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We introduce a formalism to efficiently calculate lasing modes and optical power flow in multisection lasers
with open boundaries. The formalism is underpinned by a projection of the complex-valued electric field and
its spatial derivative onto a suitably extended complex Z plane to reduce the order of the problem and simplify
analysis. In a single-section laser, we show that a laser mode is a loxodrome on the extended complex Z plane.
In a multisection laser, we obtain loxodromes for individual sections of the laser. Then, a multisection mode is
constructed by continuously concatenating individual loxodromes from each section using the open boundary
conditions. A natural visualization of this construction is given by stereographic projection of the extended
complex Z plane onto the Riemann sphere. Our formalism simplifies the analysis of lasing modes in open
multisection lasers and provides insight into the mode geometry and degeneracy.
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I. INTRODUCTION

With increasing miniaturization in optical devices and the
development of photonic integrated circuits, the problem of
modeling optical modes in complex configurations compris-
ing both active-medium and absorbing sections has become
prominent. For a one-dimensional structure, the core of the
problem is to find the solution to a multipoint boundary-value
problem for the electromagnetic wave equation with complex
coefficients, where open boundary conditions complicate the
situation. While the single-section case, which corresponds to
the classical Fabry-Pérot laser, can be solved analytically [1],
the case of two or more sections is considerably more difficult
but also much more interesting.

The aim of this paper is to give a general method for finding
lasing modes in multisection lasers with open boundaries and
provide a greater intuitive understanding of the geometry of
lasing modes. To this end, we propose the formalism outlined
in Fig. 1 for laser structures in one spatial dimension denoted
z. In the first step, we use the single-mode approximation to
reduce the real-valued partial differential wave equation for
the electric field E (z, t ) to a complex-valued ordinary differ-
ential wave equation for the mode profiles E (z). Since the
reduced wave equation is second order, the lasing field at each
point in space is represented by two complex numbers: the
electric field kE (z) and its space derivative E ′(z). Hence, a
lasing mode is represented by a curve in the two-dimensional
complex-valued vector space (four-dimensional real-valued
vector space), which is rather difficult to visualize. As a con-
sequence, the effects of changing the pump and different laser
designs are difficult to understand. In the second step, we
address this problem of high dimensionality using a noninvert-
ible H projection of the two complex-valued variables onto a
single complex-valued variable Z (z), with the origin of the
complex E plane mapped onto the infinity of Z . The key idea
is that this new variable, in conjunction with stereographic
projection, provides a natural representation of a lasing mode
as a one-dimensional curve on the Riemann sphere [2]. Note

that the Riemann sphere has been used successfully in many
areas of physics, for example, in the guise of the Bloch-sphere
representation [3] of a two-level system in quantum comput-
ing and to represent the polarization states of light on the
Poincaré sphere [4]. The final step of our formalism is to
compute this curve on the Riemann sphere. To this end, we use
the elegant mathematical formalism of the (invertible) Möbius
transformation [2] to show the following:

(i) Each part of a lasing mode in a given section of a mul-
tisection laser is simply a logarithmic spiral on an extended
complex plane.

(ii) The inverse Möbius transformation of this logarithmic
spiral gives a Z (z) that corresponds to a special curve on the
Riemann sphere called a loxodrome [5].

(iii) The entire lasing mode of a multisection laser with
open boundaries is obtained by concatenating individual lox-
odromes on the Riemann sphere.

The usual approach for obtaining lasing modes in multi-
section lasers is the transfer-matrix approach [6–8]. In this
approach, part of a lasing mode in a given section of a
multisection laser is represented as a complex 2 × 2 matrix
that depends on the physical properties of this section. Our
approach reduces the dimensionality of the problem from four
to two real dimensions and thus provides a simpler and more
accessible visual representation of lasing modes. This makes
it an interesting alternative to the transfer-matrix approach.

In order to validate and demonstrate the usefulness of our
approach, we first reproduce the well-known results for a
single-section Fabry-Pérot laser. We then study the case of a
laser with two sections of the same physical length but with
different gain or absorption characteristics. In this case, we
distinguish two options in which either both sections have
net local gain or, alternatively, one section has net local gain
while the other section has net local absorption. By “local”
we mean the property of the medium excluding boundaries.
Finally, we study a three-section laser, in which we introduce
an air gap between the two outer sections with net local
gain.
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FIG. 1. High-level overview of our formalism, including differ-
ent transformations involved in the three steps discussed in the text.

In this context, we focus on interesting situations in which
two different modes coalesce, or become degenerate, upon
varying one or two system parameters.

II. ELECTROMAGNETIC WAVE EQUATION

The electric field inside a laser is a three-dimensional
real-valued vector that varies in space and time. Consider
the spatiotemporal evolution of a single (scalar) component
E (z, t ) of this field that varies in the longitudinal z direction
along the laser structure [9]:

∂2

∂z2
E (z, t ) − 1

c2

∂2

∂t2
E (z, t ) − μ0

∂2

∂t2
P (z, t ) = 0, (1)

where c is the speed of light in vacuum, μ0 is the vacuum
permeability, and P (z, t ) is the total real-valued polariza-
tion, which is composed of both the active-medium and
background-polarization components. We use a single-mode
constant-intensity approximation and decompose the electric
field and polarization in terms of complex-valued spatial mode
profiles, denoted by E (z) and P(z), and temporal oscillations
at an optical frequency ω:

E (z, t ) = Re[E (z)e−iωt ], (2)

P (z, t ) = Re[P(z)e−iωt ]. (3)

We can now relate the same frequency components of the
complex-valued polarization and electric field [9,10] by

P(z) = ε0[χb(z) + χg(z)]E (z), (4)

where χb(z) and χg(z) are the complex-valued background
and active-medium susceptibilities, respectively. It is useful
to introduce the complex-valued permittivity of the medium
ε(z):

ε(z) = 1 + χb(z) + χg(z). (5)

0 l1 L
z

l1 l2

(b)

0 L
z

l1

(a)

(c)
l1 l2 l3

0 l1 l1 + l2 L z

FIG. 2. (a) Single-section laser with open boundaries. (b) Two-
section laser structure with open outer boundaries and two active-
medium sections (blue and green). (c) Three-section laser structure
with open outer boundaries, comprising two active-medium sec-
tions (blue and green) separated by a vacuum gap (white with orange
perimeter).

The case of Im[ε(z)] > 0 corresponds to net local absorption,
while Im[ε(z)] < 0 indicates net local gain or absorption. This
allows us to rewrite the wave equation (1) in the succinct form(

d2

dz2
+ k2 ε(z)

)
E (z) = 0, (6)

where k = ω/c is the free-space wave number. This second-
order differential equation can be written as two coupled
first-order differential equations by introducing a new variable
E ′(z):

d

dz
E (z) = E ′(z),

d

dz
E ′(z) = −k2 ε(z) E (z). (7)

Since E (z) and E ′(z) are complex valued, we are dealing with
a four-dimensional problem in real variables. This is the first
step shown in Fig. 1, in which we move from the real-valued
E (z, t ) and P (z, t ) to the complex-valued pair kE (z) and
E ′(z).

Boundary conditions

In this paper, we consider the three different laser structures
shown in Fig. 2. The outer boundaries of each laser structure
are at z = 0 and z = L, and we assume only outgoing light
at each outer boundary, meaning the light propagates to the
left for z < 0 and to the right for z > L. Assuming vacuum
outside the laser structure, we have ε(z) = 1 for z < 0 and z >

L. Then, solving Eq. (6) under the outgoing-light assumption
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gives

E (z) =
{

E (0) e−ikz for z < 0,

E (L) eik(z−L) for z > L.
(8)

Hence, we arrive at the following boundary conditions:

E ′(0) = −ikE (0),

E ′(L) = ikE (L), (9)

which, together with Eqs. (7), define a boundary-value prob-
lem (BVP). It is important to note that this BVP does not have
unique solutions: if E (z) is a solution, then ρE (z) is also a
solution for any complex number ρ �= 0.

The H projection discussed in the following section will
remove this nonuniqueness.

III. THE H PROJECTION

The purpose of the H projection is to reduce the dimen-
sionality of the two first-order Ordinary Differential Equations
(ODEs) (7) from four real dimensions to two real dimensions.
We define the H projection as a map from C2 to the extended
complex plane Ĉ = C ∪ {∞} as follows:

H (h1, h2) =
{

h1/h2 for h2 �= 0,

∞ for h2 = 0,
(10)

where h1 and h2 are complex numbers. While H is nonin-
vertible, it removes the nonuniqueness discussed in Sec. II
in the sense that H (ρh1, ρh2) = H (h1, h2) for any complex
number ρ �= 0. The H projection corresponds to the concept
of homogeneous (or projective) coordinates in the context of
complex projective geometry [2].

Using the H projection, we now introduce the dimension-
less function Z (z) ∈ Ĉ via

Z (z) = H (E ′(z), kE (z)) =
{ E ′(z)

kE (z) for E (z) �= 0,

∞ for E (z) = 0.
(11)

This new function allows us to rewrite the electric-field equa-
tion (7) and boundary conditions (9) as

dZ (z)

dz
= −k[Z (z)2 + ε(z)], (12)

Z (0) = −i, (13)

Z (L) = i. (14)

This is the second step in Fig. 1.
The BVP (12)–(14) can be used to obtain continuous solu-

tions on z subinterval(s) where Z (z) is finite [or, equivalently,
where E (z) �= 0]. For example, we can choose to solve (12)–
(14) where ‖Z (z)‖ � 1. The corresponding BVP for Z (z)−1

can be derived as

dZ (z)−1

dz
= k[1 + ε(z)Z (z)−2], (15)

Z (0)−1 = i, (16)

Z (L)−1 = −i (17)

and can be used to obtain continuous solutions on z
subinterval(s) where ‖Z (z)‖ � 1, including Z (z) = ∞ [or,
equivalently, E (z) = 0]. Then, one can match the resulting
solutions at the unit circle ‖Z (z)‖ = ‖Z (z)−1‖ = 1 to con-
struct continuous solutions valid in the entire z interval [0, L].

(Re(Z), Im(Z))

(rx, ry, rz)

(0, 0, 1)

ry

rz

rx

FIG. 3. Stereographic projection of a point in the extended com-
plex plane Ĉ onto the Riemann sphere embedded in R3 according to
Eq. (19).

Once a solution Z (z) is obtained, we can recover the original
complex-valued electric-field function E (z) for a given E (0)
by integrating Eq. (11) to obtain

E (z) = E (0) exp

(
k
∫ z

0
Z (z′)dz′

)
. (18)

Since switching between Z (z) and Z (z)−1 is cumbersome,
we propose the Riemann sphere in the next section as a more
elegant way of representing solutions to the BVP (7) and (9).

A. The Riemann sphere

The dimensionality reduction from (7) to (12) allows us
to obtain intuitive insight into the nature of optical modes.
A convenient way of visualizing the extended complex plane
Ĉ is through the stereographic projection onto the Riemann
sphere, which is given by

(rx, ry, rz ) = 1

1 + |Z|2 (2Re[Z], 2Im[Z], |Z|2 − 1). (19)

Here, (rx, ry, rz ) are coordinates in a three-dimensional em-
bedding space, and Eq. (19) is restricted to a sphere of radius
1 where r2

x + r2
y + r2

z = 1. The point Z = 0 is mapped to
the point (0, 0,−1), while the complex infinity Z = ∞ is
mapped to the point (0,0,1) in the embedding space. The
boundary conditions Z = −i and i in Eqs. (13) and (14) are
mapped to points (0,−1, 0) and (0,1,0) in the embedding
space, respectively. This is part of the third and last step in
Fig. 1, which is illustrated in Fig. 3. Since the Riemann sphere
is a compact version of the extended complex plane, the last
two steps of our formalism can be viewed as compactification.

B. Connection to physical quantities

Quantities of physical interest are the intensity of the
complex-valued electric field |E (z)|2 and the power flow given
by the time-averaged Poynting vector (see Chap. 1.3 in [1]),

S (z) = Re

[
i

2μ0kc
E (z)[E ′(z)]∗

]
, (20)

where [E ′(z)]∗ is the complex conjugate of E ′(z). Using
Eq. (18), we can express these quantities in terms of the Z
function as follows:

|E (z)|2 = |E (0)|2 exp

(
2k

∫ z

0
Re[Z (z′)]dz′

)
, (21)

S (z) = 1

2μ0c
|E (z)|2Im[Z (z)]. (22)
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The interpretation of S (z) > 0 at a given z is that energy
flows in the positive z direction (from left to right) at this z.
Since S (z) > 0 implies Im[Z (z)] > 0, such energy flow is
represented by points on the eastern hemisphere of the Rie-
mann sphere, i.e., points around (0,1,0). The opposite holds
for S (z) < 0.

In the following, it is convenient to introduce and work
with the dimensionless electric field,

Ê (z) = E (z)

E (0)
, (23)

and the dimensionless Poynting vector,

Ŝ(z) = 2μ0c
S (z)

|E (0)|2 = |Ê (z)|2 Im[Z (z)]. (24)

Note from (21) and (23) that

|Ê (z)|2 = exp

(
2k

∫ z

0
Re[Z (z′)]dz′

)
. (25)

IV. LOXODROMES FOR SINGLE-SECTION LASERS

Before applying the H projection to multisection lasers, let
us first illustrate its use and introduce the basic concepts in
the context of the well-known single-section Fabry-Pérot laser
shown in Fig. 2(a). We ignore any effects that cause spatial
variation of ε(z) within the section, such as spatial hole burn-
ing, and consider the simplest case of constant permittivity,
ε(z) = εc. We assume Im[εc] < 0, which corresponds to the
case of net local gain in the laser section.

A. Fixed-point analysis

Using the definitions

ZV
1 (z) = −i

√
ε(z), ZV

2 (z) = i
√

ε(z), (26)

we can rewrite (12) in the form of a nonautonomous [11]
ODE:

dZ (z)

dz
= −k

[
Z (z) − ZV

1 (z)
][
Z (z) − ZV

2 (z)
]
, (27)

which holds for any spatially varying ε(z). In the special
case of a spatially constant ε(z) = εc, Eq. (27) becomes an
autonomous ODE:

dZ (z)

dz
= −k

[
Z (z) − ZF

1

][
Z (z) − ZF

2

]
, (28)

where

ZF
1 = −i

√
εc, ZF

2 = i
√

εc. (29)

We can view Eq. (28) as a planar autonomous dynamical
system that evolves over z and thus use the concepts of phase
plane and linear stability to give a qualitative description of
solutions to (28). Points ZF

1 and ZF
2 are fixed points. The

“stability” of these fixed points is obtained from the complex-
valued Jacobian J (Z ), which is given by

J (Z ) = −2kZ (z). (30)

We have Re[εc] > 0 and Im[εc] < 0. Using the conven-
tion Re[

√
εc] > 0 results in Re[ZF

1 ] < 0 and Im[ZF
1 ] < 0.

Using (30), we see that Re[J (ZF
1 )] = −2kRe[ZF

1 ] > 0 and
Im[J (ZF

1 )] �= 0. Therefore, ZF
1 acts as an unstable spiral,

meaning that solutions spiral away from ZF
1 in the phase plane

Z . Similar arguments show that ZF
2 acts as a stable spiral,

meaning that solutions spiral towards ZF
2 in Z .

B. Loxodrome solution

We now show that the general solution to (28) has a special
form known as a loxodrome [2,5,12]. To define a loxodrome
formally, the concepts of logarithmic spiral and Möbius trans-
formation are required. A logarithmic spiral is a curve in Ĉ
given by

Q(z) = Q0 exp [W z], (31)

where Q0,W ∈ C and z ∈ R. A Möbius transformation is a
function M on Ĉ of the form

M(p) = a11 p + a12

a21 p + a22
, (32)

where p ∈ Ĉ and ai j are complex numbers which fulfill the
condition

a11a22 − a21a12 �= 0.

We note that every Möbius transformation has an inverse
which is also a Möbius transformation. A loxodrome is de-
fined as a Möbius transformation of a logarithmic spiral, i.e.,
as M(Q(z)).

To obtain the general solution to (28), we consider the
following Möbius transformation from Z ∈ Ĉ to Y ∈ Ĉ:

Y = Z − ZF
1

Z − ZF
2

= Z + i
√

εc

Z − i
√

εc
. (33)

This transformation maps the fixed points ZF
1 and ZF

2 to 0 and
∞, respectively. When it is applied to (28), we obtain

dY (z)

dz
= 2i

√
εc k Y (z). (34)

The general solution to (34) is a logarithmic spiral in the form
of (31) with Q0 = C and W = 2i

√
εc k:

Y (z) = C e2i
√

εc kz, (35)

where C ∈ C is an unknown constant of integration. Applying
the inverse transformation of (33), namely,

Z = i
√

εc
Y + 1

Y − 1
, (36)

to (35), we obtain the general solution for (28) as

Z (z) = √
εc

D cos(
√

εc kz) − √
εc sin(

√
εc kz)

D sin(
√

εc kz) + √
εc cos(

√
εc kz)

, (37)

where D ∈ C is an unknown constant of integration. The
general solution Z (z) to (28), given in (37), is a Möbius trans-
formation of a logarithmic spiral and therefore a loxodrome.
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FIG. 4. Five solution branches of Eq. (43). The red and green
dots correspond to Table I. Note that the axes in this and all following
figures show dimensionless quantities.

C. Boundary conditions

We now impose boundary conditions for the single-
section laser to fix the unknown constant(s) of integration and
obtain combinations of εc and kL that correspond to the lasing
modes.

First, we note from the general logarithmic spiral solu-
tion (35) that C = Y (0) and obtain

Y (z) = Y (0) e2i
√

εc kz, (38)

Y (L) = Y (0) e2i
√

εc kL. (39)

In the physically relevant case of a laser, we have Re[εc] > 0,
Im[εc] < 0, and kL > 0. Thus, Eq. (38) describes a logarith-
mic spiral starting from a given Y (0), with two unknown
parameters, εc ∈ C and kL ∈ R. Condition (39) fixes εc and
kL so that the spiral connects to a given Y (L). In other
words, multiple solutions to (39) correspond to multiple
single-section lasing modes. Transforming the boundary con-
ditions (13) and (14) using (33), we obtain

Y (0) = 1 − √
εc

1 + √
εc

, Y (L) = 1 + √
εc

1 − √
εc

(40)

and rewrite (39) as

±1 = 1 − √
εc

1 + √
εc

ei
√

εc kL. (41)

We use this formula to illustrate lasing modes as a family of
one-dimensional manifolds in the three-dimensional parame-
ter space (Re[εc], Im[εc], kL), as shown in Fig. 4.

TABLE I. Parameters used for Figs. 5–7.

Values for Figs. Values for Figs.
Parameters 5 and 6(a) 6(b) and 7

kL 2.1 2.7
εc 9.0709 − 1.9521i 12.2368 − 1.5171i
ZF

2 = −ZF
1 0.3222 + 3.0290i 0.2164 + 3.5048i

FIG. 5. (a) Parametric plot of the loxodrome solution Z (z) on
the complex plane; the boundary conditions +i and −i are indicated
by a square and a diamond, respectively; the blue dots indicate the
fixed points ZF

1 and ZF
2 . (b) and (c) The corresponding electric-field-

intensity profile |Ê (z)|2 and power-flow profile Ŝ(z). The parameter
set is given in the second column of Table I.

Alternatively, we note from the general loxodrome solu-
tion (37) that D = Z (0) and obtain

Z (z) = √
εc

Z (0) cos(
√

εc kz) − √
εc sin(

√
εc kz)

Z (0) sin(
√

εc kz) + √
εc cos(

√
εc kz)

. (42)

Then imposing the boundary conditions (13) and (14) yields
the single-section lasing-mode condition

i = √
εc

−i cos(
√

εc kL) − √
εc sin(

√
εc kL)

−i sin(
√

εc kL) + √
εc cos(

√
εc kL)

. (43)

Condition (43) is equivalent to condition (41), meaning that
it fixes εc ∈ C and kL ∈ R so that the loxodrome solution
Z (z) connects Z (0) = −i and Z (L) = i. This condition will
be useful when we generalize the calculation of lasing modes
to multisection lasers.

D. Loxodromes for single-section lasers

Using the tools we have introduced so far, let us now
demonstrate how lasing modes in a single-section laser can
be represented on the Riemann sphere and on the complex
Z plane. This will also allow us to connect loxodromes to
physical characteristics such as the electric-field intensity and
power flow. Taking the parameter values corresponding to the
red dot in Fig. 4 (first parameter set in Table I), we obtain
a solution Z (z) given by (42). This solution is shown in the
extended complex plane Z in Fig. 5(a) and projected onto
the Riemann sphere in Fig. 6(a). In Fig. 5(a), we observe that
the resulting loxodrome connects the boundary conditions −i
and +i by spiraling away from the unstable fixed point ZF

1 =
−i

√
εc, crossing through zero, and spiraling towards the stable

fixed point ZF
2 = i

√
εc. Equivalently, we can observe the same

behavior on the Riemann sphere in Fig. 6(a). The electric-field
intensity |E (z)|2 of the corresponding lasing mode can be
obtained using (21). From Fig. 5(b), we can see the this field
intensity has three maxima and two minima inside the laser
section.

Similarly, taking the parameter values corresponding to
the green dot in Fig. 4 (second parameter set in Table I),
another example of a loxodrome is shown in the extended
complex plane Z in Fig. 7(a) and projected onto the Riemann
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FIG. 6. Blue lines show the loxodrome solutions Z (z) projected
onto the Riemann sphere using Eq. (19). The parameter sets for
(a) and (b) are given in Table I. The red and green circles are the
orthogonal pencils with centers ZF

1 = −i
√

εc and ZF
2 = i

√
εc.

sphere in Fig. 6(b). The key difference is that, in this instance,
the loxodrome spirals through infinity, not through zero. The
electric-field intensity of the corresponding lasing mode has
four maxima and three minima inside the laser, and it vanishes
at the central minimum, where E (L/2) = 0, or, equivalently,
Z (L/2) = ∞.

To provide a deeper geometrical intuition of the loxo-
dromes on the Riemann sphere as seen in Fig. 6, we include
green circles which are representatives of the family of all
circles on the sphere going through the two fixed points, ZF

1

FIG. 7. Same as Fig. 5, but for the parameter set given in the third
column of Table I.

and ZF
2 . In addition, we include red circles which are rep-

resentatives of the family of circles that are perpendicular to
the green circles. Mathematically, these red circles correspond
to an orthogonal pencil of cycles with centers ZF

1 and ZF
2 , as

explained in [5]. The defining property of the loxodrome curve
is that it crosses each family of circles at a fixed angle [2].

Let us now connect the lasing modes of a single-
section laser to the power flow Ŝ(z) inside the laser as defined
in (24). For the two examples studied above, this is shown
in Figs. 5(c) and 7(c), respectively. In both cases we find
Ŝ(0) < 0 and Ŝ(L) > 0, which corresponds to outgoing light
at either end. In addition, Ŝ(z) increases monotonously with
increasing z, and we have Ŝ(L/2) = 0.

V. COMPOSITE LOXODROMES FOR MULTISECTION
LASERS

Following the use of the H projection for the single-
section Fabry-Pérot laser, our next aim is to obtain solutions to
the BVP (12)–(14) in the case of a multisection laser. This will
be realized through a composition of different Möbius trans-
formations, one for each section, in a way that is reminiscent
of the transfer-matrix approach [13].

To be specific, we consider an n-section laser of total length
L and use l j to denote the length of section j, so that l1 +
· · · + ln = L. We assume that permittivity ε(z) in Eq. (12) is a
piecewise-constant function of z and use ε j to denote constant
permittivity in section j. Furthermore, we use z j to denote the
position of the boundary between sections j and j + 1, with
z0 = 0 and zn = L.

A. Composition of Möbius transformations

To make the calculation of multisection loxodromes ef-
ficient, we introduce the following convenient notation for
Möbius transformations. For a 2 × 2 complex matrix

A =
(

a11 a12

a21 a22

)
, (44)

we define the corresponding Möbius transformation [A] as
follows:

[A](p) =
[

a11 a12

a21 a22

]
(p) ≡ a11 p + a12

a21 p + a22
. (45)

Note that the representation of Möbius transformations is not
unique. In particular, a matrix cA defines the same Möbius
transformation as A for any complex c �= 0. Furthermore, we
note that

([A] ◦ [B])(p) = [AB](p), (46)

meaning that the composition of Möbius transformations [A]
and [B] is a Möbius transformation [AB] given by the matrix
product AB.

Using this notation, we rewrite transformation (33) for
section j in the form

Y j (z) =
[

1 i
√

ε j

1 −i
√

ε j

]
(Z j (z)), z ∈ [z j−1, z j]. (47)
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Similarly, general solution (38) in Y for section j can be
written in the form

Y j (z) =
[

e2i
√

ε j k(z−z j−1 ) 0
0 1

]
[Y j (z j−1)]. (48)

Next, we invert (47) to rewrite general solution (42) in Z for
section j as a composition of Möbius transformations:

Z j (z) =
[

i
√

ε j i
√

ε j

1 −1

]

◦
[

e2i
√

ε j k(z−z j−1 ) 0

0 1

]
◦

[
1 i

√
ε j

1 −i
√

ε j

]
[Z j (z j−1)].

(49)

In this way, we obtain n individual loxodromes,
Z1(z), . . . ,Zn(z), one for each section j. The
electromagnetic-field boundary conditions at the interface of
two sections with different permittivities require continuity in
the electric field and its first derivative [1],

Ej (z j ) = Ej+1(z j ), E ′
j (z j ) = E ′

j+1(z j ).

According to (11), this translates into continuity in Z alone:

Z j (z j ) = Z j+1(z j ). (50)

We then use the interior condition (50) to concatenate in-
dividual loxodromes (49) into a continuous, but typically
nonsmooth, composite loxodrome Zcomp(z). It is important
to note that Zcomp(z) depends on Z1(z0) and 3n real param-
eters. These real parameters can be chosen as Re(ε1), . . . ,
Re(εn), Im(ε1), . . . , Im(εn), kL, and the n − 1 ratios of sec-
tion lengths kl1:kl2: · · · :kln. In Sec. VI we will consider a
more convenient set of parameters based on different physical
characteristics of the individual sections. Next, we need to
ensure that such a Zcomp(z) satisfies boundary conditions (13)
and (14). Thus, we impose Zcomp(0) = Z1(z0) = −i together
with Zcomp(L) = Zcomp(zn) = i and use (46) to arrive at

i =
[

cos(
√

εn kln) −√
εn sin(

√
εn kln)

sin(
√

εn kln )√
εn

cos(
√

εn kln)

]
◦

· · ·

◦
[

cos(
√

ε1 kl1) −√
ε1 sin(

√
ε1 kl1)

sin(
√

ε1 kl1 )√
ε1

cos(
√

ε1 kl1)

]
(−i). (51)

This complex condition fixes all 3n real parameters to ensure
that Zcomp(z) satisfies (13) and (14). Its multiple solutions
correspond to multiple multisection lasing modes.

In practice, we avoid varying all 3n real parameters si-
multaneously and construct Zcomp(z) as follows. We fix the
3n real parameters using realistic values, start the first lox-
odrome from −i when z = z0 = 0 so that the first boundary
condition (13) is satisfied, and proceed with loxodrome con-
catenation as described above. The result is a composite
loxodrome Zcomp(z) whose end point Zcomp(L) lies some-
where on an extended complex plane. Next, we want to relax
as few of the 3n real parameters as possible to ensure that
Zcomp(L) moves to the point Z = i, so that the second bound-
ary condition (14) is satisfied too. Since Z = i is a single point
on the extended complex plane, meaning it is of codimension

FIG. 8. (a) Parametric plot of the loxodrome solution Z (z) on the
complex plane; the boundary values of +i and −i are indicated by a
square and a diamond, respectively; the blue and green dots indicate
the fixed points for sections 1 and 2, respectively. (b) and (c) The
corresponding electric-field-intensity profile |Ê (z)|2 and power-flow
profile Ŝ(z). Blue curves and green curves denote Z (z) for the first
and second sections, respectively. The parameter values are given in
the second column of Table II.

2, at least two of the 3n real parameters need to be varied
simultaneously to achieve Zcomp(L) = i. In this way we obtain
a family of composite loxodromes that solve the BVP (12)–
(14) with a piecewise-constant ε(z). A particular advantage
of this approach is that it can be extended to any continuous
spatially varying permittivity profile ε(z) by using a suitable
piecewise-constant approximation of ε(z) with sufficiently
large n. Finally, the electric-field intensity and power flow
of the corresponding multisection lasing modes are obtained
using (21) and (24), respectively.

B. Two-section laser

Before we move on to a three-section laser, we briefly
discuss a two-section laser that is characterized by six real
parameters. A two-section laser problem has four fixed points,
two for each section, which we denote ZF

j,1 = −i
√

ε j and
ZF

j,2 = i
√

ε j , where j = 1, 2.
First, we concatenate two loxodromes using the left-

boundary condition (13) and the interior condition (50). Then,
we vary two real parameters, kL and Im(ε1), to satisfy
the right-boundary condition (14). The ensuing composite
loxodromes reveal two types of lasing modes: gain-gain (GG)
lasing modes and absorption-gain (AG) lasing modes.

An example of an AG lasing mode is shown in Fig. 8. This
mode is very different from the single-section lasing mode
owing to the combination of one absorbing section [Im(ε1) >

0] and one gain section [Im(ε2) < 0]. As a consequence, the
corresponding loxodrome (blue) spirals towards ZF

1,1, which
is now stable.

An example of a GG lasing mode is shown in Fig. 9 with
parameter values given in Table II. This mode has two gain
sections and is similar to the single-section lasing mode. The
difference is that there are now two loxodrome parts, each
with a different pair of fixed points. The loxodrome in sec-
tion 1 (blue) spirals away from unstable ZF

1,1 towards stable
ZF

1,2, and the loxodrome in section 2 (green) spirals away from
unstable ZF

2,1 towards stable ZF
2,2.
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FIG. 9. The same as Fig. 8, but for parameter values given in the
third column of Table II.

C. Three-section laser

A three-section laser is characterized by nine real parame-
ters and has six fixed points, two for each section, which we
denote ZF

j,1 = −i
√

ε j and ZF
j,2 = i

√
ε j , where j = 1, 2, 3. We

now discuss the specific example of the three-section laser
shown in Fig. 2(b), where the two outer sections with local
gain or absorption are separated by a section with a vacuum
gap. As a result we have ε2 = 1, and thus, Eq. (51) becomes

i =
[

cos(
√

ε3kl3) −√
ε3 sin(

√
ε3kl3)

sin(
√

ε3kl3 )√
ε3

cos(
√

ε3kl3)

]

◦
[

cos(kl2) − sin(kl2)

sin(kl2) cos(kl2)

]

◦
[

cos(
√

ε1kl1) −√
ε1 sin(

√
ε1kl1)

sin(
√

ε1kl1 )√
ε1

cos(
√

ε1kl1)

]
(−i). (52)

Like for the two-section laser, we expect two fundamen-
tally different types of lasing modes [solutions to (52)]. For
net local gain in both outer sections, which corresponds
to Im[ε1] < 0 and Im[ε3] < 0, we expect gain-neutral-gain
(GNG) lasing modes. On the other hand, for net local gain in
one outer section and net local absorption in the other outer
section, which corresponds to Im[ε1] < 0 and Im[ε3] > 0
or vice versa, we expect gain-neutral-absorbing (GNA) las-
ing modes and absorbing-neutral-gain (ANG) lasing modes,
respectively.

Using the values in Table III, an example of a GNG lasing
mode is shown in Figs. 10(a) and 11(a). The parameters are

TABLE II. Parameters used for Figs. 8 and 9 with the corre-
sponding fixed points.

Values for Fig. 8 Values for Fig. 9
Parameters (AG) (GG)

kL 4.2437 2.112
kl1:kl2 1:1 1:1
ε1 9.0 + 1.1138i 9.0 − 0.8575i
ε2 9.0 − 3.0i 9.0 − 3.0i
ZF

1,2 = −ZF
1,1 −0.1853 + 3.006i 0.1427 + 3.0036i

ZF
2,2 = −ZF

2,1 0.4934 + 3.0402i 0.4934 + 3.0402i

TABLE III. Parameters used for Figs. 11 and 12.

Values for Figs. Values for Figs.
Parameters 10(a) and 11 10(b) and 12

(GNG) (GNA)

kL 19.4456 20.0942
kl1:kl2:kl3 10:1:10 10:1:10
ε1 9.2503 − 0.3042i 8.8759 − 0.3599i
ε2 1 1
ε3 9.2086 − 0.1350i 8.9344 + 0.2625i
ZF

12 = −ZF
11 0.049995 + 3.0418i 0.06039 + 2.9799i

ZF
22 = −ZF

21 i i
ZF

32 = −ZF
31 0.0223 + 3.0347i −0.0439 + 2.9894i

chosen to match the green dot in Fig. 14 below. The dynamics
is governed by the fixed-point structure in each section. Z (z)
starts out at −i and spirals away from ZF

11 towards ZF
12 on a

loxodrome trajectory (blue curve). At z = l1 the vacuum gap
causes Z (z) to follow a circle until z = z2 (orange curve). In
the third section, Z (z) again follows a loxodrome that spirals
towards ZF

32 to finish at Z (L) = i (green curve). The overall
picture in this case is similar to the single-section Fabry-Pérot
case since both sections 1 and 3 carry net gain. This is also
illustrated in Fig. 11(c), which shows that the power flow
increases in sections 1 and 3. The corresponding electric-field

FIG. 10. Blue, orange, and green lines show the loxodrome so-
lutions of the three-section laser in the respective sections 1, 2, and
3 projected onto the Riemann sphere. The parameter sets for (a) and
(b) are given in Table III.
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FIG. 11. (a) Parametric plot of the loxodrome solution Z (z) on
the complex plane; the boundary values of +i and −i are indicated by
a square and a diamond, respectively; the blue and green dots indicate
the fixed points for sections 1 and 3, respectively. (b) and (c) The
corresponding electric-field-intensity profile |Ê (z)|2 and power-flow
profile Ŝ(z). The color scheme follows from Fig. 10, and the param-
eter set is given in the second column of Table III.

intensity is shown in Fig. 11(b). The field intensities in sec-
tions 1 and 3 are of comparable magnitude.

An example of a GNA lasing mode is shown in Figs. 10(b)
and 12 for parameters that match the blue dot in Fig. 14 below.
Since section 3 is now absorbing, Z (z) (green curve) spirals
away from ZF

32 before reaching the final point Z (L) = i. As a
consequence, the power flow now has a maximum in the inner
vacuum section as shown in Fig. 12(c). Figure 12(b) indicates
that the electric-field intensity in section 3 is significantly
smaller than in section 1.

VI. HOMOGENEOUSLY BROADENED MEDIA
AND CUSP POINTS

Here, we revisit single-section and three-section lasers
from a different perspective. Our aim is to reformulate the
problem in terms of parameters that correspond to typical
physical characteristics of the active medium, such as gain,
population inversion, and population-induced refractive-index
change. For clarity of exposition, we consider a homoge-
neously broadened two-level active medium. For consistency
with the single-mode constant-intensity approximation used
in Sec. II, we assume constant population inversion in each
section.

FIG. 12. Same as Fig. 11, but for the parameter set given in the
third column of Table III.

FIG. 13. Five solution branches of lasing modes in a single-
section laser using Eq. (43) with (55) for nb = 3 + 0.13i projected
to (a) the (kL, Nc ) plane and (b) (kL,�) plane.

To characterize permittivity ε j ∈ C in section j by the
active-medium population inversion Nj in section j we
use [14–16]

ε j = n2
b, j + Nj

� j + i
, (53)

where nb, j ∈ C is the background refractive index in section j,
Nj is the population inversion in section j, and

� j = k − k0, j

γP, j

quantifies the population-induced refractive-index change
in section j; ck0, j is the two-level active-medium transi-
tion frequency, and c γP, j is the active-medium polarization

FIG. 14. (a) Solution branches of Eq. (52) using (56)–(58) for
kl1:kl2:kl3 = 10:1:10, nb = 3 + 0.13i, and N1 = 1.15 in the (kL, N3)
plane. (b) Corresponding Im(ε3) plot using Eq. (58). The green and
blue dots indicate the values used in Table III.
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FIG. 15. Solution branches as in Fig. 14(a) for different values of N1 indicated in each panel. Branch merge points are shown with a black
dot.

decay in inverse seconds. As a result, the 3n independent real
parameters listed below Eq. (50) are replaced by (6n + 1)
independent parameters: Re(nb,1), . . ., Re(nb,n); Im(nb,1), . . .,
Im(nb,n); N1, . . . , Nn; k0,1, . . . , k0,n; γP,1, . . . , γP,n; and k,
l1, . . . , ln.

A significant reduction in the number of parameters is
obtained if we restrict ourselves to particular laser structures
in which each section either is a vacuum section or contains
the same type of an active medium with the possibility of dif-
ferent population inversions in different nonvacuum sections.
Then, the parameters nb,i, k0,i, and γP,i are the same for all
nonvacuum sections, and we denote these global parameters
by nb, k0, and γP, respectively. As a result, the population-
induced refractive-index change � j is also the same in each
nonvacuum section, and we denote it by �. Then, Eq. (53)
becomes

ε j =
{

n2
b + Nj

�+i for nonvacuum sections,
1 for vacuum sections.

(54)

Furthermore, we consider k and � to be independent param-
eters, which further simplifies the problem. In other words, in
a laser with m nonvacuum sections, we have m + n + 3 real
independent parameters: Re(nb); Im(nb); N1, . . . , Nm; �; kL;
and the n − 1 ratios of section lengths kl1:kl2: · · · :kln. In the
following, in order to compare our results to the results in [16],
we allow kL, �, and the population inversions N1, . . . , Nm to
vary while keeping the other parameters fixed.

A. Single-section laser

In the case of a single-section laser, the permittivity is given
by

εc = n2
b + Nc

� + i
. (55)

Using (55) in the complex equation (43) with a fixed nb

provides two real conditions for the real parameters �, Nc, and
kL. The resulting one-dimensional solution branches of lasing
modes are shown in Fig. 13. Figure 13(a) shows the variation
of Nc for the various branches as a function of kL. These

solution branches correspond to the lines shown in Fig. 4, and
Figs. 4 and 13 are related via Eq. (55).

B. Three-section laser

Let us now reconsider the three-section laser from Sec. V C
in the case of homogeneous broadening. The permittivities in
each section are then given by

ε1 = n2
b + N1

� + i
, (56)

ε2 = 1, (57)

ε3 = n2
b + N3

� + i
, (58)

where N1 and N3 are the population inversion parameters of
sections 1 and 3, respectively. We choose our parameters (see
figure captions) to facilitate comparison with [16].

Using (52) along with (56)–(58), we obtain the solution
branches of lasing modes shown in Fig. 14. We note that the
red and green branches in Fig. 14(a) are similar to branches in
the single-section laser shown in Fig. 13. Figure 14(b) shows
that in these cases Im(ε3) is negative, and therefore, section 3
has net local gain. These branches therefore correspond to
GNG lasing modes. However, a different type of branch also
exists, as illustrated by the blue lines in Fig. 14 with an
inverted shape and at lower values of N3. It has positive Im(ε3)
corresponding to net local absorption in section 3 [Fig. 14(b)],
and therefore, this lasing mode is of the GNA type. This
qualitative difference in the branches relates back to our ob-
servations in Sec. V C, where we differentiated solutions with
net local gain and absorption in section 3. More specifically,
the green dots in Fig. 14 correspond to the parameters of
Figs. 10(a) and 11, and the blue dots correspond to those of
Figs. 10(b) and 12.

It is now interesting to observe how Fig. 14(a) changes with
the variation of a third parameter, N1. This is illustrated in
Fig. 15. These plots reveal a number of interesting phenom-
ena, which we now discuss in detail.

To start off, consider the transition from N1 = 1.15 in
Fig. 14(a) to N1 = 1.189 in Fig. 15(a). We see that the red and
blue branches meet at a special point, which we call a branch
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FIG. 16. (a) Enlarged version of Fig. 15(a) close to the branch
merge point (black dot). (b) Corresponding (kL, �) diagram.

merge point. An enlarged version of the area around this criti-
cal point is shown in Fig. 16(a), and a plot of � vs kL is shown
in Fig. 16(b). Taken together, these plots demonstrate that the
red and blue branches indeed meet in the three-dimensional
k, N3,� space. Note that there is also an apparent crossing
of the green and red branches at the dotted line in Fig. 16(a),
which, however, is an artifact of this particular projection: it
does not coincide with a crossing in Fig. 16(b) and therefore
does not correspond to a branch merge point. A further in-
crease of N1 leads to Fig. 15(b), where the branches now have
a different configuration than in Fig. 14(a). In particular, both
blue and red branches now have GNG and GNA solutions, and
we observe a continuous transition between GNA and GNG
lasing modes. The branches in Fig. 15(b) correspond to the
threshold boundary discussed in Fig. 2 in [16].

As we increase N1 further, we obtain another branch
merge point, shown in Fig. 15(c). In this case, the green and
blue branches merge. After the merge, the blue branch in
Fig. 15(d) develops a peculiar loop. The green branch now
has a continuous transition between GNA and GNG lasing
modes.

Finally, the loop in the blue branch transforms into a cusp
singularity, as shown in Fig. 15(e). This is shown in greater
detail in Figs. 17(a)–17(c), where we compare the situations
slightly before, at, and after the appearance of the cusp sin-
gularity, respectively. We see that at the critical value of N1,
the characteristic loop in Fig. 17(a) disappears, and the blue
curve becomes nonsmooth with a sharp edge in Fig. 17(b).
Upon a further increase of N1, this edge smooths out, as
shown in Fig. 17(c). This cusp point can be identified with
an exceptional point at the lasing threshold discussed in [16].
In the formalism from that paper, suitably defined complex
“eigenvalues” are associated with individual modes, and ex-
ceptional points are defined by a degeneracy of two such
modes.

FIG. 17. Magnified solution branch close to cusp singularity for
values near Fig. 15(e).

C. Cusp point in a two-section laser

The overall phenomenology of branches described in the
previous section for three-section lasers is also present in
the case of two-section lasers, albeit at higher values of kL.
To confirm this, Fig. 18 shows the solution branches of las-
ing modes for a two-section laser with sections of lengths
kl1:kl2 = 1:1 and homogeneous broadening given by

ε1 = n2
b + N1

� + i
, (59)

ε2 = n2
b + N2

� + i
. (60)

Figures 18(a) and 18(b) show the merging of two branches
analogous to Figs. 15(a) and 15(c), respectively. Similarly,
Fig. 18(c) represents a cusp point, as previously shown in
Fig. 15(e).

FIG. 18. Solution branches for a two-section laser with kl1:kl2 =
1 and nb = 3 + 0.13i for different values of N1. Branch merge points
are shown with a black dot.
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VII. CONCLUSION

We have investigated the solution space of lasing modes
in open-boundary multisection lasers with different complex
permittivities in each section. Using suitable mathematical
projections, the solutions are conveniently visualized as paths
on the Riemann sphere, which start at point −i and finish at
+i. The paths are a continuous concatenation of loxodromes,
where each section corresponds to an individual loxodrome.
The mathematical formalism to obtain explicit solutions for
the lasing modes involves the use of Möbius transforma-
tions. This method is generally applicable to any number of
sections with a different constant permittivity εc, including

piecewise-constant approximations of continuously varying
permittivity profiles ε(z).

The formalism allowed us to explore different types of
solutions and the connections among them. In particular, the
three-section laser exhibits GNG and GNA solutions, which
interact in a nontrivial way. In the homogeneously broadened
case, we found that two types of critical points exist. The first
type is branch merging points, where two solution branches
merge. This allows for a continuous connection between GNG
and GNA solutions. The second type is cusp points, which
cause the emergence of a characteristic loop in a branch and
are analogous to exceptional points at the threshold from [16].
Very similar behavior was observed in the two-section laser.
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