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Theory of phase-adaptive parametric cooling
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We propose an adaptive phase technique for the parametric cooling of mechanical oscillators. Our scheme
calls for a sequence of periodic adjustments of the phase of a parametric modulation of the mechanical oscillator
that is conditioned on measurements of its two quadratures. The technique indicates an exponential loss of
thermal energy at initial high occupancies, similar in performance to other optomechanical techniques such as
cold-damping or cavity self-cooling. As the quantum ground state is approached, the phase adaptive scheme leads
to residual occupancies at the level of a few phonons owing to the competition between parametric amplification
of quantum fluctuations and the feedback action.
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I. INTRODUCTION

Mechanical resonators are oftentimes used in displacement
[1], force [2], acceleration [3], or mass sensing [4] appli-
cations. Bringing them to their quantum ground state is of
fundamental interest for research studying the classical to
quantum physics transition [5–8]. A particularly successful
approach has been through the radiation-pressure coupling
between motion and light in the field of cavity optomechan-
ics [9]. Cooling close to the quantum ground state of an
isolated mechanical resonance has been achieved both via
cavity self-cooling [10–13] and active feedback [14–19]. In
the second case, detection of the light scattered from an
optomechanical system allows for the implementation of a
cold-damping mechanism [20], where a viscous force pro-
portional to the momentum is provided. Extensions to the
simultaneous feedback cooling of many mechanical reso-
nances are also possible [21,22]. Both these two paths were
extensively utilized theoretically and experimentally and their
advantages and limitations are well understood [9,23,24].
More recently, a third option, dubbed parametric cooling, has
arisen as an efficient option for cooling optically levitated
particles [25,26], atoms in cavities [27], or nanoelectrome-
chanical resonators [28]. For a generic oscillator at resonance
frequency �, the main ingredient of this technique is the peri-
odic modulation of the spring constant at 2�. In the particular
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case of levitated nanoparticles, this is achieved by feedback
control of the trapping potential [29]. The cooling mechanism
is then similar to cold-damping but with a nonexponential loss
rate of energy [25,30].

Here, we propose a variation of the parametric cooling
technique, which is not based on a controlled cold-damping
feedback loop [17], but instead on the adjustment of the
modulation phase, similarly to the variation of the angle of
a squeezing operation in the case of trapped ions [31]: we
dub this technique phase adaptive parametric cooling. The
technique solely requires the detection of the momentum and
position quadratures of the oscillator from which an optimal
modulation phase is deduced and fed back into the system (as
illustrated in Fig. 1). Parametric driving of an oscillator of
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oscillator

detection

phase adaptive feedback

FIG. 1. Parametric cooling via phase adaptive feedback. Generic
oscillator with natural frequency �. Detection of the mechanical
quadratures q and p allows for the design of an adaptive phase
feedback strategy, based on the parametric modulation of the spring
constant at frequency 2� and adjustable modulation phase φ.
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displacement x with natural frequency � and mass m con-
sists in supplementing the bare restoring force F = −m�2x
with an extra small modulation δF = 2m�� cos (2�t + φ)x
(under the condition � � �). Alternatively, this can be un-
derstood as a periodic and phase-dependent variation of the
spring constant k(t, φ).

The key point in our treatment is the observation that the
phase φ is a crucial tuning knob: when properly adjusted, it
can lead to an exponential loss of energy at rate �. An optimal
phase φopt, to be fed back into the modulation intensity, is
derived from the detected quadratures, hence it is subject to
any imprecision occurring in the measurement process as well
as, most importantly, to the intrinsic quantum uncertainty. In
the absence of any measurement imprecision, for a thermal
environment at average occupancy nth � 1, a final occupancy
as low as γ nth/� can be reached, where γ is the intrinsic
mechanical damping. Quantum fluctuations in the intrinsic
position and momentum are negligible at high occupancies
since, in this “classical” regime, the quadratures have a large
mean value and so the cooling rate is well quantified by �. As
the “quantum” regime of low occupancy is approached, quan-
tum fluctuations of the detected quadratures play a crucial
role. In particular, parametric modulation amplifies quantum
fluctuations of the quadratures. However, our phase adaptive
feedback technique inhibits such an amplification of the quan-
tum noise and rather competes with it to provide a nonzero
residual occupation at the level of a few phonons.

The paper is organized as follows. In Sec. II we introduce
the model for the quantum mechanical oscillator subject to
a parametrically modulated restoring force and to quantum
thermal noise. In Sec. III we derive the conditions where
a cooling solution emerges as a function of the modulation
phase and show how feedback can be implemented to op-
timize the cooling behavior. We extend our analytical and
numerical treatment to the question of thermally activated res-
onators and find limits for the residual occupancy and analyze
the effect of measurement imprecision and the question of
multimode cooling in Sec. IV. We finally address the question
of quantum ground-state cooling in Sec. V and present further
discussions and conclusions in Sec. VI.

II. MODEL AND EQUATIONS

We consider a mechanical resonance along some quantized
direction x̂ of mass m subjected to the standard restoring force
F = −m�2x̂, where � is the natural oscillation frequency. In
addition, we consider an extra, weak parametric modulation

δF = 2m�� cos (2�t + φ)x̂, (1)

with modulation amplitude � � � and phase φ. Using
the definition of the zero point motional amplitude xzpm =√

h̄/(2m�), we can introduce the dimensionless position q̂ =
x̂/xzpm and its associated momentum quadrature p̂ with the
usual commutation relation [q̂, p̂] = i. Heisenberg-Langevin
equations for the dimensionless quadratures can be derived
from the expression of the two forces listed above, which read

dq̂

dt
= �p̂, (2a)

d p̂

dt
= −γ p̂ − �q̂ + 2� cos(2�t + φ)q̂ + ζ̂ (t ). (2b)

In the absence of the external modulation force δF , the mode
is in equilibrium with a bath at temperature Tth to which an
average occupancy nth corresponds. The action of the bath
onto the mechanical resonance is modeled via noise operators
ζ̂ (t ) of zero average and with two time correlations

〈ζ̂ (t )ζ̂ (t ′)〉 = 1

2π

∫
dωSζ (ω)e−iω(t−t ′ ). (3)

The thermal power spectrum is given by the following expres-
sion:

Sζ (ω) = γω

�

{
coth

[
h̄ω

2kBTth

]
+ 1

}
. (4)

Notice that an equivalent approach, based on canonical noise
equally affecting both quadratures, could be taken (as de-
tailed in Appendix D) as long as nth � 1, which is usually
the case in optomechanics [23,32,33]. For large mechanical
quality factors Qm = �/γ � 1 some simplifications can be
performed which lead to simple expressions for both the
thermal damping rate, defined in terms of sidebands γ =
[Sζ (�) − Sζ (−�)]/2 and for the average thermal occupancy
nth = [Sζ (�) + Sζ (−�)]/(2γ ). Notice that the equipartition
theorem implies that, in a thermal state, the variance in the
two quadrature is the same and derivable as 〈q̂2〉 = 〈p̂2〉 =
nth + 1/2.

The task in the following is to study the classical and
quantum behavior of such an oscillator under the combined
action of the thermal bath and of the parametric modulation.
To this end we will first address the classical problem in the
following two sections and relegate the question of quantum
ground state cooling to Sec. V.

III. ADAPTIVE PHASE COOLING

In a first step, we take an average over the Langevin equa-
tions and construct a second-order differential equation for
the expectation value q = 〈q̂〉. We then follow a perturbative
method requiring that the modulation parameter b = �/� �
1 is small. Eliminating the trivial exponential damping with
q = q̄e−γ t/2 allows for the derivation of a Mathieu-like equa-
tion

¨̄q + [�′2 − 2b�2 cos(2�t + φ)]q̄ = 0, (5)

where �′ =
√

�2 − γ 2/4 (as Qm � 1, one can safely ap-
proximate this term in the following with �). Further
simplifications are obtained via the transformation to a dimen-
sionless time variable t̄ = �t + φ/2. The dynamics can now
be exactly mapped onto the standard Mathieu equation

d2qM

dt̄2
+ [1 − 2b cos(2t̄ )]qM = 0. (6)

Notice that in above formalism, the reverse transformation
from t̄ to the real time variable is then done via q(t ) =
qM(�t + φ/2)e−γ t/2.

A. Perturbative solution

The standard solution to Eq. (6) can be written as an infinite
sum of harmonics

qM (t̄ ) = E−eiβ t̄
n=∞∑

n=−∞
C2nei2nt̄ + E+e−iβ t̄

n=∞∑
n=−∞

C2ne−i2nt̄ , (7)
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where the coefficients β and C2n are found by replacing the so-
lution back in Eq. (6). This leads to (see Ref. [31]) a recursive
equation

C2n+2 − D2nC2n + C2n−2 = 0, (8)

where

D2n = 1 − (2n + β )2

b
. (9)

In the limit of small b, the first three terms in the expansion
above suffice to properly describe the trajectory: we reduce the
analysis to n = 0,±1. For β = −1 + x, where x is a complex
number with amplitude much smaller than unity, we find that
D0 = 2x/b and D2 = −2x/b while all other Ds are very large.
Fixing (without loss of generality) C0 = 1 and truncating all
coefficients for |n| > 1 we obtain x = ib and C2 = i, as the
only nonvanishing coefficient.

We can now show that, to a very good approximation,
the solution can be written in terms of negative and positive
damping components

q(t ) = A−e− (γ+�)t
2 cos (�t + φ′) + A+e− (γ−�)t

2 sin (�t + φ′),

(10)

where we rewrite the following coefficients in a more con-
cise way (so that they become real) A− = 2E−eiπ/4e−bφ/4

and A+ = 2E+eiπ/4ebφ/4 and the newly introduced phase is
φ′ = φ/2 + π/4. This shows the occurrence of an additional
optical damping rate � (we assume b > 0) that adds to the
intrinsic thermal damping γ . The negative solution indicates
increased damping, while the positive solution leads to a heat-
ing instability as soon as � becomes larger than γ .

The coefficients E± are derived from the initial conditions
q0 and p0 and their ratio strongly depends on the driving phase
φ. The initial conditions ask that qM (t̄ = φ

2 ) = q(t = 0) = q0

and q̇M (t̄ = φ

2 ) = p(t = 0) = p0, which leads to the follow-
ing set of equations:

A− cos φ′ + A+ sin φ′ = q0, (11a)

−A− sin φ′ + A+ cos φ′ − b

2
A− cos φ′ + b

2
A+ sin φ′ = p0.

(11b)

In a first step, we neglect A+ assuming it is much smaller
than the damped solution and obtain from above

φ
(0)
opt = π

2
+ 2 tan−1

[
1

p0

q0
+ b

2

]
. (12)

Fixing the modulation phase to the optimal value listed above
means that the system will follow a cooling dynamics in the
initial stages. In the long time limit, independently of the
initial conditions, the system will blow up as the heating
solution always prevails owing to the rise with time in the
exponential term. For the chosen optimal phase, the signs
of the sin and cos terms are always the same, which leads
to |A−| =

√
q2

0 + p2
0 thus equal to the initial variance of the

thermal state.

FIG. 2. Single shot cooling. (a) Occupancy for three randomly
selected initial conditions (q( j)

0 , p( j)
0 ) for j = 1, 2, 3 (adding to the

same initial energy), each with an optimized phase φ
( j)
0 . All trajecto-

ries show exponential cooling up to the turning points τ j where the
damped solution is comparable to the growing one. The parameters
are γ /� = 10−6, nth = 104, and b = 0.05. The time is in inverse
units of �. (b) Time dynamics of the occupancy for increasing values
of b [other parameters same as in (a)]. Higher values of b lead to
faster cooling.

B. Optimal modulation phase and feedback

Let us now simplify the above derivation and stress again
that the important condition is that A− � A+, which allows
for the damped solution to dominate at early times. For b � 1,
we can verify numerically that even a more simplified analyt-
ical expression can be found for the optimal phase as

φ
(0)
opt = π

2
+ 2 tan−1

[
q0

p0

]
. (13)

This expression allows us to formulate the strategy for the
single-shot cooling mechanism. This involves the detection
of the initial conditions which then is followed by the op-
timization of the modulation phase. The resulting cooling
occurs for any initial conditions as illustrated in Fig. 2. The
loss of energy is exponential at the analytically predicted
rate � and dominates up to a time τ where (roughly) τ ≈
(1/�) ln(A−/A+) (where the positive and negative solutions
are comparable). This means that the occupancy reached at
time τ is roughly A−/A+ times smaller than the initial one.

The above illustration already suggests the mechanism to
achieve control over the cooling dynamics at arbitrarily long
times: at regular times jδτ (with j = 1, . . . , N and the repeti-
tion time interval δτ < τ ), before heating starts to dominate,
we detect the instantaneous values of q( jδτ ) and p( jδτ ) and
update the phases φ( jδτ ) to the values indicated by Eq. (13).
Following this procedure for N steps suggests the loss of
energy roughly by a factor of 1/bN . For values of b around 0.1,
in only six feedback steps we can reduce an initial nth = 104

average occupancy to well below unity, as described below.

IV. CLASSICAL FEEDBACK COOLING LIMITS

The previous section shows that the initial choice of the
modulation phase combined with a repeated resetting of the
phase extracted from the detection of the quadratures leads to
efficient exponential cooling dynamics. Let us now analyze
the performance of this technique in the presence of thermal
noise and measurement imprecision. Also, we extend here the
mechanism to the question of simultaneous cooling of a few
distinct resonances.

053521-3



ALEKHYA GHOSH et al. PHYSICAL REVIEW A 107, 053521 (2023)

A. Inclusion of thermal noise

Let us consider the action of classical thermal noise, under
the Markovian approximation, modeled as a Wiener process
dW (t ) of zero average and variance dW (t )2 = dt . To this end
we write the following set of coupled difference equations:

dq = �pdt, (14a)

d p = −γ pdt − �qdt + Fmoddt +
√

2γ nthdW (t ).

(14b)

We can easily check that, in the absence of the trap mod-
ulation force, the system thermalizes, as expected, at rate γ

to the environmental temperature Tth (occupancy nth) (see Ap-
pendix A). Numerically, we can model the Wiener increment
[34] in terms or a normal distribution such that dW (t ) =√

dtN (0, 1), where N (0, 1) describes a normally distributed
random variable of unit variance. A semi-analytical solution
can be instead found by turning the difference equations into
a set of recurrence equations (see Appendix B). We discretize
the time interval [0, t] into n steps of duration dt = t/n.
The equations above can be rewritten as vn − Mnvn−1 =√

2γ nthudWn where v = (q, p)
 and u = (0, 1)
 and the evo-
lution matrix is defined as

Mn =
[

1 �dt
−�dt + 2� cos [2�(n − 1)dt + φ]dt 1 − γ dt

]
.

(15)

A formal analytical solution can be written in terms of time
ordered matrices Tn j = MnMn−1 . . .M j in the following
form:

vn = Tn1v0 +
√

2γ nth

n−1∑
j=1

Tn judWn− j . (16)

The first part in the equation above is the deterministic evo-
lution from the initial conditions, while the last part is the
long-term behavior dominated by thermal noise. Notice that
for nth = 0, the evolution matrix is time independent and the
Tn j is simply equal to M(n− j) which allows for analytical
solutions. The phase adaptive feedback algorithm is then as
chosen as follows: at t = 0, the modulation phase is picked
at φ

(0)
opt to ensure an initial damping period. Monitoring of q

and p at regular time intervals jδτ (with j = 1, . . . , N) is
then followed by an update of the modulation phases φ

( j)
opt

fixed by Eq. (13) with the replacement of the instantaneous
quadratures q j = q( jδτ ) and p j = p( jδτ ). In Fig. 3(a), the
performance of the technique is exemplified on three different
trajectories (in the absence of noise) with identical initial
conditions but different feedback times. For an optimized φ

(0)
opt,

the red line shows the heating in the absence of feedback,
while a slow feedback (δτ > τ ) leads to regions of heating and
cooling (magenta line). Perfectly exponential loss is reached
for quick feedback with δτ < τ (blue line). In Fig. 3(b), in
the presence of thermal noise, two randomized trajectories
show the same cooling rate (at rate �) and the same final
occupancy. From equilibrium considerations [23], the final
occupancy can be deduced as the ratio of the reheating rate
of the ground state γ nth and the total damping rate γ + �

)b()a(

)d()c(

FIG. 3. Feedback phase adaptive cooling. (a) Occupancy for a
given set of initial conditions with the same energy, assuming ini-
tially fixed phase (red, full line) as opposed to adapted phase with
δτ < τ (blue line, dotted, fast feedback) and δτ > τ (magenta line,
dashed, slow delayed feedback). (b) Two trajectories with differ-
ent initial conditions randomly picked from a thermal distribution
with nth = 104. The initial exponential cooling saturates close to the
ground state as the competition between Brownian noise thermal
heating and parametric cooling shows the reach of an equilibrium
final occupancy at nfinal ≈ γ nth/�. (c) Phase-space illustration of an
initial thermal state (103 points in orange) and the corresponding final
cold state (in blue). (d) Zoom-in of the final occupancy distribution
showing a thermal distribution. The parameters are γ /� = 10−6 and
b = 0.05. Time is expressed in inverse units of �.

such that nfinal = γ nth/(γ + �). Figures 3(c) and 3(d) show
that both the initial and final states are thermal.

B. Measurement imprecision

Consider now the case of imperfect detection, when the
detected phase φopt is uncertain up to a value δφ of zero
average with variance σφ . This stems from the imprecision
in the detection of the quadratures with an expression that
can be directly deduced by applying the error propagation
formula to Eq. (13). Let us model the measurement impreci-
sion by taking a classical stochastic average over Eq. (2) such
that the modulation term 2� cos(2�t + φ + δφ)q̂ becomes a
stochastic force. We then expand it in terms of exponentials
and then make use of the property of any Gaussian noise
that 〈eiδφ〉cl = e−〈δφ2〉cl where the bracket signifies a classical
averaging over many realizations. The force modulation, av-
eraged, then reads 2�e−σφ cos(2�t + φ)q̂, showing that the
measurement uncertainty simply leads to the rescaling of the
effective cooling rate from � to �e−σφ .

Sample trajectories simulating imperfect detection are
shown in Fig. 4(a) for a normal distribution of width σφ = 0.3.
The average over trajectories then fits perfectly to the derived
analytical result showing the progressive reduction of the
cooling rate with increasing measurement imprecision as is
apparent from the slope of the lines in Fig. 4(b).
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FIG. 4. Influence of the measurement imprecision. (a) Sample
trajectories (dashed lines) obtained from the imperfect detection
producing uncertainty in the phase which is modeled by a Gaussian
distribution of width σφ = 0.3. Occupancy without measurement
imprecision is shown as a reference (solid blue line). (b) Average
occupancy for different widths of the phase distributions. Parame-
ters used are γ /� = 10−6, b = 0.05, and nth = 104. Here time is
expressed in inverse units of � and occupancy is obtained for an
adapted phase with δτ < τ . The slopes of the occupancy curves fit
very well to the analytical prediction.

C. Simultaneous cooling

Interestingly, the above phase adaptive mechanism can be
extended to simultaneously cool a number nres of adjacent
mechanical resonances as previously tackled via other cool-
ing techniques [35–37]. This scenario can refer to either a
number of different vibrations of a single resonator or to the
case of many levitated particles within the same optical trap
(for different particle size a different oscillation frequency
is obtained). Let us denote these frequencies by �k with
k = 1, . . . , nres and write a generalized modulation force as a
sum

∑
k 2�k cos(2�kt + φk )qk . Assuming spectrally resolved

detection of all quadratures, the set of modulation phases
can be extracted and used for the periodic adjustment of the
modulation force at intervals multiples of δτ . The results are
presented in Figs. 5(a) and 5(c) for the case of equidistant,
well-separated nres = 8 resonances and in Figs. 5(b) and 5(d)
for the particular case where two modes are close to degen-
eracy. The final occupancy in the steady state is calculated
for individual, isolated cooling (ignoring the presence of ad-
jacent resonances) as black stars and then compared with the
performance of the simultaneous cooling technique as blue tri-
angles. The red dots show the initial occupancy of each mode.
The results are consistent with previous treatments of cold-
damping [21,22], showing that cooling is efficient as long as
the modes are frequency-separated by more than the effec-
tive cooling rate �k . This is further exemplified in Fig. 5(c)
where the cooling dynamics for all modes is presented with
the clear message of Fig. 5(d) that the two adjacent modes are
unaffected by the cooling mechanism.

V. TOWARDS THE QUANTUM LIMIT

Let us now estimate the efficiency of the phase adaptive
scheme close to the quantum ground state, where quantum
fluctuations in the detected quadratures can play a crucial role.
Since numerical computations for large temperature initial
states are inefficient, owing to the large size of the Hilbert
space, we focus on identifying the role of quantum uncertainty
at the analytical level and numerically analyze the feasibility

(c) (d)

(a) (b)

FIG. 5. Simultaneous cooling. (a) Final occupancy (lower panel,
red dots: initial occupancy, black stars: isolated cooling, blue trian-
gles: simultaneous cooling) of eight equidistant modes (upper panel).
(b) Same as in (a) but considering the case where two modes are
degenerate in frequency. (c) Time dynamics of the cooling process
for all modes showing fluctuations associated with the competition
between the imposed cooling and the inherent heating dynamics
owed to the thermal bath. (d) Same as in (c) but with the clear
message that degenerate modes are decoupled from the cooling dy-
namics. The parameters are chosen as γ /� = 10−6, b = 0.05 and the
initial occupancy is close to 105 for all modes. The time is expressed
in inverse units of �.

of mitigating the effect of parametric amplification of quan-
tum noise fluctuations close to zero occupancy, where the
size of the Hilbert space necessary for the convergence of
numerical simulations is considerably reduced.

The exact numerical simulations in the reduced size Hilbert
space are shown in Fig. 6(a) where we follow the dynam-
ics of an initially low-temperature oscillator subject to phase
adaptive feedback. We find that an increase in the feedback
steps manages to keep the oscillator in a low temperature by
fighting against the amplification of fluctuations stemming
from the parametric nature of the drive. However, residual
occupancies at the order of a few phonons cannot be avoided.
This can be explained by inspection of Eq. (13): we model the
effect of quantum fluctuations by adding a normal distribution
random variable N (0, 1) to the detected quadratures. For large
oscillation amplitudes where q0 and p0 assume large values,
the uncertainty N (0, 1) does not have much effect on the
estimate of the optimal phase. Close to the ground state, where
the averages are close to zero, the quantum uncertainty renders
the optimal phase estimate quasirandom, therefore providing
no cooling or even a heating effect.
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FIG. 6. Performance in the quantum regime. (a) Occupancy of a
quantum oscillator starting in a low-temperature state in the absence
of phase feedback (blue solid line, which shows immediate quick
amplification of quantum fluctuations) and with increasing feedback
steps ( j = 50, 100, 200). The simulations are performed in a Hilbert
space with dimension 102 by following the evolution of operators
written as matrices in the Fock basis. (b) Numerical simulations
showing final occupancies for trajectories corresponding to increas-
ing initial occupancies from 104 to 5 × 104 to 106. The black solid
lines show the ideal case without quantum fluctuations but includ-
ing thermal ones. For nth = 106 the simulation including quantum
fluctuations in the detected quadratures (green, dotted) shows similar
behavior with final occupancy at the level of 20 phonons. For lower
nth the imperfect detection process (red, dotted for 5 × 104 and cyan,
dashed for 104) leads to a saturation quite far from the classically
predicted results at the level of a few residual phonons. Numerical
simulations are performed by assuming that quantum fluctuations are
included in the detection process and subsequently in the estimate of
the feedback phase.

We can extend this observation and numerically investigate
the dynamics for the higher initial temperature case by simply
including the quantum fluctuations in the detected optimal
phase similar to the case of the measurement imperfection as
normal distributions N (0, 1) in each quadrature. Results are
presented in Fig. 6(b) showing that, for the initial stages, the
phase adaptive techniques leads to efficient exponential cool-
ing with the theoretically predicted cooling rate �. At later
stages, for situations where the predicted final occupancies
are large, as in the example where nth = 106, the quantum
fluctuations do not play any role and the cooling is still ef-
ficient. However, for initial conditions such as nth = 104 or
nth = 5 × 104, where classical averages at longer times are at
the order of the values picked from the distribution N (0, 1),
the estimated optimal phase acquires a large uncertainty, lead-
ing to a saturation at the level of a few phonons. Reheating is,
however, prohibited as the feedback becomes again efficient
as soon as the system acquires larger classical amplitudes.

Let us now consider an approximate, phenomenological
model where we assume that the system reaches quasiequi-
librium between two consecutive applications of the phase
feedback at a few phonon occupancy with a measurement
imprecision modified cooling rate �̄. This allows to estimate
the final occupancy (see Appendix C) from the variance in the
position quadrature

〈q̂2〉 = γ (�̄ + γ sin φ)

�̄2 − γ 2

(
nth + 1

2

)
+ �̄(�̄ + γ sin φ)

2(�̄2 − γ 2)
. (17)

The first contribution describes cooling, while the second
term is necessary to secure a larger than 1/2 variance stem-
ming from quantum fluctuations. For large initial occupancies,

where �̄ is well approximated by �, the analytical expression
leads to a final occupancy nfinal = γ /�(nth + 1/2) showing a
reduction by a factor of �/γ . For cases of reduced initial oc-
cupancies where the system gets closer to the ground state, an
analytical estimate is not possible and numerical simulations
show that the residual occupancies is at the order of a few
phonons as witnessed in Fig. 6(b).

VI. DISCUSSIONS AND OUTLOOK

In contrast to prior designs of parametric feedback [30]
of parametric cooling [25], we consider a pure actuation
on the phase of the feedback. The main benefit is that the
predicted dynamics is purely exponential in energy loss (for
initial stages where large occupancies are assumed) and can
be captured in an analytical model which identifies the knobs
allowing for the cooling solution to dominate at any times.
Use of pure phase actuation has additional technical benefits:
extraneous heating from direct modulation of the radiation
pressure force can lead to extraneous (ohmic) heating, which
can be absent for pure phase modulation. While parametric
cooling has been experimentally introduced for the control of
optically levitated particles [25,26], atoms in cavities [27] or
nanoelectromechanical resonators [28], our description gen-
erally involves solely the modulation of the spring constant
of the resonator. Therefore, applications could extend beyond
standard optomechanical systems, such as a membrane-in-
the-middle optomechanical systems, to the refrigeration of
phonon modes in solid-state systems. As numerical simula-
tions are computationally challenging, we leave the problem
of analyzing and optimizing the feedback in the regime of low
occupancy for future studies employing quantum trajectory
techniques [34,38].

Note added. The authors became aware of a related paper
by Manikandan et al. [39], where an alternative treatment
derived the same phase relation as that found here and also
considered the role of squeezing arising from the parametric
modulations of the trapping potential.
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APPENDIX A: MODELING BY WIENER PROCESS FOR
UNDERDAMPED OSCILLATORS

To numerically model the influence of the thermal environ-
ment on a harmonically bound particle, we rewrite the coupled
difference equations for an undriven harmonic oscillator

dq = �pdt, (A1)

d p = −γ pdt − �qdt +
√

2γ nthdW (t ), (A2)

where dW (t ) is a Wiener process as described in the main text.
Note that, unlike a free particle [40], there is no asymptotic
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FIG. 7. Thermalization of an initially hot mechanical oscillator.
(a) Time evolution of the two position trajectories. (b) Average occu-
pancy as a function of time. The parameters are γ = 4 × 10−3� and
nth = 100.

diffusion for a particle subjected to a harmonic potential
[41]. In fact in the later case, both the position and momen-
tum attain an equilibrium distribution. This means that in
the steady state the mechanical oscillator should thermalize
with the environment. To check this numerically, we simulate
Eqs. (A1) and (A2) in the underdamped case and using Wiener
increments [34], which are Gaussian with a variance equal
to numerical time step dt . We begin with an initially hot
mechanical oscillator damped at a rate γ = 4 × 10−3� by a
thermal environment of effective occupancy nth = 100. The
resulting thermalization of the mechanical oscillator is shown
in Fig. 7. An initially hot mechanical system follows the time
evolution provided by the thermal environment [Fig. 7(a)]
and in the steady state the average occupancy approaches
nth = 100 [Fig. 7(b)], as expected.

APPENDIX B: CLASSICAL STOCHASTIC EVOLUTION

The coupled difference equations

dq = �pdt, (B1a)

d p = −γ pdt − �qdt + Fmoddt +
√

2γ nthdW (t ),

(B1b)

can be directly numerically simulated by modeling
dW (t ) = √

dtN (0, 1), where N (0, 1) describes a normally
distributed random variable of unit variance. However, more
analytical insight can be obtained by turning the difference
equations into a set of recurrence equations. We discretize the
time interval [0, t] into n steps of duration dt = t/n and can
then rewrite the equations above as

vn − Mnvn−1 =
√

2γ nthudWn, (B2)

where v = (q, p)
 and u = (0, 1)
 and the evolution matrix
is defined as

Mn =
[

1 �dt

−�dt + 2� cos [2�(n − 1)dt + φ]dt 1 − γ dt

]
.

(B3)

A solution can be then found easily and can be written in
terms of time-ordered matrices Tn j = MnMn−1 . . .M j in the

following form:

vn = Tn1v0 +
√

2γ nth

n−1∑
j=1

Tn judWn− j . (B4)

As a simple check, let us describe solely the thermalization
dynamics of an unmodulated oscillator (setting � = 0). The
time-ordered matrices are much simpler now: Tn1 = Mn and
Tn j = Mn− j . Under the assumption that γ � �, diagonaliza-
tion of the matrix M = SS−1 is straightforward in terms
of the two eigenvalues of M equal to λ1 = 1 − γ dt/2 −
i�dt, λ2 = 1 − γ dt/2 + i�dt . Notice that the two eigenval-
ues can be rewritten as λ1 = (1 − γ dt/2)e−i�dt = reiθ and
λ2 = re−iθ where r = 1 − γ t/2n and θ = �t/n. The result-
ing quadratures after n steps are written as

qn = λn
1 + λn

2

2
q0 + i

λn
1 − λn

2

2
p0 +

√
2γ nth

n−1∑
j=0

λ
j
1 − λ

j
2

2
dWj,

(B5a)

pn = λn
1 + λn

2

2
p0 − i

λn
1 − λn

2

2
q0 +

√
2γ nth

n−1∑
j=0

λ
j
1 + λ

j
2

2
dWj,

(B5b)

where the deterministic parts describe simply the oscillatory
weakly damped transient evolution and the last terms are the
effect of the thermal environment. In the large n limit we find
a closed expression

q(t ) = e−γ t/2[qo cos(�t ) + p0 sin(�t )]

+ lim
n→∞

√
2γ nth

n−1∑
j=0

r j sin( jθ )dWj,

(B6a)

p(t ) = e−γ t/2[p0 cos(�t ) − q0 sin(�t )]

+ lim
n→∞

√
2γ nth

n−1∑
j=0

r j cos( jθ )dWj,

(B6b)

where we use that limn→∞(1 − γ t/2n)n = e−γ t/2. From
these expressions, we can estimate that in steady state 〈q2〉ss =
〈p2〉ss = nth by using 〈dWjdWj′ 〉 = δ j j′t/n and evaluating the
limit limn→∞

∑n−1
j=0 r2 j sin2( jθ ) = 1/(2γ t ).

APPENDIX C: TOWARDS THE QUANTUM LIMIT

Let us assume a steady state and fix the modulation phase
to φ such that the cooling rate is exponential at rate �̄ (with
the maximum value � for optimal feedback and close to zero
when fluctuations dominate) and both the position and mo-
mentum expectation values vanish. We will compute the final
occupancy from the variance in position (assuming thermal
equipartition between momentum and position quadratures)
obtained from the power spectrum in the Fourier domain
Sq(ω) via an integration 〈q̂2〉 = 1/(2π )

∫ ∞
−∞ dωSq(ω). The
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Fourier-transformed equations read

−iωq̂(ω) = �p̂(ω), (C1a)

−iω p̂(ω) = −γ p̂(ω) − �q̂(ω)

+ �̄[eiφ q̂(ω − 2�) + e−iφ q̂(ω + 2�)] + ζ̂ (ω).

(C1b)

Notice that, for �̄ = 0, the above equations lead to q̂(ω) =
χ (ω)ζ̂ (ω) where the mechanical susceptibility is

χ (ω) = �

(�2 − ω2) − iγω
. (C2)

This indicates a simple way of computing the vari-
ance by using the correlations of the thermal environ-
ment 〈ζ (ω)ζ (ω′)〉 = Sζ (ω)δ(ω + ω′) where Sζ (ω) is the
thermal power spectrum with sidebands Sζ (−�) = 2γ nth

and Sζ (�) = 2γ (nth + 1). As for very high mechani-
cal quality factors Qm � 1, the susceptibility is a very
sharply peaked function around ±� and we can ap-
proximate it around the two poles at ±� by expanding
it in terms of a small quantity γ � |�| � �. The ex-
pansion is then χ (−� + �) � 1/(2� + iγ ) and χ (+� +
�) � 1/(−2� − iγ ). The variance can then approxi-
mated by 〈q̂2〉(t ) = 1/(2π )

∫ ∞
−∞ d�(4�2 + γ 2)−1[Sζ (−�) +

Sζ (�)] = nth + 1/2 as expected. We made use of the integral
1/(2π )

∫ ∞
−∞ d�1/(4�2 + γ 2) = π/(2γ ).

We can now rewrite Eqs. (C1) as a recursive equation

q̂(ω) = �̄χ (ω)[eiφ q̂(−2� + ω) + e−iφ q̂(2� + ω)]

+ χ (ω)ζ̂ (ω). (C3)

We then proceed as above, making small variations around
±� and assuming that the only components which contribute
to the power spectrum of the position quadrature are q̂(±� +
�). We can now separate two coupled equations

q̂(−� + �) = �̄χ (−� + �)e−iφ q̂(� + �)

+χ (−� + �)ζ̂ (−� + �), (C4a)

q̂(� + �) = �̄χ (� + �)eiφ q̂(−� + �)

+χ (� + �)ζ̂ (� + �), (C4b)

and invert them to find the solutions for q(−� + �) and
q(� + �) expressed as

q̂(−� + �) = −χ̄ (�)[−(2� + iγ )ζ (−� + �)

+ �̄e−iφζ (� + �)], (C5a)

q̂(� + �) = −χ̄ (�)[�̄eiφζ (−� + �)

+ (2� + iγ )ζ (� + �)]. (C5b)

The modified mechanical susceptibility is approximated by
the following expression (under the assumption that |�| �
�):

χ̄ (�) = 1

4�2 + �̄2 − γ 2 + 4iγ�
. (C6)

The denominator shows the presence of the optical damp-
ing rate �̄ but not as a broadening adding to γ as is the
case for cold damping or cavity cooling. We now again
use the correlations of the noise term in the frequency

domain, however supplemented with the bath responsible
with damping at rate � and with zero temperature. Notice
that, for small �, the only contributing terms are 〈ζ (−� +
�)ζ (� + �′)〉 � S(−�)δ(� + �′) and 〈ζ (� + �)ζ (−� +
�′)〉 � S(�)δ(� + �′) where now S(−�) = 2γ nth and
S(�) = 2γ (nth + 1) + 2�. This leads to the following con-
tributions:

〈q̂(−� + �)q̂(−� + �′)〉
= |χ̄ (�)|2�̄e−iφ{2�[S(�)

− S(−�)] − iγ [S(−�) + S(�)]}δ(� + �′),

(C7a)

〈q̂(� + �)q̂(� + �′)〉
= |χ̄ (�)|2�̄eiφ{2�[S(�)

− S(−�)] + iγ [S(−�) + S(�)]}δ(� + �′),

(C7b)

〈q̂(−� + �)q̂(� + �′)〉
= |χ̄ (�)|2{[4�2 + γ 2)S(−�)

+ �̄2S(�)]}δ(� + �′), (C7c)

〈q̂(� + �)q̂(−� + �′)〉
= |χ̄ (�)|2{�̄2S[−�)

+ (4�2 + γ 2)S(�)]}δ(� + �′). (C7d)

We can now add all the contributions to find the position
power spectrum via the following integral:

〈q̂2〉 = 1

2π

∫ ∞

−∞
d�|χ̄ (�)|2

{
4γ (2γ �̄ sin φ + 4�2 + �̄2

+ γ 2)

(
nth + 1

2

)
+ 2�̄(4�(γ + �̄) cos φ + 2γ �̄ sin φ

+ 4�2 + �̄2 + γ 2)

}
(C8)

The result for the relevant case �̄ > γ is

〈q̂2〉 = γ (�̄ + γ sin φ)

�̄2 − γ 2

(
nth + 1

2

)
+ �̄(�̄ + γ sin φ)

2(�̄2 − γ 2)
. (C9)

Notice that in the limit where the additional damping dom-
inates �̄ � γ we can simplify the expression above and
compute the final occupancy nfinal = 〈q̂2〉 − 1/2 to lead to

nfinal = γ

�̄

(
nth + 1

2

)
. (C10)

In the opposite case where �̄ < γ the variance reads

〈q̂2〉 = γ (γ + �̄ sin φ)

γ 2 − �̄2

(
nth + 1

2

)
+ �̄(γ + �̄ sin φ)

2(γ 2 − �̄2)
.

(C11)

For �̄ = 0 we recover the expected result 〈q̂2〉 = nth + 1/2.

APPENDIX D: EFFECT OF CANONICAL NOISE

To properly account for noise in optomechanical systems,
one usually makes use of the Brownian noise model, which
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FIG. 8. Effect of the canonical noise on the dynamics of the
mechanical oscillator. (a) Occupancy (without noise) obtained by
solving Eqs. 1(a) and 1(b) of the main text (solid blue line) and
Eqs. (D1) and (D2) (dashed red line). (b) Sample trajectories in the
absence (solid blue line) and presence (dashed red line) of canonical
noise. Parameters are same as used in Fig. 4.

can be seen as an average over the infinite number of small
kicks stemming from the environment. This then leads to a
stochastic force and damping in the momentum quadrature
while the position quadrature is unaffected. The resulting
spectrum of the force is not flat but instead described by
colored noise, and generally the correlations of the noise in
the time domain deviate from a delta function by the addition
of a derivative of a delta function. However, as is the case
for high-quality mechanical oscillators of small frequency

h̄� � kBTth, an approximation by a flat spectrum and thus
delta correlation is very accurate. This also allows one to study
the dynamics of the system in terms of bosonic annihilation
[b̂ = (q̂ + i p̂)/

√
2] and creation [b̂† = (q̂ − i p̂)/

√
2] opera-

tors and the mechanical loss can be introduced via a Lindblad
term with a collapse operator b and decay rate γ (canonical
noise). Let us analyze this kind of model by noticing that the
equations of motion are now modified and noise is present in
both quadratures

q̇ = �p − γ

2
q +

√
γ (nth + 1/2)qin, (D1)

ṗ = −�q − γ

2
p + 2� cos(2�t + φ)q +

√
γ (nth + 1/2)pin,

(D2)

where qin(t ) and pin(t ) are delta-correlated canonical noise
contributions. Using the above equations, we simulate the
dynamics and compare it with the dynamics obtained by us-
ing the Brownian noise model. The results are shown to be
perfectly in agreement in Fig. 8(a) (for noiseless trajectories
where only the predicted cooling rate is important) and for
noisy trajectories in Fig. 8(b), where the behavior close to
the final cooled state clearly shows the equivalence of the two
noise models.
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