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Simulating the extended Su-Schrieffer-Heeger model and transferring
an entangled state based on a hybrid cavity-magnon array
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We propose a scheme to simulate the extended Su-Schrieffer-Heeger (SSH) model by using the hybrid cavity
magnonics system. We consider a hybrid cavity-magnon array with N sites, where each site contains two cavity
modes and one magnon mode, and the cavity modes at the neighboring site couple to each other with controllable
tunneling rates. Under large detuning conditions, we adiabatically eliminate the cavity field and obtain periodic
interactions between the magnons depending on the phase between adjacent cavity fields. After setting the
relationship of the phases, we obtain the magnon version of the extended SSH model. Employing this model,
we investigate the distribution of edge states and the topological phase transition. Moreover, our scheme can be
easily extended to the SSHm model with the jump period m by setting different phase shifts. Finally, considering
the noninteger cell case, we find that an arbitrary magnon entangled state can be encoded by two edge states and
transferred from the left site end to the right site end via the adiabatic channel. Our work provides a pathway for
realizing quantum information transmission and offers an idea for implementing quantum simulations based on
cavity magnonics systems.
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I. INTRODUCTION

Magnons offer a promising architecture for quantum
information processing due to their low damping rate,
high frequency tunability, and excellent compatibility [1–5].
Magnons can couple with a wide range of fields such as
coupling with microwaves and optical photons via the magnon
dipole [6,7] and via the magnon-optical Faraday effect [8–10],
as well as interacting with the phonon by magnon-elastic
effect [11,12]. Taking advantage of the coherent coupling of
magnons with different types of quantum systems, hybrid
magnon systems have attracted much attention in recent years
[13–19].

The cavity magnonics system generally consists of sin-
gle crystal yttrium iron garnet (YIG) spheres and a high
Q cavity. The Kittle modes of the spin ensemble (ground
state) in YIG spheres can be coupled with microwave cav-
ity mode. In particular, the coupling between magnon mode
and microwave cavity mode can reach the region of strong
coupling or even ultrastrong coupling due to the high spin
density and the exchange between spins [6,7,20]. A number
of interesting phenomena have been demonstrated in the cav-
ity magnon system, such as magnon-induced nonreciprocity
[16,21,22], magnon dark modes [13,23], magnon blockades
[24,25], magnon entanglement and steering [26,27], magnon
lasers [28], high-order sidebands [29], and quantum simula-
tion [30,31].

With many interesting features including robustness to
local decoherence processes and potential applications in
quantum information, topological insulators have received
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much interest and attention in quantum physics [32–35]. Orig-
inally used to describe the transport properties of conducting
polyacetylene [36,37], the Su-Schrieffer-Heeger (SSH) model
has recently attracted increasing attention due to its simplest
topological insulator model with a simple structure and abun-
dant physical images [34,38–41]. A series of generalizations
by increasing the period of the hopping model are often re-
ferred to as the extensions of the SSH model. Here, we refer to
the extended SSH models with hopping coefficients of period
three and period four as the SSH3 [42–44], and SSH4 models
[45,46], respectively. As an extension of the SSH model, the
SSH3 model exhibits interesting features that are different
from those of the SSH model, such as more edge states
[42,43], absence of symmetry [47], etc. Several recent works
have shown that even in the absence of chiral and mirror sym-
metry, the bulk-edge correspondence can also be established
due to the fact that this model possesses point-chiral symme-
try [48,49]. Based on the bulk-edge correspondence, nonzero
bulk topological invariants predict the appearance of local
modes at the edges of the chain [50]. The special edge states
are protected by the energy gap of the topological system,
resulting in edge states that are insensitive by local disorder
and perturbations [32,33,51]. More importantly, topologically
protected edge states can be used for robust disordered photon
and phonon transport [52,53]. This means that new pathways
are available for quantum information processing based on
topological edge channels.

As more attention has been paid to the extended SSH
model, it has been proposed to simulate the extended SSH
model with different platforms such as optical systems
[54,55], atomic chains [43,56], photonic lattice [57], and
microelectromechanical systems [58]. However, few studies
have used cavity magnon systems to simulate the extended
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FIG. 1. Schematic illustration of a one-dimensional cavity
magnon array. The magnon mode mj (blue) couples to two cavity
modes aj (pink), bj (green) with coupling strengths ga, gb. The
jumping rates between neighbor cavity b is Jb, while the hopping
from cavity aj to aj+1 is Jae−iφ j .

SSH model. Given the advantages of the cavity magnon sys-
tem, in this paper, we present a scheme for the simulation of
the extended SSH model using hybrid cavity magnon systems.
We consider a set of hybrid cavity magnon arrays with N
sites, where each site contains two cavity modes and one
magnon mode, and the jumping between sites is real or com-
plex photon tunneling. Under large detuning conditions, we
adiabatically eliminate the cavity field and obtain periodic
interactions between the magnons. That interaction between
the magnons mediated by the cavity field depends on the
phase between adjacent cavity fields. After setting the rela-
tionship of the phases, we achieve the superlattice structure
of the magnons. Then, we simulate the magnon version of
the extended SSH model and study the distribution of the
edge states of the system as well as the topological phase
transition. Finally, considering the case of noninteger cells,
we discuss the transfer of magnon entangled states, and the
results show that entangled states can be transferred by slowly
and adiabatically changing the phase between the neighboring
cavity fields. Furthermore, an arbitrary information encode in
edge state can be transmission through the array.

II. MODEL AND HAMILTONIAN

We consider a one-dimensional cavity magnon array, in
which each YIG sphere couples with two cavity fields as
shown in Fig. 1. The cavity modes at the neighbor site couple
each other with tunneling rates Ja, Jb. Then, the Hamiltonian
of the system can be written as

H = Hc + Hom + Hhop, (1)

where

Hc =
N∑

j=1

ωa, ja
†
j a j + ωb, jb

†
jb j + ωm, jm

†
j m j,

Hom =
N∑

j=1

(gaa†
j + gbb†

j )mj + H.c.,

Hhop =
N∑

j=1

Jaa†
j+1a je

−iφ j + Jbb†
j+1b j + H.c.. (2)

Hc is the free energy of the two microwave fields and magnon
mode with frequencies ωa, j (ωb, j) and ωm, j , respectively,
where a†

j and a j (b†
j and b j), m†

j and mj are the creation and
annihilation operators of the two cavity fields and the magnon.
Hom represents the magnon mode coupling with the cavity
fields with strengths ga (gb). Hhop is interpreted as the jumping
between adjacent cavities with strength Ja and Jb, respectively.
Moreover, for cavity aj , the photon tunneling between near-
est neighbor is complex with the phase factor φ j . Recently,
a number of theoretical proposals [59–61] and experiments
[62,63] have also been used to implement complex photon
tunneling. For simplicity, we set ωa, j = ωa, ωb, j = ωb, and
ωm, j = ωm.

Now, we perform transformation a j = c jeiθ j , then Eq. (2)
becomes

Hc =
N∑

j=1

ωac†
j c j + ωb, jb

†
jb j + ωm, jm

†
j m j,

Hom =
N∑

j=1

(gac†
j e

−iθ j + gbb†
j )mj + H.c.,

Hhop =
N∑

j=1

Jac†
j+1c j + Jbb†

j+1b j + H.c., (3)

where we set φ j = θ j − θ j+1. By introducing Fourier transfor-
mation o j = 1√

N

∑
k eik jok (o = c, b), with k ∈ [−π, π ], we

can diagonalize the Hamiltonian Hhop. Then, the total Hamil-
tonian Eq. (1) can be rewritten as

H =
∑

j

ωmm†
j m j

+
∑

k

[(ωa + 2Ja cos k)c†
kck + (ωb + 2Jb cos k)b†

kbk]

+
∑

j,k

[
1√
N

(gae−iθ j c†
k + gbb†

k )e−ik jm j + H.c.

]
. (4)

Assuming that the cavity field is initially in the vacuum state,
we can use the Schrieffer-Wolff transformation [64] to adia-
batically eliminate the cavity field. The details can be found in
the Appendix. After performing this transformation, we can
obtain the effective magnon-magnon interaction. Then, the
Hamiltonian is reduced to

HS =
∑

j

ωmm†
j m j +

∑
j,l,k

1

N

[(
g2

aei(θ j−θl )

�am − 2Ja cos k

+ g2
b

�bm − 2Jb cos k

)
m†

j mle
i( j−l )k + H.c.

]
, (5)

where � jm = ω j − ωm ( j = a, b) is the detuning between the
cavity and magnon. Considering �am � 2Ja cos k, �bm �
2Jb cos k, and using the Taylor expansion, we can obtain

1

�am − 2Ja cos k
= 1

�am
+ Ja

�2
am

(eik + e−ik ),

1

�bm − 2Jb cos k
= 1

�bm
+ Jb

�2
bm

(eik + e−ik ). (6)
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FIG. 2. Numerical comparison of the original Hamiltonian with
the effective Hamiltonian. (a) The mean magnon number varying
with time. (b and c) The mean photon number as a function of time
for cavity a and cavity b, respectively. The parameters are φ1 = π/3,
ωa = ωb = 100ga, ωm = 80ga, Ja = Jb = 2ga, and gb = ga.

Plugging Eq. (6) into Eq. (5), we can obtain the effective
Hamiltonian as

HS =
N∑
j

(
ωm + g2

a

�am
+ g2

b

�bm

)
m†

j m j

+ (Jj, j+1m†
j+1mj + H.c.), (7)

where Jj, j+1 = ( g2
aJa

�2
am

eiφ j + g2
bJb

�2
bm

). The term g2
a

�am
+ g2

b
�bm

in the

first line of Hamiltonian (7) is the energy shifts for magnon,
which is the same for every magnon, so we omit it hereafter.
The last term in the above Hamiltonian is effective coupling
between adjacent magnons mediated by the cavity modes.

The effective coupling stems from two contributions. g2
aJa

�2
am

eiφ j

results from cavity chain a, and g2
bJb

�2
bm

originates from cavity

chain b. If chain b is absent, Jj, j+1 = g2
aJa

�2
am

eiφ j , then the phase
φ j has no effect on the properties of the system. Once chain
b is present, it interferes with chain a, then the phase φ j

plays a crucial role in achieving periodic coupling and leads
to topological phase transition.

When we consider the loss of the cavity field, we can intro-
duce the non-Hermitian −∑

j iκaa†
j a j − iκbb†

jb j into Eq. (1),
where κa and κb are the decay rate of the cavity a j and b j ( j =
1, 2, 3, . . . , N), respectively. With the corresponding calcula-
tions, one can obtain a non-Hermitian Hamiltonian. Thus, the
current system can be used to simulate in the non-Hermitian
topology properties such as non-Hermitian skin effect [65],
transport effects [66], directional amplification [67], etc. In
this paper, we ignore the effect of cavity field dissipation and
concentrate on the simulation of the extend SSH model.

In order to prove the validity of our approximation, now
we present numerical simulations by comparing the time evo-
lution governed by effective Hamiltonian Eq. (7) and the full
Hamiltonian Eq. (1), respectively. We take two sites as an
example. We assume that the first magnon is in the single-
excitation state, while all cavities and the second magnon
are in vacuum state. In Fig. 2, we plot the mean magnon
number Nn (n = m1, m2) and the mean photon number Nj

( j = a1, a2, b1, b2) as a function of time. It can be seen that the

FIG. 3. The distribution of effective coupling |Jj, j+1| at the lattice
points for different phase shifts: (a) y = π , (b) y = π/2, (c) y = π/3,
(d) y = π/4. The parameters are φ1 = π/3, �am = �am = 20ga, and
the other parameters are the same as in Fig. 2.

full Hamiltonian matches well with the effective Hamiltonian.
Meanwhile, the population of cavity fields is close to zero,
which means that the effective Hamiltonian is trustable.

If we set the phase shift between adjacent phases as a
constant, i.e., φ j+1 − φ j = 2y, then according to the recur-
rence relation, we can obtain φ j = φ1 + 2( j − 1)y, where φ1

denotes the phase of the jumping between the first and second
cavity, see Eq. (2). Under this assumption, we can see that
the effective coupling depends on the phase shift y and initial
phase φ1. In Fig. 3, we plot the distribution of the effective
coupling on the lattice points for different phase shifts.

We can see that for the phase shift y = π , the effective cou-
pling between adjacent magnons is homogeneous as shown in
Fig. 3(a). However, for the phase shift y = π/2, π/3, π/4 the
intensity of the coupling exhibits a periodic variation with a
period of 2, 3, 4 sites in the pale blue area of Figs. 3(b), 3(c)
and 3(d). For interaction periods of 2, one can implement SSH
simulations similar to these works [68–70].

For the phase shift y = π/3, the effective coupling between
adjacent magnons Jj, j+1 can be simplified as

Jj, j+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J1 = g2
bJb

�2
bm

+ g2
aJa

�2
am

eiφ1 , mod( j, 3) = 1,

J2 = g2
bJb

�2
bm

+ g2
aJa

�2
am

ei(φ1+2π/3), mod( j, 3) = 2,

J3 = g2
bJb

�2
bm

+ g2
aJa

�2
am

ei(φ1+4π/3), mod( j, 3) = 0,

(8)

which clearly shows that the phase φ1 plays an important
role in determining Ji (i = 1, 2, 3) because of the interference
between arrays a and b. In Fig. 4, we plot the variation of
the coupling strength between sublattices versus the initial
phase for y = π/3. It can be seen that the absolute values
of the coupling coefficients show a periodic variation as φ1

varies and there is a fixed phase difference 2π/3 between
them as shown in Fig. 4(a). Similar results can be found for
y = π/4. Therefore, if we consider the minimum repetition
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FIG. 4. (a) Coupling strength between sublattices as a function
of initial phase for y = π/3. (b) The ratio of J1, J2 to J3 varies with
φ1. The parameters are the same as in Fig. 3 except for Jb = 1.2.

period as a unit cell, we can achieve magnon superlattices
where the number of sublattices in each cell is more than two
by adjusting the phase shift.

III. SIMULATED MAGNON SSH3 MODEL WITH FIXING
PHASE SHIFT y = π/3

As mentioned above, if we choose the phase shift y = π/3,
we can achieve magnon trimer lattice. We draw the diagram of
the trimer lattice as shown in Fig. 5, where each cell contains
three magnons A, B, and C. In this case, the Hamiltonian (7)
becomes

H =
∑

j

(J1m†
A, jmB, j + J2m†

B, jmC, j

+ J3m†
C, jmA, j+1 + H.c.), (9)

where J1 and J2 are the intracell coupling strength while J3

is the intercell coupling strength, and Jn (n = 1, 2, 3) is given
in Eq. (8). The above Hamiltonian is generally also called the
SSH3 model [44,49]. Several recent works have pointed out
that the SSH3 model can exhibit interesting features that differ
from the SSH model, such as more edge states [42,43].

In Fig. 6, we plot the energy spectrum with the variation of
initial phase φ1 and the distribution of the band-gap states.
We mark the eigenvalues of 20th and 41th in red and the
eigenvalues of 21th and 40th in blue. As shown in Fig. 6(a),
we can observe that with the changes of φ1, the number of
band-gap states also changes. For φ1 = 0, no band-gap states
appear in the energy spectrum. As φ1 increases, the system
has a pair of band-gap states with opposite energies. When φ1

is around φ1 = 2π/3, there are four band-gap states. Further

FIG. 5. Schematic illustration of the trimerized lattice model,
where J1, J2 are the intracell coupling strength and J3 is the intercell
coupling strength.

FIG. 6. (a) The energy spectrum with the variation of initial
phase φ1. (b) The �E varying with initial phase φ1. (c and d) The
probability distribution of the band-gap states associated with the
20th and 41th eigenvalue at the lattice point corresponds to φ1 =
π/3. (e and f) The probability distribution of the eigenstates associ-
ated with the 20th and 41th eigenvalue corresponds to φ1 = 2π/3.
The parameters are the same as in Fig. 4, and N = 60.

increases in φ1 will again result in the reappearance of the pair
of band-gap states. However, when φ1 is increased to 4π/3
and then further increased, no more band-gap states appear in
the energy spectrum.

We now analyze the distribution of the probability of the
band-gap state at the lattice points for N = 60. For φ1 = π/3,
there are two band-gap states corresponding to the 20th and
41th eigenvalue, respectively. Both of them are located on
the leftmost side and have the same probability distribution
on the sites shown in Figs. 6(c) and 6(d). However, for φ1 =
2π/3, there are four band-gap states in the energy spectrum,
which correspond to the 20th, 21th, 40th, and 41th eigenvalue,
respectively. The probability distribution of the eigenstates
associated with the 20th and 41th eigenvalue is presented in
Figs. 6(e) and 6(f).

In addition, at φ1 = 2π/3, the probability distribution of
the eigenstate related to the eigenvalue of 20th (21th) is the
same as the eigenstate of the eigenvalue of 41th (40th), which
we do not display here. This means that eigenstates with the
same energy have opposite probability distributions, whereas
eigenstates with opposite energies have the same probabil-
ity distribution. Actually, if we rewrite Eq. (9) as the Bloch
Hamiltonian in momentum space, we can find three disper-
sive bands not symmetric to zero energy, which is similar
to Fig. 1(b) in Ref. [49]. This implies that the system has
no chiral symmetry [32]. However, the bulk Hamiltonian of
SSH3 exhibits a chiral-like symmetry called point chiral-
ity, which belongs to the family of particle-hole symmetries
[48,49]. The presence of point chirality is what leads to the
particular distribution of the eigenstates. The particular dis-
tribution of the above band-gap states at the edges is usually
referred to as the edge state. According to the bulk-boundary
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correspondence in Hermitian systems, nonzero topological
invariants imply the existence of edge states of the system ex-
ponentially distributed at the boundary under open boundary
conditions and vice versa. Therefore, comparing the results
for the two different initial phases, we can conclude that a
topological phase transition has occurred by changing the
initial phase φ1.

Due to size effects, it is difficult to determine the exact
number of band-gap states. The main reason stems from the
fact that the N/3th, (N/3 + 1)th, 2N/3th, and (2N/3 + 1)th
eigenvalues are very closed to bulk state. We define �E =
E2N/3th − E(2N/3−1)th to describe whether the eigenstate cor-
responding to the (2N/3)th eigenvalues is the band-gap state.
In Fig. 6(b), we plot the variation of �E with φ1 for differ-
ent system sizes N . We can see that for 0 < φ1 < π/3 and
π < φ1 < 2π , �E converges to zero, implying that it is not
the band-gap state. Moreover, in the range of 2π/3 < φ1 < π ,
�E is not zero, which means that the eigenstate corresponding
to the 2N/3th eigenvalues is the band-gap state. Similar results
also appear for other eigenvalues.

In addition, we note that at φ1 = π/3, the coupling coeffi-
cient satisfies |J1| = |J3| > |J2| for 0 < φ1 < π/3, {|J2|, |J3|}
< |J1|, and at φ1 = 2π/3, |J1| = |J2| < |J3| for π/3 < φ1 <

2π/3, {|J1|, |J2|} < |J3|. To facilitate the explanation, we
define x1 = |J1/J3|, x2 = |J2/J3|. Combining the above results
with Fig. 4(b), we can find the following relationships. In the
range of {x1, x2} < 1, four band-gap states in the energy spec-
trum relate to the orange area. In the range of x1 < 1, x2 > 1
or x1 > 1, x2 < 1, two band-gap states exist, see the sky-blue
area. And in other cases, no band-gap state is shown in the
gray areas. It is worth noting here that the above statement
is only accurate for the long chain limit, and there is an
error in the number of band-gap states near the critical value
x1 = x2 = 1 [49].

IV. ENTANGLED STATE TRANSFER BY TOPOLOGICAL
EDGE CHANNEL

By comparing the probability distribution of the 20st eigen-
value under different parameters shown in Figs. 6(c) and 6(e),
we find the behavior of state transfer. In other words, the
probability of being at the leftmost end is partially transferred
to the rightmost end. This means that one can implement a
topological transfer similar to the scheme proposed in the
SSH model [71–73]. For SSH chains with an odd number of
sites, there is only one edge state, which is positioned at the
left or right of the chain, depending on the ratio of intracell
to extracell. Namely, one can adiabatically vary the coupling
strength between inside and outside the cell from less than 1 to
greater than 1. It is possible to pump the local state from one
edge to another, thereby implementing quantum state transfer.

We note that for the present model, the system has four
edge states. For all of these band-gap states, with appropriate
parameters, we find that those band-gap states can also be
localized on the boundary and each edge state can be used as
a state transfer channel. However, in order to be able to solve
the expressions for the edge states analytically, we choose a
noninteger number of cells, N = 3M − 1, which means that
there are two YIG spheres mA,M , mB,M at the end. Under this
case, the system has only one pair of band-gap states and the

FIG. 7. (a) The energy spectrum varying with initial phase φ1. (b
and c) The spatial profile of the band-gap states associated with the
21th eigenvalue at the lattice point corresponds to φ1 = π/3, φ1 =
4/3π . The parameters are the same as in Fig. 4, and N = 62.

gap state is fully solvable [74]. For more analysis of edge
states, see Refs. [42,43,47].

In Fig. 7(a), we plot the energy spectrum varying with
initial phase φ1 for N = 62. We can see that as φ1 changes,
only two band-gap states exist in the energy gap associated
with the 21th and 42th eigenvalue. As shown in Figs. 7(b) and
7(c), we can see that the probability distribution of the two
band-gap states corresponding to the 21th eigenvalue moves
from the left edge to the right edge with the change of φ1.
We note that for the parameters in Figs. 7(b) and 7(c), the
distribution of the edge states is not all at the leftmost position,
but is also distributed within the second cell. This is due to the
distribution of the edge states related to the coupling ratio. We
will derive the specific form of the edge state in the following.

In the single-excitation subspace, the wave function of the
band-gap state can be written as the following ansatz [71,75]:

|�〉 =
N∑

j=1

λ j (αm†
A, j + βm†

B, j + γ m†
C, j ) |G〉 , (10)

where |G〉 = |00 . . . 0〉 is the ground state of the system and
the probability amplitude on site j decays or increases ex-
ponentially with increasing distance j. Substituting Eqs. (12)
and (9) into the Schrödinger equation, we can obtain

E (αm†
A, j + βm†

B, j + γ m†
C, j ) |G〉

= {(J∗
1 α + J2γ )m†

B, j + (J1β + J∗
3 γ λ−1)m†

A, j

+ (J∗
2 β + λJ3α)m†

C, j} |G〉 . (11)

For 3M − 1 sites, the distribution of the band-gap state has
zero probability at lattices C [49]. So, we choose γ = 0,
J∗

2 β + λJ3α = 0. By solving Eq. (11), we have |α|2 = |β|2 =
1/2, λ = ±|J2/J3|, and the energy of two edge states E± =
±|J1|. Finally, we derive the two band-gap state in the single-
excitation subspace as follows:

|�±〉 = Ne

N∑
j=1

1√
2

∣∣∣∣J2

J3

∣∣∣∣
j

(m†
A, j ± m†

B, j ) |G〉 , (12)
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FIG. 8. (a) The energy spectrum varying with the initial phase
φ1. (b) The probability distribution of the band-gap states at the
lattice point varying with initial phase φ1 associated with the 21th
eigenvalue. The parameters are the same as in Fig. 7 except for
Jb = 2ga.

where Ne is normalization factor. From the above results, we
can see that for 3M − 1 sites, both the energy and the profile
of the band-gap state of the system are closely related to the
coupling coefficient as shown in Figs. 7(b) and 7(c). Together
with Fig. 4(b), it can be seen that when φ1 ∈ (0, 2π/3) with
|J2/J3| < 1 and at φ1 = π/3, the ratio of |J2/J3| is the min-
imum. Meanwhile, when φ1 ∈ (4π/3, 2π ) with |J2/J3| > 1
and at φ1 = 5π/3, the ratio of |J2/J3| is the maximum. There-
fore, after the above analysis, we can adiabatically and slowly
vary φ1 to achieve quantum state transfer.

We can see that at φ1=π/3, |J2/J3|�1, the initial state of
the system is |L±〉 = 1√

2
(m†

A,1 ± m†
B,1) |G〉 located near the

leftmost end, which is an entangled state as well as an
edge state. When φ1 adiabatically and slowly changes to
some critical value, φ1 = 5π/3, in this case, |J2/J3| � 1, and
the final state becomes |R±〉 = 1√

2
(m†

A,3M ± m†
B,3M ) |G〉, which

is located on the rightmost end. This means that we can
achieve entangled state transfer of the magnons by adiabat-
ically and slowly adjusting the phase. In Fig. 8(a), we plot
the energy spectrum with the variation of initial phase φ1.
One can verify that the energy of the band-gap state satisfies
E± = ±|J1|. We also plot, for one of the band-gap states |L−〉,
the variation of the distribution with φ1 as shown in Fig. 8(b).
It can be seen that if the system is initially prepared to the state
|L±〉 at φ1 = π/3, then this state will be adiabatically evolved
to |R±〉 when we slowly change φ1 to 5π/3.

If the initial state is an arbitrary entangled state |�in〉 =
(pm†

A,1 + qm†
B,1)|G〉 at the left end of the chain, it can be writ-

ten as the superposition of the edge state [75]. For φ1 = π/3,
the initial state can be written as

|�in〉 = p + q√
2

|L+〉 + p − q√
2

|L−〉. (13)

By slowly changing from φ1 = π/3 to 5π/3, |L±〉 evolves to
|R±〉. The final state can be written as

|� f 〉 = p + q√
2

|R+〉 + p − q√
2

|R−〉. (14)

Substituting the expressions of |R±〉, we can obtain

|� f 〉 = (pm†
A,3M + qm†

B,3M )|G〉. (15)

Therefore, the arbitrary entanglement state can be transferred
from one end to the other end, which actually can be con-
sidered as quantum information communication by encoding

quantum information (p, q) in the magnon. Thus, the sim-
ulated SSH3 model can be used for long-range quantum
communication with the advantage of being insensitive to
local disorder and perturbations unless the perturbation in-
duces topological phase transitions. In addition, varying the
phase φ1 for the arbitrary state transfer requires slow and adia-
batic change, thus ultrafast quantum computing is a challenge
for the current system as well as for many other adiabatic
processes [70–73,76,77]. In order to accelerate edge state
transfer, people have introduced next-nearest-neighbor inter-
actions [78], combining topological pumping of edge states
and coherent tunneling of adiabatic channels [79], which also
can be applied for the current scheme to overcome the short-
age of the adiabatic process.

V. DISCUSSION

We now analyze the feasibility of experiments. Recently,
superconducting circuits have received increasing attention
based on the flexibility of the parameters and the design ability
of the system structure, and have become a well-established
platform for the study of quantum simulation [80–82], quan-
tum computing [83], and quantum information processing
[84]. Based on this platform, the manipulation and measure-
ment at several quantum qubits, the microwave photon, and
magnon levels have also been demonstrated in recent exper-
iments [1,3,14,85–89]. Given the connectivity and tunability
of the superconducting devices, a series of physical models
have been simulated—for example, the quantum spin model
[90,91], the Jaynes-Cummings Hubbard model [92,93], and
the Bose-Hubbard model [94,95]. Moreover, in recent years
there has been increasing interests in simulating and investi-
gating topological models based on superconducting circuits
[69,96–101] such as the SSH model [68–70] and the Rice-
Mele model [102].

Our proposed scheme can be implemented in the super-
conducting circuit, where the coupled cavity arrays can be
realized by using coupled superconducting transmission line
resonators [93]. Experimentally, a magnon mode coupling to
two cavity fields with equal strength has been realized in
superconducting circuits [103]. Therefore, our scheme can be
implemented in the experiment.

Moreover, our scheme can be easily extended to simulating
the SSHm model. For different phase shifts y will result in
a different number of sublattices. In other words, if we set
y = π/m, where m is an integer and m > 1, then the number
of sublattices is m. For example, for y = π/4, the strength
of the coupling exhibits a periodic variation with the period
of 4 in the pale blue area of Fig. 3(d). This means that we
can implement the transfer of arbitrary entangled states by the
SSH4 model, which is analogous to the transfer of entangled
states in the SSH3 model.

VI. CONCLUSION

In this paper, we present a scheme for simulating the
magnon version of the extended SSH model using hybrid
cavity magnon systems. We consider a hybrid cavity magnon
array with N sites, where each site contains two cavity modes
and one magnon mode. And the two hopping rates between

053701-6
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neighbor cavity fields are assumed as real or complex, re-
spectively. Under large detuning conditions, we adiabatically
eliminate the cavity field and obtain the periodic interactions
between the magnons, which depend on the phase between
adjacent cavity fields. After setting the relationship between
the phases of adjacent cavity fields, we obtain the magnon
version of the extended SSH model. Employing this model,
we investigate the distribution of the edge states as well as the
topological phase transition. Finally, considering the noninte-
ger cell case, we discuss the magnon entangled state transfer,
and the results show that the arbitrary entangled state transfer
can be achieved by slowly and adiabatically changing the
phases.

ACKNOWLEDGMENTS

This work is supported by the NSFC under Grant No.
12274053 and the National Key R&D Program of China (No.
2021YFE0193500).

APPENDIX: EFFECTIVE
MAGNON-MAGNON COUPLING

In this section, we use Schrieffer-Wolff transformation to
adiabatically eliminate the cavity field. The Hamiltonian of
the system can be written as the noninteracting part H0 and
the interacting part HI as

H = H0 + HI . (A1)

Define a similar transformation U = exp(S), where S is
an anti-Hermitian operator S† = −S [64]. Then, after using
Schrieffer-Wolff transformation, the Hamiltonian becomes

HS = UHU † = H + [S, H] + 1
2 [S, [S, H]] + · · · . (A2)

One can choose an appropriate S to eliminate the linear
dependence on HI —for example, by setting the term of the
first-order perturbation to zero as HI + [H0, S] = 0. Then, the
above equation can be written under the second-order pertur-
bation approximation as

HS = H0 + 1
2 [S, HI ]. (A3)

Now back to the main text, the Hamiltonian Eq. (4) can be
rewritten in terms of the noninteracting Hamiltonian, where

H0 =
∑

k

(ωa + 2Ja cos k)c†
kck + (ωb + 2Jb cos k)b†

kbk

+
∑

j

ωmm†
j m j, (A4)

and the interacting Hamiltonian

HI =
∑

j,k

(
gae−i(k j+θ j )

√
N

c†
k + gbe−ik j

√
N

b†
k

)
mj + H.c.. (A5)

We note that since [S, H0] = −HI , thus, S must contain
the term of c†

kmj , b†
kmj . Combined with S being an anti-

Hermitian operator, we can make the following hypothesis:
S = ∑

j,k{−(η j,kck + ζ j,kbk )m†
j + (η∗

j,kc†
k + ζ ∗

j,kb†
k )mj}. Then,

we have

HI + [S, H0] =
∑

j,k

{(
ga√
N

e−i(k j+θ j )ck + gb√
N

eik jbk

)
m†

j

+ [(�am − 2Ja cos k)η j,kck + (�bm

− 2Jb cos k)ζ j,kbk]m†
j + H.c.

}
= 0, (A6)

where � jm = ω j − ωm ( j = a, b) is the detuning between

cavity and magnon. It gives rise to η j,k = gae−i(k j+θ j )
√

N (�am−2Ja cos k)
,

ζ j,k = gbeik j√
N (�bm−2Jb cos k)

. Due to {η j,k , ζ j,k} � 1, we can keep
only the second-order terms and safely omit the higher-order
terms. Considering that the cavity field starts in a vacuum
state, then the effective Hamiltonian can be reduced to

HS = UHU † = H0 + 1

2
[S, HI ]

=
∑

j

ωmm†
j m j +

∑
j,l,k

1

N

[(
g2

aei(θ j−θl )

�am − 2Ja cos k

+ g2
b

�bm − 2Jb cos k

)
m†

j mle
i( j−l )k + H.c.

]
. (A7)
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