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Chaotic Bloch oscillations in dissipative optical systems driven by a periodic train of coherent pulses
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We study the response of an optical system with the Kerr nonlinearity demonstrating Bloch oscillations to a
periodic train of coherent pulses. It has been found out that the intensity of the field excited in the system by
pulses resonantly depends on the train period. It is demonstrated numerically and analytically that the response
of the system is stronger when the period of the driving pulses is commensurate with the period of the Bloch
oscillations. Moreover, large enough pulses are capable to induce the instabilities which eventually lead to onset
of chaotic Bloch oscillations of the wave-function envelope bouncing both in time and space. The analysis
reveals that these instabilities are associated with period-doubling bifurcations. A cascade of such bifurcations
with increase of the pulse amplitude triggers the chaotic behavior.
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I. INTRODUCTION

Bloch oscillations are a very important fundamental phe-
nomenon first discovered during the development of zone
theory of solid state physics [1–3]. The effect manifests itself
in counterintuitive periodic oscillations of quantum particles
moving in a tilted periodic potential, e.g., electrons in a
crystal subjected to a constant electric field. The theoretical
discovery was followed by a long scientific discussion and
finally the effect was confirmed experimentally [4–7] (see also
review [8]).

It is well known that, under some conditions, the dynam-
ics of light is described by the same equations as the wave
function of particles in quantum mechanics. Therefore, it
would be reasonable to anticipate that an analog of Bloch
oscillations can be found in optical systems. Indeed, optical
Bloch oscillations have been predicted in optical waveguide
arrays and photonic crystals [9–13]. In those systems the
effective refractive index depends linearly on a spatial coor-
dinate and this plays the role of a linearly growing part of
the potential in quantum systems. The spectrum of the eigen-
modes of these systems is equidistant (it has the form of a
Wannier-Stark ladder) and the light propagates along snaking
trajectories.

Optical Bloch oscillations are much easier to observe ex-
perimentally compared to their quantum counterparts and thus
their theoretical discovery was accompanied by a number of
experimental works where Bloch oscillations were demon-
strated [9,14–20]. A comprehensive review on optical Bloch
oscillations, Zener tunneling, and related effects can be found
in [21]. It is important to acknowledge that Bloch oscillations
are a very generic effect and occur in a large number of
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physical systems such as atomic systems [22–27], lasers [28],
coupled LC circuits [29], mechanical systems [30–33], and
plasmonic [34–39] or exciton-polariton systems [40–42].

Bloch oscillation are a linear phenomenon but, of course,
nonlinearities of physical systems can affect Bloch oscilla-
tions. In most cases the effect of the nonlinearity on the Bloch
oscillations is destructive, making it impossible to observe
the oscillations at long times [43–48]. The main reason why
nonlinear effects prevent observation of long-living Bloch
oscillations is the modulation instability appearing when the
envelope approaches the edges of the band [49]. The under-
standing of this fact allowed to suggest different, sometimes
quite complicated, methods of nonlinearity management, sta-
bilizing Bloch oscillations in the nonlinear regime [50–53].
It was also found that, quite surprisingly, the increase of the
dimensionality of the system can also stabilize Bloch oscilla-
tions [54], making possible, for instance, their use for resonant
new frequency generation [55]. On the other hand, it has
been shown that the nonlinear Schrödinger equation is able to
demonstrate deterministic chaos [56–59]. Despite the above
progress, the nonlinear response of systems with Bloch oscil-
lations to external pulse excitations is still poorly understood.

This paper aims to contribute to a better understanding of
nonlinear regimes of optical Bloch oscillations in a system
of interacting cavities pumped by a periodic train of exter-
nal coherent pulses. It is shown that the excitation efficiency
greatly increases when the period of repetition of the pump
pulses is commensurate with the period of Bloch oscillations.
In the presence of a coherent pump the dephasing of the
Wannier-Stark states due to nonlinear effects can be safely
neglected provided that the dephasing time is much longer
compared to the lifetime of the waves excited in the system.
Our analysis shows that the presence of the Kerr nonlinearity
evokes symmetry breaking and promotes the occurrence of
the so-called period-doubling bifurcations when the intensity
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FIG. 1. The schematic view of the array of optical resonators
pumped by a train of coherent pulses. The resonant frequencies of
the resonators depend on their indexes linearly.

of the excited field exceeds some threshold. Such a bifurca-
tion destabilizes the Bloch oscillations with the given period
and simultaneously gives birth to the Bloch oscillations with
doubled period. A cascade of these bifurcations with further
increase of excitations leads to the appearance of deterministic
chaos, which destroys any periodicity of the Bloch oscilla-
tions. We study the correlation properties of the nonlinear
Bloch oscillations and also discuss the effects of dissipation
on the development of chaos.

In our work we consider chaotic behavior in a system
consisting of a one-dimensional array of coupled single-mode
resonators. The schematic view of the resonator array is given
in Fig. 1. The systems of such a kind, in particular based on
the bound state in the continuum effect, are widely discussed
now in the scientific literature in the context of second har-
monic generation and other nonlinear phenomena [60–63].
Indeed, the Wannier-Stark states and Bloch oscillations in
such systems are very promising for various sources of coher-
ent radiation, which relies on gain by resonances. The wide
Wannier-Stark states increase the mode volume, which gains
the total power of the generated radiation. At the same time the
resonant frequencies of the states depend on their geometrical
positions and this opens the possibility to tune the working
frequency by just shifting the excitation spot. However, uti-
lization of the above effects for practical applications requires
understanding the dynamics of the pulses in driven-dissipative
Bloch systems.

The resonators in Fig. 1 can be pumped by pulses of exter-
nal coherent light of finite spatial aperture launched at some
angle to the resonator array. The resonators are coupled to
free propagating waves which means that the resonator modes
are leaky and the resonators experience radiative losses. The
total losses are the sum of the radiative and Joule losses and
are characterized by an effective dissipation rate. To achieve
Bloch oscillations in the system we make the resonant fre-
quency of the resonators to be a linear function of the index
numbering the resonators. We study the case where the res-
onant frequency of the resonators depends on the intensity of
the field in the resonators and in the leading approximation the
shift of the resonant frequency is proportional to the intensity
of the mode. We assume the nonlinearity to be an instanta-
neous cubic one. The simplest realization of such systems is
an array of conventional optical nonlinear resonators.

To study the influence of the losses on the dynamics of
the system we consider a polaritonic system consisting of
interacting micropillars pumped simultaneously by incoherent
and coherent pumps. The incoherent pump is needed to con-
trol the effective losses seen by the polaritons. To study the
nonlinear effects it is convenient to have high-Q resonators
and this can be achieved by applying a proper incoherent
pump. However, in this paper we keep the pump below the
threshold where polariton lasing starts. The reason to consider
a polariton system is that such systems exhibit very strong
Kerr nonlinearity, facilitating experimental investigation of
the nonlinear effects. It is worth mentioning here that spatial
period doubling has been already predicted and observed in
polariton systems [64]. Recently chaotic behavior of polariton
systems driven by continuous radiation was also reported [65].

In contrast to previous works, here we analyze the regimes
induced by trains of light pulses, i.e., by electromagnetic
radiation with periodically varying intensity. In particular we
focus on the effects of pulse frequency rather than frequency
of the electromagnetic wave. This allows to have high peak
intensity of the field with relatively low average intensity and
in this way to decrease the heating of the sample. This can be
of importance for nonlinear applications requiring high field
intensities, for instance, the third harmonic generation.

The paper is structured as follows. In Sec. II we consider
a mathematical model capable to describe Bloch oscillations
in driven-dissipative systems. In this section we discuss a
linear regime of Bloch oscillations and show that the efficient
excitation takes place when the field intensity is varying with
the frequency equal to the frequency of Bloch oscillations. In
Sec. III the nonlinear propagation of the field is considered.
It is shown that the nonlinearity breaks the symmetry of the
field propagating in the system. Chaotic behavior of the sys-
tem is also discussed in this section. Section IV is devoted
to nonlinear dynamics of polariton systems. It is shown that
period-doubling bifurcation takes place in polariton systems
too. The main results of the paper are briefly summarized in
the Conclusion.

II. LINEAR REGIME OF BLOCH OSCILLATIONS IN AN
ARRAY OF COHERENTLY DRIVEN RESONATORS

To model the system illustrated in Fig. 1, we assume
that the inter-resonator coupling, losses, and the nonlinear
effects do not change the structure of the field in each of
the resonators, but affect the amplitudes and the phases of
the resonator modes. Thus, a tight-binding approximation
can be used and the field in each of the resonators can
be characterized by a slowly varying complex amplitude u.
Then the dynamics of the electromagnetic field in the system
is described by a discrete dissipative nonlinear Schrödinger
equation written for the complex amplitudes of the resonator
modes, un(t ):

i∂t un = (μn − iγ + α|un|2)un − (un+1 + un−1 − 2un)

+ an(t ) exp(−iωpt + ikpn), (1)

where (un+1 + un−1 − 2un) accounts for the coupling between
the neighboring resonators, n enumerates the resonators, γ is
the strength of the linear losses, μ characterizes the steep-
ness of the linear dependency of the eigenfrequencies of the
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resonators on their number, α is the nonlinear coefficient,
an(t ) is the amplitude of the pump coming to the nth resonator,
ωp is the detuning of the pump frequency from the resonance
frequency of the resonator with n = 0, and kp is the projection
of the phase gradient of the pump field on the axis passing
through the resonator array. The models of such kind have
been widely used in the literature to describe both the spatial
and the temporal dynamics of the interacting optical cavities
(see, for instance, [66–77]).

The coefficients in model (1) reflect the parameters of
the physical systems. The model assumes that we know
the resonant frequencies of the optical cavities that depend
linearly on the indexes of the resonators. The resonator in
the middle of the array has the index n = 0, and other res-
onators are detuned from it by the frequency δ = μn, n =
. . . ,−2,−1, 0, 1, 2, . . .. Note that, within the slowly varying
amplitude approximation used in the paper, all frequencies
are actually detunings of the frequency from the resonant
frequency of the cavity with index n = 0. For the sake of
mathematical convenience, we introduce dimensionless time
by normalizing the actual time by the strength of the coupling
between the neighboring resonators σ , which for the case
μ = 0 (homogeneous discrete system) determines the width
of the allowed frequency band � = 4σ (the corresponding
energy band is 4h̄σ , where h̄ is the Planck constant). Such
a normalization yields a unity coefficient in the front of
(un+1 + un−1 − 2un). Also, the amplitude of the field can be
rescaled to make the coefficient α in front of the nonlinear
term to be equal to 1. In our study we set α = 1 in all cases
excepting the one where we investigate the linear regime of
Bloch oscillations. In the latter case, it is convenient to have
α = 0 as this lifts the conditions of the smallness of the
field amplitude. Since we deal with a nonlinear system, the
resonance frequency depends on the amplitude of the field.
To make the field amplitude dimensionless, we normalize
it by the amplitude value, which shifts the initial resonance
frequency of the cavity nμ by the value σ . The frequency
of Bloch oscillations is controlled by μ and the ratio γ /μ

defines the decay of the field amplitude during a period of
Bloch oscillations due to energy dissipation.

We use an aperture of the excitation beam that is much
smaller than the span of Bloch oscillations. At the same time,
we require the aperture to be wide enough so that its spatial
spectrum is narrow compared to the Brillouin zone. In our nu-
merical simulation we took the aperture to be equal to w = 5.
Then considering the dynamics in the excitation spot we can
neglect the dependency of the resonant frequency on the index
of the resonator. In this case a single pulse excites a propagat-
ing envelope efficiently if the frequency and the wave vector
of the pump are related as ωp = 2σ (1 − cos(kp)) + μnp (the
dispersion of the linear waves in the system), where np is the
position of the pump center. Without loss of generality we
pump at np = 0. In the examples of numerical simulations
presented in the paper the pump frequency is chosen to be in
the middle of the zone, so ωp = 2 and kp = π/2. The variation
of the amplitude of the pump exciting the system we take in
the form an(t ) = ap| sin( 


2 t )|7 exp(−n2/w2), where 
 is the
frequency of the pump intensity variation. The spatial distri-
bution and the temporal evolution of the normalized driving
force amplitude are shown in Fig. 2.

FIG. 2. (a) The dependencies of the normalized driving force
amplitude a(n, t = 0) and a(n = 0, t ). The evolution of the field
un(t ) in stationary regime is shown for the frequency of driving force
amplitude (b) 
 = 0.048 and (c) 
 = 0.04 correspondingly. (d) The
same as (c) but for the opposite sign of the driving force wave vector,
kp = −π/2. The amplitude of the driving force is small to ensure a
linear regime of propagation. The other parameters are γ = 0.005,
μ = 0.04.

The linear regimes of propagation are illustrated in Fig. 2.
Each pulse of the pump excites a wave envelope experiencing
Bloch oscillations. If the frequency of the pump pulses does
not coincide with the frequency of Bloch oscillations then the
waves excited by different individual pulses of the pulse train
do not interfere constructively [Fig. 2(b)]. The constructive
interference occurs at 
 = mμ, where m is an integer [see
Fig. 2(c)]. The latter can be seen as a resonance between
the pump and different Wannier-Stark states. Figure 2(d) il-
lustrates the same case as in Fig. 2(c), but with kp = −π/2.
Comparison of Figs. 2(c) and 2(d) reveals the symmetry
kp → −kp.

To characterize the Bloch resonance we calculated the
maximum amplitude of the stationary field as a function of
the frequency of the driving force amplitude. The results are
presented in Fig. 3, showing the resonance curve for different

FIG. 3. The resonance curves showing the dependency of the
maximum amplitude of the stationary field on the frequency of the
driving force amplitude 
 for (a) relatively large losses γ = 0.005
and (b) smaller losses γ = 0.0005. The amplitude of the driving
force is very low so the problem is linear.
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FIG. 4. The stationary evolutions of the field in the strongly
nonlinear regime ap = 0.0716 for (a) kp = π/2 and (b) kp = −π/2
for 
 = 0.04 and μ = 0.04.

losses. The maxima corresponding to the resonances are well
developed even for relatively large losses.

It is worth mentioning that the maxima of the response are
also observed at the pump frequencies 
 = m̃μ/m, where m̃
is another integer. From the physical point of view this can
be treated as a resonance of the mth harmonic of the pump
with a Wannier-Stark state having resonant frequency m̃μ.
A simple mathematical consideration explaining the maxima
at the frequencies 
 = m̃μ/m is given in the Appendix. Let
us remark that this special structure of the resonances can
significantly facilitate the chaotization of Bloch oscillations.

It should also be noted that in the linear regime there is
no difference between the excitation of the pulses propagating
from the right to the left and the pulses propagating from the
left to the right; compare Figs. 2(c) and 2(d) corresponding to
pump wave vectors of the opposite signs. Another important
remark to be made is that the oscillations are well localized in
the linear regime.

III. NONLINEAR EVOLUTION OF THE FIELD OF DRIVEN
BLOCH OSCILLATIONS

Now let us consider how the Kerr effect (linear dependency
of the resonant frequencies of the resonators on the field
intensity) affects the dynamics of the system. The first impor-
tant observation is that in the nonlinear regime the symmetry
kp → −kp is broken. To illustrate this symmetry breaking we
take a very intense pump with the amplitude ap = 0.0716 and
calculate the dynamics for the wave vectors of the opposite
signs kp = ±π/2. In Fig. 4 the stationary stages of field prop-
agation are shown for these parameters. It is clearly seen that
the dynamics is very different for different signs of kp. For
lower pump intensity the asymmetry also takes place but is
not that pronounced.

It is also worth mentioning that in the strong nonlin-
ear regime the localization of the field becomes larger. The
spreading of the field cannot be explained by the interband
tunneling because the dispersion has only one branch. The
generation of the new waves gives rise to the formation of
numerous snakes of Bloch oscillations.

Let us now study in more detail what happens to the dy-
namics of the field when the driving force amplitude increases.
The evolution of the field excited by the driving force of the
amplitude ap = 0.0268 is shown in Fig. 5(a). It is seen that the
period of the temporal oscillations becomes twice that in the

FIG. 5. (a) The stationary evolution of the field for the pump
amplitude ap = 0.0268. The temporal evolution of the absolute value
of the field at the site n = −48 is shown in (b) by a solid black line.
The dashed blue line shows the evolution of the field amplitude at
the same site for the pump amplitude ap = 0.018. For convenience
both amplitudes are normalized on the amplitude of the pulse ap for

 = 0.04 and μ = 0.04.

linear regime. The origin of the bifurcation is the parametric
processes resulting in the amplification of the oscillations
having a frequency equal to half of the fundamental frequency
of the solution. This mechanism was previously unraveled in
the period doubling taking place in a Duffing oscillator driven
by a periodic force [78]. Unfortunately, the criterion of the
instability onset cannot be derived analytically and thus we
have to rely on numerical simulations.

To make it even more obvious we plotted the dependency
of the amplitude of the field at site n = −48 as a function of
time for the pump ap = 0.0268 [see Fig. 5(b)]. For reference
we plotted the same dependence but for the pump ap = 0.018
by the blue line. At the pump ap = 0.018 the oscillations are
already nonlinear, but their period is the same as in the linear
regime. This gives a reason to suggest that the period-doubling
bifurcation takes place in the system. Below we prove that this
is indeed what happens in the system and that a chain of period
doublings results in the chaotic behavior of the system.

For our calculations, we set the values 
 = 0.04 and μ =
0.04, which in the case of linear response correspond to the
principal resonance 1/1, and we analyze how the stationary
regimes change with variation of ap. Hereafter, we use the
term “p/q resonance,” meaning that the frequency of the
driving force relates to the resonant frequency as p/q where p
and q are integers. The discussed effect is most pronounced if
the system is excited at the main resonance and this motivated
our choice of the pulse sequence period. The comprehensive
studies of the off-resonant excitation are of interest but are out
of the scope of the present paper.

The map of regimes is summarized by the bifurcation
diagram in Fig. 6. The figure illustrates the stroboscopic sec-
tion of energy W = ∑

n |un|2 whose values were taken in
the discrete time moments t = 2mπ/
, m = 1, 2, . . .. For a
particular value of ap, the periodic oscillations are represented
by one or a few single points, and many points for the same
ap correspond to chaos. The vertical dashed lines indicate
the values of ap above which the number of points doubles,
i.e., attributed to the period-doubling bifurcations. For small
ap the system demonstrates period-1 oscillations, which are
represented by a single point for the given value of ap. At
ap ≈ 0.0219, the period of oscillations doubles, which is man-
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FIG. 6. The figure shows the Feigenbaum diagram calculated for
the resonantly pumped Bloch oscillations in the system of coupled
oscillators described by Eq. (1). The horizontal axis is the pump,
and the vertical axis is the energy W = ∑

n |un|2 normalized on the
squared amplitude a2

p of the pump. The energy W is measured at the
points where the phase trajectory crosses the hypersurface defined
by the condition t = 2mπ/
. The positions of the first three period-
doubling bifurcations (pdb) are marked by the dashed red vertical
lines and labeled with “first pdb,” “second pdb,” and “third pdb,”
correspondingly.

ifested in the appearance of pair of points on the diagram. The
next period-doubling bifurcation, giving rise to the period-4
oscillations, takes place at ap ≈ 0.0274. An infinite cascade
of such bifurcation leads to the emergence of deterministic
chaos, which exists for ap > 0.0284.

To illustrate different dynamical regimes and the transi-
tions between them, in Fig. 7 we plot the projection of the
phase trajectories calculated for different ap on the space
plane (M,W ), where M = Im(

∑
u∗

n(un−2 − un−1)) is a mo-
mentum. These variables are convenient for illustration since
in the linear regime they both are proportional to a2

p, which
simplifies comparison.

In close to the linear regime the shape of the trajectory
does not change qualitatively but its span decreases (see the
trajectory calculated for ap = 0.0215). However, the shape of
the trajectory dramatically changes when the pump amplitude
exceeds a certain threshold value. Then the trajectory makes
a twist, and now it can be considered as consisting of two
similar loops (see the trajectory calculated for ap = 0.022).
This is a characteristic feature of period-doubling bifurcation.

At higher pumps the trajectory continues to deform (see
the one calculated for ap = 0.0268). Let us remark that
between ap = 0.022 and ap = 0.0268 no period-doubling
bifurcation happens; in this pump interval the trajectory
transforms smoothly, but quite significantly. That is why we
show the case just after period-2 bifurcation (ap = 0.022)
and just before period-4 bifurcation (ap = 0.0268). Then an-
other period-doubling bifurcation occurs (see the trajectory
calculated for ap = 0.0277). Finally, these period-doubling

FIG. 7. The projections of the phase trajectories onto the phase
plane [W = ∑

n |un|2, M = Im(
∑

u∗
n (un−2 − un−1))] for different

amplitudes of the resonant pump ap. The other parameters are the
same as in Fig. 5.

bifurcations result in very complex behavior (see the trajec-
tory calculated for ap = 0.0313).

The evolution of oscillation spectra on the way to chaos is
illustrated in Fig. 8. We took a stationary variation of the field
at site n = −48 and calculated its spectra for different levels
of the pump. For weak excitations ap, the spectrum contains
the carrier frequency and the harmonics detuned from the
carrier frequency by the frequency of the oscillations of the
pump amplitude. After the period doubling the subharmonics
appear. These subharmonics at the frequencies l
/2, where
l is an integer, indicate that the period of the oscillations
becomes twice the period of the driving force. Then the next
period-doubling bifurcation produces the subharmonics at the
frequencies l
/4. Finally, we arrive at the spectrum of the
chaotic signal consisting of two parts: the continuous back-
ground overlapped with the discrete spectrum. The first one
corresponds to the chaotic part of the field and the second one
to the regular component of the field that can be seen as a
direct response of the system to the driving force. Let us note
that, of course, the number of harmonics defines the shape of
the field, but not its period.

To study the correlation properties of different regimes in
the system we calculate the correlation function of the field
defined as

K (τ, ξ ) = lim
T →∞N→∞

1

4NT

N∑
n=−N

∫ T

−T
un−ξ (t − τ )un(t )dt .

The correlation function is calculated by averaging over a
large window where the signal is stationary. In numerics the
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FIG. 8. Temporal spectra of the field at site n = −48 for different
amplitudes of the driving force ap. Dashed blue and red lines show
the positions of several first subharmonics at l
/2 and l
/4. The
horizontal axis is δ = ω − ωp, the detuning of the frequency from
the carrier frequency of the pump.

function depends on the position of the averaging window, but
we have checked that this difference is small. The correlation
functions are shown in Fig. 9 for N = 256, T = 5000, and
different ap.

It is seen that the correlation function is well localized
along the discrete coordinate; this is so because the field
is well localized along the discrete coordinate. It is more
interesting how the correlation function changes with time.
The dependencies of the correlations on time are shown in
Fig. 9(b) for different regimes of the field propagation. It
is seen that for low pumps the correlation function is peri-
odic. After the period doubling the period of the correlation
function also becomes doubled. In the chaotic regime the
correlation function rapidly drops down to some finite back-
ground value implied by application of a periodic driving.
Thus, we can conclude that in the presence of cubic nonlinear-
ity the resonantly excited Bloch oscillations of the coherent
light can switch to the chaotic regime via period-doubling
bifurcation.

Next, we study how dissipation (including the nonlinear
one) affects this phenomenon. For this purpose we consider a
polariton system that possesses high nonlinearity due to strong

FIG. 9. (a) Two-dimensional correlation function calculated for
the stationary field for driving force amplitude ap = 0.0358. (b) The
sections of the two-dimensional correlation functions K (ξ = 0, τ )
for different pump amplitudes.

light-matter coupling and can be seen as a promising system
where the discussed effects may be observed.

IV. POLARITON SYSTEMS

One of the important examples of the dissipative non-
linear systems capable of demonstrating Bloch oscillations
is coupled semiconductor microcavities (pillars) supporting
exciton-polaritons [40–42]. The systems of this kind are
promising for experimental verification of the effect because
they are highly nonlinear and allow to control effective linear
losses, making them small enough. To describe the polariton
dynamics we use the widely accepted model [79] consisting
of the equation for the order parameter of the polariton field
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ψ and the density of incoherent excitons ρ,

i∂tψn = (μn − iγ1 + iρn + |ψn|2 + αρn)ψn

− (ψn+1+ψn−1−2ψn)+Qn exp(iωpt − ikpn), (2)

∂tρn = −(γ2 + β|ψn|2)ρn + Pn. (3)

where (ψn+1 + ψn−1 − 2ψn) accounts for the discrete diffrac-
tion, γ1 is the linear dissipation rate of coherent polaritons,
α accounts for the blueshift of the coherent polaritons due
to their nonlinear interaction with the incoherent ones, γ2

accounts for the losses in the incoherent polaritons subsystem,
β defines the additional damping rate of the incoherent polari-
tons caused by their condensation into the coherent polaritons,
Pn is the amplitude of the incoherent pump, μ is the gradient of
the resonant frequency, Qn(t ) is the amplitude of the coherent
pump, and ωp is its frequency and kp is its wave vector. In the
model of Eqs. (2) and (3) we use a dimensionless time, which
is obtained by normalizing the actual time by the tunneling
time of the polaritons in the neighboring microcavities, τn.
The dimensionless polariton field ψn is the polariton density
normalized by the characteristic polariton density h̄/(gcτn),
where gc is a characteristic nonlinear polariton-polariton inter-
action constant. Such normalization makes the coefficient at
|ψn|2ψn in Eq. (2) equal to unity. The density of the incoherent
exciton reservoir ρn is normalized by 2/(Rτn), where R is the
condensation rate; α = 2gr/(h̄R), where gr is the coefficient
characterizing the blue shift of the polariton frequency pro-
portional to the incoherent excitons density; γ1 = �pτn and
γ2 = �xτn, where �p and �x are the relaxation rates of the
polaritons and the reservoir; and β = h̄R/gc. The polariton
parameters vary for different experimental realizations and we
take typical polariton parameters gc = 6 × 10−3 meV μm2,
R=0.005 ps−1 μm2, gr=1.2×10−2 meV μm2, �p=0.04 ps−1,
and �x = 3.3 ps−1 [40,80]. Choosing the normalization time
to equal to a realistic value of τn = 2 ps we obtain the di-
mensionless parameters γ1 = 0.08, α = 7.3, γ2 = 0.66, and
β = 0.55. The simulations are performed for μ = 0.04 corre-
sponding to the difference of the resonant frequencies of the
neighboring pillars equal to 0.02 ps−1.

Let us remark that the polariton losses are too high for
convenient observation of Bloch oscillation, but the losses can
be compensated by the reservoir created by the incoherent
pump. Therefore, we consider the case where the incoherent
excitons density is close to the condensation (polariton lasing)
threshold (the threshold is ρth = γ1 in dimensionless units).

For our numerical modeling we take the coherent pump
in the same form as before: Qn = ap| sin( 


2 t )|7 exp(−n2/w2).
We calculated Feigenbaum diagrams for different incoherent
pumps controlling the effective losses seen by the polaritons.
Two examples are shown in Fig. 10 for the incoherent pump
slightly below the lasing threshold so that the effective linear
losses seen by the polaritons are low, being equal to γeff lin =
0.0025 for Fig. 10(a) and γeff lin = 0.005 for Fig. 10(b). The
effective losses are defined as the losses seen by polaritons
in the linear regime in the presence of the incoherent pump,
γeff lin = γ1 − ρ0, where ρ0 = P/γ2 is the exciton reservoir
density created by the spatially uniform incoherent pump
Pn = P in the absence of the polaritons.

FIG. 10. Feigenbaum diagrams for the exciton-polariton system
simultaneously pumped by the coherent and incoherent light. The
incoherent pump is below but close to the lasing threshold so that lin-
ear polaritons see effective losses (a) γeff lin = 0.0025 and (b) γeff lin =
0.005. The horizontal axis is the coherent pump amplitude ap, and the
vertical axis is the energy of the field W = ∑

n |ψn|2 divided by the
pump intensity a2

p calculated at the point where the phase trajectory
crosses the hypersurface defined by the condition t = 2πm/
. The
positions of the period-doubling bifurcations (pdb) are marked by the
(a) dashed red and (b) orange vertical lines.

The carrier frequency of the coherent pump is chosen to
be in resonance with the linear polaritons and in the presence
of the reservoir of density ρ0. Let us note that this resonant
frequency depends on the intensity of incoherent pump ωp =
2σ + αρ0 for kp = −π/2 and thus the carrier frequency of
the pump is slightly different for Figs. 10(a) and 10(b). The
frequency of the pulse sequence 
 is chosen to be in the main
resonance with the Bloch oscillations, 
 = μ = 0.04. It is
seen that for polariton systems the period-doubling bifurca-
tion occurs and in this sense the polariton systems are similar
to the systems considered above.

The important difference, however, is that in the polari-
ton system the chaotic regime can be achieved only if the
incoherent pump is extremely close to the lasing threshold,
which means very low linear losses. For the higher losses, as
it is seen in Fig. 10(b), the increase of the pump first evokes
a period doubling of the Bloch oscillations at ap ≈ 0.0353,
but with further increase of the pump the period-1 Bloch
oscillations (with period of the driving force) become stable
again at ap ≈ 0.0553.

One of the reason for such a behavior of the system is
that the origin of Bloch oscillations stochastization is that
the wave envelopes excited by different pulses of the pump
interact with each other nonlinearly. The losses decrease the
intensities of the interacting envelope making the nonlinear
interaction less efficient. Polaritons experience both the linear
and nonlinear losses. The nonlinear losses also contribute to
the decrease of the interaction efficiency of the different wave
envelopes. Thus the nonlinear losses of the polariton make
it more difficult to observe a full chain of period-doubling
bifurcations leading to the stochastic dynamics.

The dynamics of the field amplitude is illustrated in Fig. 11
showing the evolution of the field for the pump amplitudes
ap = 0.034, ap = 0.0447, and ap = 0.06. It is seen that for
ap = 0.034 all Bloch oscillations are identical, whereas for
ap = 0.0447 the odd and the even Bloch oscillations become
different. For the even higher pump ap = 0.06 Bloch oscil-
lations are identical again. Comparing Figs. 11(b) and 11(d),
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FIG. 11. The dependencies of the normalized amplitudes of the
field in site n = −48 on time are shown for (a)the polaritons driven
by the resonant coherent pump with the amplitudes ap1 = 0.034
(black line), ap2 = 0.0447 (red line), and ap3 = 0.06 (blue line).
Spatial-temporal evolution of the field for (b) ap = 0.034, (c) ap =
0.0447, and (d) ap = 0.06, correspondingly. The incoherent pump is
chosen to provide effective losses γeff lin = 0.005 in the linear regime
of polariton propagation.

one can conclude that the dynamics of the fields excited by
pumps ap = 0.034 and ap = 0.06 are very similar.

We would like to acknowledge that the resonant excitation
at fractional resonance p/q can also be of interest as well as
nonresonant excitation. The comprehensive studies of these
cases are out of the scope of this paper and will be done
somewhere else. Here we note that the excitation at the main
resonance allows to achieve higher field intensities and thus
to facilitate the observation of the nonlinear effects. This ex-
plains why this resonance case is of greater importance.

V. CONCLUSION

In this paper we consider Bloch oscillations in the non-
linear driven-dissipative systems excited by a periodic train
of coherent pulses. It is shown that in the linear regime the
evolution of the field does not depend on the sign of the wave
vector of the driving force. The efficiency of the excitation
of the Bloch oscillations depends not only on the frequency
of the field (temporal derivative of the phase of the field at a
fixed site), but also on the period of the sequence of the pulses
pumping the system. The maximum efficiency is achieved
when the delay between the pulses is equal to the inverse
Bloch frequency multiplied by 2π .

The nonlinearity breaks the symmetry in the sense that the
pulses launched in one direction propagate differently than the
pulses launched in the opposite direction. More importantly,
the nonlinearity causes period-doubling bifurcation and the
sequence of these bifurcations makes the Bloch oscillations
chaotic. The field evolution can still be seen as Bloch oscil-
lations, but every round of the oscillations is characterized by
a different intensity of the field. It is also shown in the pa-

per that coherently driven Bloch oscillations can be observed
in exciton-polariton systems with experimentally achievable
parameters. The period-doubling bifurcation can occur in this
system.

Thus we can summarize that resonantly excited Bloch
oscillations may be observed in nonlinear optical systems,
including polariton ones, for parameters that are realistic from
the experimental point of view. The systems can demonstrate
a complex dynamics resulting in new frequency generation
and, under certain conditions, in the chaotization of Bloch
oscillations through a chain of period-doubling bifurcations.
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APPENDIX

Let us consider the dynamics described by Eq. (1) in
the linear limit α = 0. For the sake of convenience we
represent the amplitude of the driving force as an(t ) =
ξ (n)A(t ) exp(−iωpt ). In the simulations shown in the main
parts of the paper we took A = ap| sin( 


2 t )|7 and ξ =
exp(−n2/w2) exp(ikpn); however, here we consider a more
general case of A being a periodic function of time.

We notice that Wm(n) = Jn( 2
μ

) are the eigenfunctions of the
system so that μnWm(n) + (2Wm(n) − Wm(n + 1) − Wm(n −
1)) = 2 + μm (see [10]). The functions Wm are orthogonal,∑

n Wm(n)Wm′ (n) = δm m′ (δm m′ is the Kronecker symbol), and
so it is convenient to look for a solution of Eq. (1) in the form

un(t ) =
∑

m

Cm(t ) exp(−iωpt )Wm(n). (A1)

Thus we obtain the equations for the coefficients Cm:

i∂tCm = (2 + μm − ωp)Cm − iγCm + A(t )
∑

n

Wm(n)ξ (n).

(A2)

Since A is a periodic function of time the stationary so-
lution of Eq. (A2) can be sought as a Fourier series Cm =∑

l Cml exp(−il
t ), where 
 = 2π
T0

and T0 is the period of the
driving force amplitude. The expressions for Cml are easy to
obtain:

Cml (
) = Al (
)
∑

n ξ (n)Wm(n)

ωp + l
 − 2 − μm + iγ
, (A3)

where Al = 1
T0

∫
−T0/2 |T0/2A(t ) exp(il
t )dt is the Fourier rep-

resentation of the amplitude A.
One can see that for some frequencies the denomina-

tor reaches its minimum and this makes the dependency of
|Cml (
)|2 resonant. The resonances can be pronounced pro-
vides that the losses γ are small and Al (
) is a flat function
of 
. It is important to notice that the resonance appears when
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FIG. 12. (a) The driving force amplitude ap0(t ) as a function
of time. [(b)–(e)] The dependencies of the average energy in the
system defined as E = ∑

n
1
T0

∫ T0
0 |un|2dt for m = 0, 1, 2, 3, corre-

spondingly. The parameters of the system and the driving force are
γ = 0.005, μ = 0.04, α = 0, and τ0 = 2.5.

ωp + l
 − 2 − µm = 0. This means that resonant frequencies
are 
r = μm

l + 2−ωp

l . In Sec. II the simulations were per-
formed for ωp = 2 and so one could expect to see the increase
of the field intensity when the frequency of the amplitude
modulation is equal to 
 = m

l . These maxima are seen well
in Fig. 3.

To shed more light on the origin of these resonances let
us consider the case of special driving force. We choose the
spatial distribution of the driving force in the form of a Wan-
nier function ξ = Wm0(n). Then all Cm �=m0 l are equal to zero.
Physically it means that the pump shaped as a Wannier func-
tion excites only one eigenmode of the system. The nonzero
coefficients Cml are given by

Cm0 l (
) = Al (
)

ωp + l
 − 2 − μm0 + iγ
(A4)

and the total field u is expressed as

un(t ) = Wm0(n) exp(−iωpt )
∑

l

Cm0 l exp(−il
t ). (A5)

To characterize the efficiency of the excitation it is con-
venient to introduce such quantity as the total energy of the
field averaged over a period of the driving force variation,
E = ∑

n
1
T0

∫ T0

0 |un|2dt . Substituting here the field un(t ) in the
form of Eq. (A5) we obtain a simple expression for E through

FIG. 13. [(a), (b)] The same as Figs. 12(c) and 12(e) but for the
duration of the individual pulses τ0 = 25. The solid dark lines are the
numerics and thinner dashed blue lines are the dependencies plotted
by Eq. (A7). The scale of the vertical axis is logarithmic.

the coefficients Cm0 l :

Em0 =
∑

l

|Cm0 l |2 =
∑

l

|Al |2
(ωp + l
 − 2 − μm0)2 + γ 2

.

(A6)

Let us analyze Eq. (A6) for the pump with ωp = 2. The
average energy E does not show any resonances if the pump
excites the eigenmode with spatial distribution in the form of
the Wannier function W0(n). If the pump is coupled to the
mode m0 = 1 then dependency (A6) has resonance maxima at
the frequencies 
 = μ

l . Excitation of the mode with m0 gives
the resonances at 
 = m0μ

l .
It is good to notice that expression (A6) can be simplified

for the case of a pump in the form of a train of the very narrow
pulses. Then the dependency of A on l is flat and calculating
the sum in Eq. (A6) we can neglect this dependency assuming
Al ≈ A0. Then the sum can be calculated analytically:

Em0 = |A0|2



sinh
( 2πγ




)
cosh

( 2πγ




) − cos
( 2π (ωp−2−m0μ)




) . (A7)

To check the analytics we compared the analytical re-
sults against direct numerical simulations. In the numerical
simulation the driving force an = Aξ (n) exp(−iωpt ) is taken
as a function of 
 A = A0




∑
l �(t − 2π l



) − �(t − 2π l



− τ0),

where τ0 is the duration of the individual pulses in the train,
� is the Heaviside step function, and A0 is a constant. This
choice of the pump provides that the spectral intensity of the
pump |A0|2 at low frequencies does not depend on 
. The
temporal dependency of the pump amplitude A is illustrated
in Fig. 12(a). The spatial distribution of the pump is taken
in the form of Wannier functions ξ = Wm0(n), and the pump
frequency is taken as ωp = 2.

The results of the numerical simulations for τ = 2.5 are
shown in Figs. 12(b)–12(e) for different positions of the pump
(m0 = 0, 1, 2, 3). The parameter A0 is chosen to provide that
for 
 = 0.01 the average field intensity is E = 1. One can see
that, indeed, for m0 = 0 the dependency E (
) does not show
any resonances whereas for m0 = 1 the resonances take place
at 
 = μ

l , for m0 = 2 at 
 = 2μ

l , and so on. Let us remark
that the increase of E at low frequencies is associated with the
increase of the power of the pump (the intensity of the pump
averaged over a period scales as 1/
).
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These numerical dependencies E (
) were checked against
the dependencies given by Eq. (A7) and for this choice of
the parameters the agreement is excellent. For larger dura-
tion of the individual pulses τ0 the difference between the
numerics and the dependencies calculated by Eq. (A7) be-
comes noticeable (see Fig. 13 showing the case of m0 = 1 and
m0 = 3).

Let us remark that for the general form of the pump spatial
distribution all Wannier modes are excited (of course with
different efficiency) and thus in this case we can expect the
overlap of resonances of the pump with the first, second, third,
and all the rest of the Wannier-Stark states. This results in the
resonances at the frequencies 
 = mμ

l . This case is discussed
in Sec. II.
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