coherence compared to a
less regular one (higher values of q).

This physical interpretation is clearly model specific and
does not explain the compatible relationship between coher-
ence and sub-Poissonianity within the p, λ-family. Insight
into this question more generally may be achieved through
an analysis of these systems in different parameter regimes,
where the gain and loss processes may be linearized allowing
for analytical results for the first- and second-order Glauber
coherence to be more easily obtained. These investigations
will be a topic of future work.

Along with the aforementioned results, we were also able
to derive formulas for the coherence of the three families
of laser models which accurately reproduced the numerical
results for large μ. These formulas hold in the regime defined
by p � 3, where the laser families exhibit Heisenberg-limited
coherence, C = �(μ4), in the asymptotic limit μ −→ ∞. In
particular, these formulas support the notion that p = 4.1479
is optimal to maximize the coherence in each family, which
deviates slightly from the value p = 4 used as an ansatz in
Ref. [11]. Although these formulas do not readily generalize
to the regime of p � 3, where the μ4 scaling of the coherence
is lost, we were able to provide heuristic arguments based on
our analysis to explain this change of scaling.

Looking outwards towards additional future work, a num-
ber of avenues are open. First, as we have not provided
any rigorous justification for the use of Eq. (54), one could
investigate why this ansatz serves as such an accurate for-
mula to predict the linewidth. In particular, why does this

equation work in general for the p, λ- and p, q-families (i.e.,
those which exhibit sub-Poissonian beam statistics), while a
simple first-order expansion in t of Eq. (47) does not? Second,
one could also explore the fundamental limits for laser coher-
ence under different assumptions on the beam. For example,
we believe the limit found in Ref. [11] can be tightened
with a more elegant condition on the beam, being that it is
exactly describable by a coherent state undergoing pure phase
diffusion [46,48]. This would be a much stricter requirement
on the beam compared to Condition 4 of both this paper and
that in Ref. [11], as it would also place constraints on the
Glauber coherence functions given in Eq. (4) above second
order. Preliminary numerical results suggest that this regime,
where the beam may be described by a coherent state with
diffusing phase, may be realized with our p-family in the limit
D −→ ∞ and p � 1.
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APPENDIX A: SUMMARY OF LEMMAS REQUIRED FOR
THE PROOF OF THEOREM 1

In this Appendix we explicitly state each lemma required
for the proof of the upper bound for C given in the main text.
Rigorous mathematical justifications for Lemmas 1–4 may be
found in the Supplemental Material of Ref. [11], while that of
Lemma 5 may be found in Ref. [56].

For the following, we let B(H) denote the set of bounded
linear operators on the Hilbert space H. Furthermore, the
evolution of the system from time T to T ′ must be uni-
tary, which can be generally described by the superoperator
UT−→T ′

ce : B(Hc ⊗ He ) −→ B(Hc ⊗ Hb ⊗ He′ ). Here Hc and
He represent the Hilbert spaces associated with the laser
device and initial environment states, respectively, and the
subsequent primed environment, He′ , contains everything not
counted as part of the laser or beam (the latter of which
being associated with the Hilbert space Hb) following the
action of this superoperator. Following Holevo [73], we also
use the term covariant measurement to refer to any positive-
operator-valued measure (POVM) element Êφ , with φ being
its outcome, that obeys U θ (Êφ ) = Ê (φ+θ ), where the superop-
erator U θ (•) describes a phase shift by arbitrary angle θ .

Lemma 1 (Laser encoded phase from filtering). Suppose
at time T the laser device is in a phase-invariant state ρ inv

c ,
and the laser, beam, and environment are evolved up to time
T ′ by the unitary map UT−→T ′

ce : B(Hc ⊗ He ) −→ (Hc ⊗ Hb ⊗
He′ ). If a covariant phase measurement is performed on the
beam emitted over the interval [T, T ′), and an outcome φF is
obtained at time T ′, the conditioned state of the laser is equiv-
alent to a fiducial state ρfid

c with an optical phase φF encoded
by the generator n̂c (the number operator for excitations stored
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within the laser device); that is,

ρc|φF (T ′) = UφF
c

(
ρfid

c

)
, (A1)

where UφF
c (ρc) := eiφF n̂cρce−iφF n̂c , and the fiducial state ρfid

c is
independent of φF .

Lemma 2 (Steady-state phase shift invariance). If there is a
unique steady state of the laser, and Condition 2 (Endogenous
Phase) holds, this steady state is invariant under all optical
phase shifts,

U θ
c

(
ρss

c

) = ρss
c ∀θ. (A2)

Lemma 3 (Phase encoding preserves photon statistics).
For arbitrary covariant phase measurements on the beam, the
fiducial state of the laser, ρfid

c , given in Lemma 1 has the same
photon number statistics as the phase-invariant steady state,
〈n|ρfid

c |n〉 = 〈n|ρss
c |n〉.

Lemma 4 (Phase covariance). The filtering (retrofiltering)
observable eiφ̂F (R) changes covariantly when the beam under-
goes an optical phase shift by arbitrary angle θ . That is, the
probability to obtain the result eiφF (R) changes as

P
(
eiφF (R)

∣∣U θ
b (ρb)

) = P(ei(φF (R)−θ )|ρb). (A3)

Lemma 5 (Minimum MSE for a phase measurement). An
optical phase measurement on the state of a system with mean
excitation number μ, and for which the U (1)-mean phase is
φ̄, will give an estimate φ̂ with MSE bounded from below by

1 − |〈ei(φ̂−φ̄)〉|2 � 4|zA/3|3μ−2 (A4)

in the asymptotic limit μ −→ ∞, where zA ≈ −2.338 is the
first zero of the Airy function.

APPENDIX B: MATHEMATICAL DETAILS FOR THE
p, q-FAMILY, STEADY STATE, AND APPROXIMATE

MASTER EQUATION

In this Appendix we provide mathematical details re-
lating to the family exhibiting the regularly pumped (non-
Markovian), quasi-isometric gain model (i.e., the p, q-family)
described by Eq. (46). In particular, we demonstrate that in
the asymptotic limit, D −→ ∞, the cavity distribution at steady
state, ρn = 〈n|ρss|n〉, for this family of models is characterized
by the elements

ρn = α sinp

(
π

n + 1

D + 1

)
; (B1)

that is, it is the same as that for the other two families of laser
models considered in this paper. Additionally, we justify the
various assumptions made throughout the derivation leading
to the master equation (46) describing this family.

Addressing the cavity distribution first, the goal is to show
that limD−→∞ L(p,q)

NM ρss = 0. From Eq. (46), we have [ex-
cluding edge elements, as they are of order O(D−(p+1)) and
therefore negligible]

〈n|L(p,q)
NM ρss|n〉 =

[
(1 − q)

ρn−1

ρn
+ (q/2 − 1) + (q/2)

ρn−2

ρn

+ (
L(p,−q/2)

n+1

)2 ρn+1

ρn
− (

L(p,−q/2)
n

)2
]
ρn.

(B2)

On substituting the expression for L(p,−q/2)
n given by Eq. (35b)

with x −→ −q/2 ∈ (−∞, 1/2), we have

〈n|L(p,q)
NM ρss|n〉 =

[
(1 − q)

ρn−1

ρn
+ (q/2 − 1) + (q/2)

ρn−2

ρn

+
(

ρn

ρn+1

)q/2

−
(

ρn−1

ρn

)(1+q/2)]
ρn. (B3)

It is possible to show using the elementary identity sin(A ±
B) = sin(A) cos(B) ± cos(A) sin(B) that

ρn−1

ρn
=

[
cos

(
π

D + 1

)
− sin

(
π

D + 1

)
cot

(
π

n + 1

D + 1

)]p

.

(B4)

For sufficiently large p, the distribution ρn will be well local-
ized around its midpoint, μ. In this scenario, the only relevant
terms in Eq. (B3) will be those for which Eq. (B4) may be
treated as a linear function of n,

ρn−1

ρn
= 1 + pπ2

(D + 1)2
(n + 1 − μ) + O((D + 1)−3), (B5)

where n − μ = O(1). Substituting this expression into (B3), it
is straightforward to show that that all terms within the curly
braces of lower order than O((D + 1)−3) vanish. Therefore,
Eq. (B1) rapidly converges to the actual steady-state distribu-
tion in the limit D −→ ∞ and 1 � p � D.

To illustrate this point, we compare the distribution defined
by Eq. (B1) to the exact steady state of Eq. (46) computed
numerically in the top panels of Fig. 9. Here we have chosen
q = −1 and p = 3. Such a value of p is the smallest that we
consider for our calculations of the coherence in Sec. VIII and
is much smaller than what would be required for the linearized
treatment of the loss operators given in Eq. (B5). Regardless
of this, we still find Eq. (B1) to be an excellent approxima-
tion of the actual steady-state distribution for the p, q-family.
Even for moderately large values for the cavity dimension,
such as that given in the right-hand top panel of Fig. 9
where D = 1000, we find the two distributions to be virtually
indistinguishable.

In order to be more rigorous and demonstrate the validity of
Eq. (B1) for more general values of p, we revert to numerical
methods. In the bottom panel of Fig. 9, we show the Frobenius
norms of L(p,q)

NM ρss against cavity dimension, D, for p = 3
[again, which is the smallest value of p for which our formula
for the coherence, given by Eq. (58b), holds] and a range
of values for q. Here it is clear that for all values of q, this
quantity converges to zero in the limit D −→ ∞, as each of the
matrix norms is o(D−1.5).

Next, we justify the various approximations made in the
steps of the derivation which led to Eq. (46), the mas-
ter equation for the p, q-family of laser models. In that
derivation, it was assumed that over some short time in-
terval, �t , the superoperators giving rise to the gain and
loss of excitations within the cavity [see Eqs. (42)] act
independently. For this to be the case, the action of the su-
peroperators D[L̂(p,−q/2)] and (G − 1) = D[Ĝ(p,0)] + D[�̂top]
on the cavity state need to be small, in some sense. To
demonstrate this, we consider their action on the pure cavity
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FIG. 9. Top panels: Exact steady-state cavity distribution com-
puted numerically from Eq. (46) (red dashed lines) compared with
the distribution defined by Eq. (B1) (solid green lines). Here the
choice of parameters is p = 3 and q = −1.0. The top-left panel is for
a relatively small cavity dimension (D = 100), while the top-right
panel is for D = 1000. Bottom panel: Frobenius norms, defined as
||Â|| = (Tr{Â†Â})−1/2, of the matrix L(p,q)

NM ρss plotted against cavity
dimension, D, for p = 3 and a range of values of q. Dashed black
lines correspond to a power law with an exponent of −1.5 as a guide
for the eye.

state

�φ
c =

D−1∑
n,m=0

√
ρnρmeiφ(n−m)|n〉〈m|. (B6)

This state was also briefly introduced in Sec. VIII to derive
formulas for the coherence of our families of laser models;
it is defined in such a way that a uniformly weighted mix-
ture reproduces the cavity steady state,

∫ 2π

0 �φ
c dφ/(2π ) =∑D−1

n=0 ρn|n〉〈n|. To motivate this choice of state, we assume
that throughout the evolution of the system, the cavity state
can be expressed as a mixture of states within the ensemble
{�φ

c , dφ/(2π )}; or in other words, we assume that this ensem-
ble is physically realizable [74]. A rigorous investigation of
the validity of this pure state assumption will be addressed in
a future paper.

In Fig. 10 we show the Frobenius norms of the matrices
D[L̂(p,−q/2)]�φ=0

c and (G − 1)�φ=0
c against cavity dimension,

D, with q = −1 and p = 3. Fitting a power law to these points
indicates that these Frobenius norms are O(D−1). This implies
that over the time interval, �t , one may treat the gain and
loss processes independently if one takes N�t � D, in which
case

ρ(t + �t ) ≈ (1 + (G − 1))n(�t )ρ(t ) + N�tD[L̂(p,−q/2)]ρ(t ).

(B7)

FIG. 10. Frobenius norms, defined as ||Â|| = (Tr{Â†Â})−1/2, of
the matrices D[L̂(p,−q/2)]�φ=0

c , (G − 1)�φ=0
c and D[�̂top]�φ=0

c (red
dots) as a function of cavity dimension, D. �φ=0

c represents the pure
cavity state, defined in Eq. (B6). Dashed black lines correspond to
fitted power laws to these data.

Recall that we let n(�t ) = N�t + √
N (q + 1)�W represent

the number of excitations gained by the cavity in the inter-
val �t . Additionally, since we have (G − 1)�φ=0

c = O(D−1),
a binomial expansion to second order in (G − 1) is rea-
sonable, therefore validating Eq. (45), and allows one to
write

ρ(t + �t ) ≈ {
1 + [N�t +

√
N (q + 1)�W ](G − 1)

+ 1
2

[
(N�t )2 + 2N

√
N (q + 1)�t�W

+ N (q + 1)(�W )2 −
√

N (q + 1)�W

− N�t
]
(G − 1)2 + N�tD[L̂(p,−q/2)]

}
ρ(t ).

(B8)

Averaging over the uncertainty in the number of excitations
added to the cavity and taking the limit �t −→ 0+, one obtains
the master equation

dρ

dt
= N

[
(G − 1) + q

2
(G − 1)2 + D[L̂(p,q)]

]
ρ. (B9)

To obtain Eq. (46), we also let (G − 1) ≈ D[Ĝ(p,0)]. This is
also justified on inspection of Fig. 10, where it is also shown
that the Frobenius norm of D[�̂top]�φ

c decays much faster than
that of (G − 1)�φ

c .
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APPENDIX C: VERIFICATION OF CONDITION 4 FOR
THE THREE FAMILIES OF LASER MODELS

In this Appendix, we verify the claim in Sec. VII that the
families of laser models we introduced exhibit Heisenberg-
limited beam coherence for certain parameter values. In that
section, it was shown that the coherence of the beam scales
as μ4 for the p-, p, λ-, and p, q-families for values p � 3.
To say that this scaling is at the ultimate limit imposed
by quantum mechanics, then Condition 4 must be verified,
which means that Theorem 1 applies to these families of
laser models. We remind the reader that for Condition 4 to be
satisfied by a particular laser model, Eqs. (10a) and (10b) must
hold.

These two equations were already shown to hold for the
p-family in Ref. [11]; therefore we consider only the p, λ-
and p, q-families here, which are those that can exhibit sub-
Poissonian beam photon statistics. Moreover, we constrain
the parameters for each of these families to p = 4.1479, λ =
0.5 and p = 4.1479, q = −1, respectively. These parameter
values yield maximal beam coherence as well as a maxi-
mal degree of beam sub-Poissonianity (that is, a minimized
value of Q) for each family. Therefore, it is expected that the
deviations of the first- and second-order Glauber coherence
functions between these families of laser models and that of
an “ideal” beam would be at their greatest for these parameter
values.

In order to demonstrate that Eqs. (10a) and (10b) hold
for the p, λ- and p, q-families, we employ the same methods
as those outlined in the Supplemental Material of Ref. [11].
With regard to Eq. (10a), which places a condition on the
first-order Glauber coherence function, time-translation in-
variance permits a direct search for the maximum deviation
over only a single time argument. In Figs. 11(a) and 11(b),
we show the quantity |δg(1)(s, 0)|, as defined by Eq. (18), for
the p, λ-family over two different timescales. The same is also
shown in Figs. 11(c) and 11(d) for the p, q-family. As made
clear from these plots, the largest deviations in the first-order
coherence functions occur for each family at a short, nonzero
time delay. Because this is decreasing as the cavity dimension,
D, is increased, we may conclude that Eq. (10a) holds for the
p, λ- and p, q-family for parameter values which maximize C

and minimize Q.
Verifying that Eq. (10b) also holds for our two sub-

Poissonian families of laser models required more sophis-
ticated numerical techniques. This is because the problem
requires an optimization over three time parameters [note that
one of the four parameters in Eq. (10b) may be removed from
this optimization by imposing time translation invariance].
This optimization was carried out by employing a highly
scalable, nonlinear optimization routine known as the inte-
rior point method described in Refs. [75–77] to maximize
Eq. (33b), along with all other nontrivial permutations of the
bosonic operators [11]. As required by Condition 4, the differ-
ence between any two of the time arguments was constrained
to be O(

√
C/N ).

From each optimization, it was found that the time ar-
guments which maximized |δg(2)(s, s′, t ′, t )| were those for
which there was negligible delay, for example, (s, s′, t ′, t ) =
(s, s + ε, s + 2ε, s + 3ε) with ε −→ 0+. In Fig. 11(e) we

FIG. 11. (a) Deviations from the ideal laser model (a coherent
state undergoing pure phase diffusion) of the first-order Glauber
coherence function for the family of laser models exhibiting a ran-
domly pumped (Markovian), nonisometric gain (p, λ-family) over 10
coherence times. Solid green, red dashed, and blue dash-dotted lines
correspond to cavity dimensions D = 50, 100, 200, respectively.
(b) Same as that shown in (a), but over a much shorter timescale.
(c, d) Same as that shown in (a,b), respectively, but for the family of
laser models exhibiting a regularly pumped (non-Markovian), quasi-
isometric gain (p, q-family). (e) Global maxima of |δg(2)(τ, s′, t ′, t )|
vs coherence (solid diamonds) calculated for {s′, t ′, t} ∈ [−τ, τ ] em-
ploying interior-point optimizations of the iMPS forms for bond
dimensions up to 250. Some examples of |δg(2)| are shown for
bond dimensions up to D = 450 (hollow diamonds). Blue and red
correspond to the p, λ-family and p, q-family, respectively. Black
solid lines correspond to power-law fits to the data, |δg(2)| = 1.2C−0.5

and |δg(2)| = 1.4C−0.5. For each of these families in plots (a)–(e),
parameters are chosen such that beam coherence, C, is maximized
for a given value of D, while Q is also minimized.

plot max|δg(2)(s, s′, t ′, t )|, where s, s′, t ′, t ∈ [−τ, τ ] and τ =√
3/2N �, for the p, λ- and p, q-families, respectively, with

blue and red diamonds. In particular, the results from the
optimizations are indicated by the solid diamonds, which
were performed for cavity dimensions ranging between 50 �
D � 250. The hollow diamonds are extrapolations, where
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|δg(2)(s, s′, t ′, t )| is computed for larger cavity dimensions
using the same time arguments which were obtained from the
optimizations. These deviations in g(2) are seen to scale as
C−1/2, therefore allowing us to conclude that Eq. (10b) also

holds for the p, λ- and p, q-family of laser models and hence
Condition 4 is satisfied. This allows the statement to be made
that all three families of laser models considered in this paper
exhibit a beam coherence which is Heisenberg-limited.
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