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Universal embedding of a non-Hermitian reciprocal scattering optical system
into a Hermitian time-reversal-invariant system
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For Hermitian optical systems, reciprocity and time-reversal symmetry are equivalent. In non-Hermitian
systems that have gain and/or loss, however, they are not equivalent. Here, we point out a connection between
reciprocity and time-reversal symmetry in general. For a non-Hermitian system, we show that reciprocity can be
viewed as a manifestation of the time-reversal symmetry of an enclosing Hermitian system. Our work deepens
the understanding of the general constraints on the scattering matrix of non-Hermitian optical systems.
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I. INTRODUCTION

The behaviors of optical structures are subject to a set
of general constraints that arise from energy conservation,
reciprocity, or time-reversal symmetry [1–5]. Understanding
the implications of these constraints [6–10] is of fundamental
importance in designing optical devices [11–15]. For energy-
conserving systems, time-reversal symmetry and reciprocity
are equivalent to each other [1]. For systems with gain or
loss, however, time-reversal symmetry and reciprocity are no
longer equivalent, and it is possible to find optical structures
that satisfy one but not the other. For example, materials
described by a scalar complex dielectric function can exhibit
gain and loss, and hence do not possess time-reversal sym-
metry. These materials however are reciprocal [4]. Similarly,
it was recently pointed out that one can construct material
systems that have time-reversal symmetry but are not recip-
rocal [16].

In this paper, we point out a general connection between
reciprocity and time-reversal symmetry. Based on the scat-
tering matrix formalism, we prove that any reciprocal system
(referred to as the “original system” below) can be embedded
in a larger, Hermitian system (“enclosing system”) that has
time-reversal symmetry. We also provide an explicit construc-
tion of the enclosing system for the cases where the original
system has gain and/or loss. Our results suggest that the
reciprocity of a system can be viewed as a consequence of
the time-reversal symmetry of the enclosing system.

II. REVIEW OF SCATTERING MATRIX

We start with a brief review of the scattering matrix for-
malism, which is a powerful tool in the description of open
optical systems [Fig. 1(a)]. For the original system, we assume
that, sufficiently far away from the scattering region where
light scattering happens, the fields can be separated out into
well-defined ports, such that the steady-state field in each port
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k can be written as

Ek (r, t ) = ek (xk, yk )[(ake−iβk zk e−iωt + a∗
k eiβk zk eiωt )

+ (bkeiβk zk e−iωt + b∗
ke−iβk zk eiωt )], (1)

where the local coordinates (xk, yk, zk ) at each port are chosen
such that the zk axis points to the direction of light propagation
in the kth port away from the scattering region, βk is the
propagation constant of the mode, ω is the angular frequency,
ak (bk) is the complex incoming (outgoing) field amplitude,
and ek (xk, yk ) is a transverse field profile normalized such that
|ak|2 and |bk|2 are in units of photon number flux. Although
we have illustrated each mode with a physically separate port
in Fig. 1(a), this does not need to be the case, for example,
in multimode waveguides. After grouping all the incoming
amplitudes ak into vector a and all outgoing amplitudes bk

into vector b, the linear relationship between them is given by
the scattering matrix S:

b = Sa. (2)

This formalism also applies to infinitely many modes (and
even to a continuum of modes), but for concreteness, we will
consider a finite number of ports n in our construction of a
physically realizable universal device.

For a system in which energy is conserved, we must have
||b||2 ≡ ∑

k b∗
kbk = ||a||2 given the normalization of ampli-

tudes, which implies that S is unitary:

S−1 = S†. (3)

A separate condition on S is imposed by Lorentz reci-
procity [4,5]. Briefly stated, Lorentz reciprocity is the
invariance of a system under the exchange of sources and
probes, which, in the scattering matrix formalism, requires
that S is symmetric:

S = ST . (4)

Finally, the time-reversal symmetry implies that

S−1 = S∗. (5)
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FIG. 1. (a) Schematic of a three-port system described by a
scattering matrix. (b) Schematic of the circuit that implements the
scattering matrix in the enclosing system, consisting of a mode
converter and reflection components. (c) Realization of the reflection
components using a partial mirror for σ < 1, an ideal mirror for
σ = 1, and an optical parametric amplifier (OPA) with pump for
σ > 1.

III. MAIN RESULTS

For an energy-conserving system, the concepts of reci-
procity and time reversal are equivalent: If S is unitary,
then Eqs. (4) and (5) are equivalent to each other. For non-
Hermitian systems, i.e. systems with gain and loss, it is known
that reciprocity and time-reversal symmetry are not equiva-
lent. Here, however, we show a general connection between
reciprocity and time-reversal symmetry, for systems with gain
and/or loss.

As a starting point, we note that an arbitrary reciprocal
S matrix, which is symmetric, admits a Takagi decomposi-
tion [17,18]

S = U T �U, (6)

with U unitary and � diagonal with real non-negative diag-
onal entries. The Takagi decomposition is the special form
of the singular value decomposition applied to symmetric

matrices. The diagonal entries of � (denoted as σk’s) are the
singular values.

The decomposition of a scattering matrix of Eq. (6) can
be implemented with the circuit shown in Fig. 1(b). In the
circuit, the unitary matrix U is implemented as a feedforward
circuit element and converts between the physical ports and
the singular modes (i.e., singular vectors of the scattering
matrix). For light propagating along the forward direction,
the element has a transmission matrix U . Such a feedforward
circuit can be implemented using a Mach-Zehnder interfer-
ometer array, as shown in Refs. [19–21]. Here, we assume
that the feedforward circuit element is energy conserving,
reciprocal, and has no back reflection. Therefore, U is unitary,
and moreover, its transmission matrix for light propagating in
the backward direction is U T . The diagonal matrix � is imple-
mented as mirrors, with the amplitude reflectivity of the mirror
corresponding to the singular values. Depending on the values
of the singular values to be σk < 1, σk = 1, or σk > 1, the
mirror can be lossy, lossless, or with gain, respectively. In the
operation of the circuit, light passes through the feedforward
circuit in the forward direction, reflects from the mirrors, and
then passes through the feedforward circuit in the backward
direction, resulting in the scattering matrix as described in
Eq. (6).

We now show that the reciprocal S matrix, as considered
in Eq. (6), can always be embedded in the scattering matrix
of a larger Hermitian system that satisfies time-reversal sym-
metry. We consider the mirrors in Fig. 1(b), each of which
is a one-port device. For our purposes, we first show that,
for each mirror that has either gain or loss, we can embed it
in a two-port device that is Hermitian and with time-reversal
symmetry. (For a lossless mirror, there is no need to perform
this embedding process, as the mirror is already Hermitian.)
This process is schematically demonstrated in Fig. 1(c).

We consider the case of lossy mirrors first. To embed
the lossy mirror, with an amplitude reflectivity σ < 1, in a
Hermitian system, we consider a lossless partially reflecting
mirror with a scattering matrix S< as defined by

(
bs

bt

)
= S<

(
as

at

)
=

(
σ i

√
1 − σ 2

i
√

1 − σ 2 σ

)(
as

at

)
, (7)

where subscript s (t) on the amplitude indicates the signal
(through) port. We note that the scattering matrix of Eq. (7) is
unitary and symmetric. Hence the partially reflecting mirror
satisfies the constraints of energy conservation, reciprocity,
and time-reversal symmetry.

We next consider the case of mirrors with gain, which
could be realized using an optical parametric amplifier (OPA)
based on difference frequency generation. Here, the OPA is
chosen as a realization of the gain process since it admits
a scattering matrix treatment as discussed below. Figure 2
shows a schematic implementation of the system. We assume
the undepleted pump regime such that the pump amplitude
is independent of the incident signal and idler fields, and
the signal amplitude at ωs is linearly coupled to the idler
amplitude at −ωd [the amplitude of the idler fields oscillating
as eiωd t in Eq. (1)] [22]. We further assume that the OPA
is combined with a wavelength demultiplexer that separates
the signal, idler, and pump waves, each directed toward their
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FIG. 2. A more in-depth view of the OPA system for the imple-
mentation of the gain mirror as shown in Fig. 1. WDM: wavelength
demultiplexer.

respective ports. The scattering matrix S> for this gain mirror
element, with σ > 1, can then be written as [23–25](

bs

b∗
d

)
= S>

(
as

a∗
d

)

=
(

σ ieiφp
√

σ 2 − 1
−ie−iφp

√
σ 2 − 1 σ

)(
as

a∗
d

)
, (8)

where subscript s (d) indicates the signal (idler) port, and the
pump phase difference appearing in the off-diagonal terms is
defined as φp ≡ ϕp − ϕs − ϕd , where ϕp, ϕs, and ϕd are the
physical phases for the pump, signal, and idler fields. Note
that the idler field amplitudes have been conjugated in order to
form a linear relationship. The scattering matrix of Eq. (8) can
be achieved with a Hamiltonian of the form gasad + g∗a†

s a†
d ,

where g is a coupling constant. This Hamiltonian, and thus
the device, is Hermitian. However, the scattering matrix S> is
not unitary. Here, we assumed the undepleted pump regime,
hence the energy in the system is not conserved. The total
photon number is also not conserved. Instead, since the sig-
nal and idler photons are created or destroyed in pairs, the
difference between the signal and idler photon numbers is
conserved. This is known as a “quasiunitary” condition and
is consistent with the canonical commutation relations for the
photon operators [23]. Specifically,

PzS
−1
> Pz = S†

>, Pz =
(

1 0
0 −1

)
. (9)

and can be verified for Eq. (8) regardless of the value of φp.
We now discuss the issue of time-reversal symmetry for

the OPA system. We start from frequency-domain Maxwell’s
equations for the signal and idler waves. In the absence of free
charges and current sources, the equations read [22]

∇ × ∇ × Es = ω2
s

c2
[ε̄sEs + 2 ¯̄χEpE∗

d ], (10)

∇ × ∇ × Ed = ω2
d

c2
[ε̄d Ed + 2 ¯̄χEpE∗

s ], (11)

where ε̄ is the rank-2 relative permittivity tensor and ¯̄χ is the
rank-3 second-order nonlinear optical susceptibility tensor,
both assumed to be real. For the time-reversal invariance,
we require that E∗

s and E∗
d are also solutions to the above

equations for the same Ep, given that Es and Ed are solutions.
This is possible when Ep is real and can be seen by taking
conjugates of Eqs. (10) and (11). This can be achieved when
the pump wave forms a standing wave, as in the configuration
shown in Fig. 2.

Based on the above discussions on Maxwell’s equations,
we now consider the time-reversal symmetry for the scattering
matrix of the OPA system. Taking the conjugate of Eq. (8), we
have (

b∗
s

bd

)
= S∗

>

(
a∗

s
ad

)
. (12)

On the other hand, based on the discussion of Eqs. (10)
and (11), we need to interpret the conjugate of the incoming
(outgoing) wave amplitude as the outgoing (incoming) wave
amplitudes. Moreover, assuming that the system has time-
reversal symmetry, we have(

a∗
s

ad

)
= S>

(
b∗

s
bd

)
. (13)

Therefore, the time-reversal symmetry constraint on the OPA
system reads

S−1
> = S∗

>. (14)

We see that the S> matrix in Eq. (8) indeed satisfies time-
reversal symmetry when the pump phase is set as 0 or π ,
in consistency with the discussion above on Maxwell’s equa-
tions. Therefore, with Eq. (8) we can embed a gain mirror into
an OPA system that is Hermitian and satisfies time-reversal
symmetry.

Now we return to consider the embedding of the entire
S matrix as described in Eq. (6). To construct the enclosing
system, we first rearrange the singular values of S (diagonal
elements of �) in increasing order without loss of general-
ity, and denote the number of singular values with σk < 1,
σk = 1, and σk > 1 as n<, n=, and n>, respectively. If all
the singular values are smaller or equal to unity (n> = 0),
then gain is not required. We assemble all amplitudes for
input and through ports as a = (a1 · · · an, at1 · · · atn<

)T , and
the (n + n<)-dimensional scattering matrix defined on the
enclosing system becomes

Senc =
(

U T �U iU T �T
<

i�<U �<

)
, (15)

where �< = diag(σ1 · · · σn<
) is the lossy part of �, and

�< = [(In<×n<
− �2

<)1/2, 0n<×(n−n< )]. It is easy to check that
Eq. (15) defines a unitary and symmetric matrix, given the
unitarity of U and �2 + �T

<�< = In×n, and the upper left
block matrix is the S matrix of the original system.

If there are some singular values greater than 1 (n> � 1),
the system then has gain. To construct an enclosing system, we
need to consider an expanded input vector that contains both
field amplitudes and conjugated amplitudes through [23,26]

ae = (a1 · · · an, at1 · · · atn<
, a∗

d1 · · · a∗
dn>

)T . (16)

The expanded (n + n< + n>)-dimensional scattering matrix
of the entire system can thus be written as

Senc =
⎛
⎝U T �U iU T �T

< iU T �T
>

i�<U �< 0
−i�>U 0 �>

⎞
⎠, (17)

where �> = diag(σn<+n=+1 · · · σn) is the gain part of �,
and �> = [0n>×(n−n> ), (�2

> − In>×n>
)1/2]. As an example, the

three-port original system with singular values σ1 < 1, 1, and
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σ3 > 1, as shown in Fig. 1(b), can be embedded in a five-port
enclosing system shown in Fig. 1(c), with one port added for

each of the nonunity singular values. The full Senc, in this case,
can be expressed as

Senc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iu11

√
1 − σ 2

1 iu31

√
σ 2

3 − 1

S iu12

√
1 − σ 2

1 iu32

√
σ 2

3 − 1

iu13

√
1 − σ 2

1 iu33

√
σ 2

3 − 1

iu11

√
1 − σ 2

1 iu12

√
1 − σ 2

1 iu13

√
1 − σ 2

1 σ1 0

−iu31

√
σ 2

3 − 1 −iu32

√
σ 2

3 − 1 −iu33

√
σ 2

3 − 1 0 σ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

where umn is the matrix elements of U .
The entire Senc matrix in Eq. (17) is “quasiunitary,” ex-

pressed as

PzS
−1
encPz = S†

enc, Pz =
⎛
⎝In×n 0 0

0 In<×n<
0

0 0 −In>×n>

⎞
⎠. (19)

The matrix also satisfies time-reversal invariance S−1
enc = S∗

enc.
Finally, we can combine the time-reversal invariance with the
quasiunitary condition and arrive at a generalized reciprocity
relation for an S matrix:

PzSPz = ST . (20)

The Senc in Eq. (17), by construction, naturally satisfies the
generalized reciprocity relation. We provide a discussion of
such reciprocity constraint from a direct analysis of Maxwell’s
equations in the Appendix.

IV. SUMMARY AND DISCUSSIONS

In summary, for any arbitrary non-Hermitian reciprocal
system that has gain and/or loss as described by a symmetric
scattering matrix S, we have shown that we can construct an
enclosing system that is Hermitian and time-reversal invariant,
with a scattering matrix that includes S as a submatrix. Our
work points at a connection between reciprocity and time-
reversal symmetry: For a non-Hermitian system, reciprocity
can be viewed as a manifestation of the time-reversal symme-
try of an enclosing Hermitian system.

We end the paper with a few clarifying remarks. Our pa-
per concerns the three constraints of Hermiticity, reciprocity,
and time-reversal symmetry in quantum electrodynamics. We
emphasize that in discussing these constraints, one must con-
sider an “open” system that interacts in some way with the
surroundings. Here, by an “open” system, we refer to the fact
that certain parameters of the system are considered exter-
nal parameters. In contrast, a “closed” system is a system
where there are no such external parameters. Any “open”
system can always be embedded into a “closed” system by
including the external parameters as dynamic variables. On
the other hand, a “closed” system in quantum electrodynamics
automatically satisfies the three constraints, as required by
the fundamental Hamiltonian of quantum electrodynamics.
Therefore, any practical discussion of Hermiticity, reciprocity,
and time-reversal symmetry in quantum electrodynamics must
by necessity refer to an “open” system.

The main result of our paper is that a reciprocal system can
be embedded in an enclosing system that satisfies the three
constraints. Here, the nontrivial aspect is that both systems are
open in the sense discussed above. Obviously, a nonreciprocal
system can be embedded in a closed system, but whether a
nonreciprocal system can be embedded in an open system
that satisfies these three constraints is an interesting question
that we have not addressed. We note, however, that one can-
not use our procedure to construct an open enclosing system
satisfying these three constraints for a nonreciprocal system.
Our results therefore suggest that reciprocal and nonreciprocal
systems can be differentiated by studying the properties of
their possible enclosing systems.
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APPENDIX: RECIPROCITY RELATIONS
OF DIFFERENCE-FREQUENCY GENERATION

Here, we generalize the Lorentz reciprocity condition to
nonlinear difference-frequency generation processes starting
from Maxwell’s equations. Assume that we have signal, idler,
and pump fields denoted by subscripts s, d , and p, respec-
tively, oscillating at angular frequencies such that ωp = ωs +
ωd . The electric field can be defined through its frequency-
domain components as

E(r, t ) =
∑

j=s,d,p

E j (r)e−iω j t + c.c., (A1)

and the magnetic field H(r, t ) can be defined similarly. The
complete frequency-domain Maxwell’s equations, with cur-
rent sources J j (r) for each frequency component, read

∇ × Es = iωs

c2ε0
Hs, (A2)

∇ × Hs = −iωsε0(ε̄sEs + 2 ¯̄χEpE∗
d ) + Js, (A3)

∇ × Ed = iωd

c2ε0
Hd , (A4)

∇ × Hd = −iωdε0(ε̄dEd + 2 ¯̄χEpE∗
s ) + Jd , (A5)

∇ × Ep = iωp

c2ε0
Hp, (A6)

∇ × Hp = −iωpε0(ε̄pEp + 2 ¯̄χEsEd ) + Jp, (A7)
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where c is the vacuum speed of light, ε0 is the vacuum
permittivity, ε̄ is the rank-2 relative permittivity tensor, and
¯̄χ is the rank-3 second-order nonlinear optical susceptibility
tensor. All fields, ε̄, and ¯̄χ may have spatial dependence. To
process the equations, we first divide all equations by ω j

and introduce J̃ j = J j/ω j . This is beneficial for nonlinear
processes involving frequency mixing, where the conservation
laws typically involve photon numbers rather than energy.
Next, we take two copies of the system, where system A con-
tains the fields EA

j , HA
j and sources J̃A

j , and system B contains
the fields EB

j , HB
j and sources J̃B

j . For Eq. (A3) for system A,
we left-multiply by EB

s to get

1

ωs
EB

s · (∇ × HA
s

) = −iε0EB
s · [

ε̄sEA
s + 2 ¯̄χEA

pEA∗
d

] + EB
s · J̃A

s .

(A8)

Performing integration over the system volume V , and using
the identity A · (∇ × B) = (∇ × A) · B − ∇ · (A × B), leads
to

∫
V

dr
iHB

s · HA
s

c2ε0
−

∮
∂V

dA · EB
s × HA

s

ωs

=
∫

V
dr

(−iε0EB
s

) · [
ε̄sEA

s + 2 ¯̄χEA
pEA∗

d

] +
∫

V
drEB

s · J̃A
s .

(A9)

We subtract this equation from itself with A and B inter-
changed:

∫
V

dr
(
J̃A

s · EB
s − J̃B

s · EA
s

)

−
∮

∂V
dA · EA

s × HB
s − EB

s × HA
s

ωs

= iε0

∫
V

dr
(
EB

s · ε̄sEA
s − EA

s · ε̄sEB
s

)

+ 2iε0

∫
V

dr
(
EB

s · ¯̄χEA
pEA∗

d − EA
s · ¯̄χEB

pEB∗
d

)
. (A10)

In the usual derivation of Lorentz reciprocity, the ¯̄χ term is
not present, and the argument is that if ε̄ = ε̄T , the ε̄ term
also vanishes, and so the left-hand side must be zero. We
now assume that the system is linearly reciprocal in this sense
(ε̄ j = ε̄T

j for signal and idler), remove the ε̄ term on the
right-hand side, and continue to consider the ¯̄χ term. Now, for
the signal field and the conjugated idler fields, the reciprocity
relations read

∫
V

dr
(
J̃A

s · EB
s − J̃B

s · EA
s

)

−
∮

∂V
dA · EA

s × HB
s − EB

s × HA
s

ωs

= 2iε0

∫
V

dr
(
EB

s · ¯̄χEA
pEA∗

d − EA
s · ¯̄χEB

pEB∗
d

)
, (A11)

∫
V

dr
(
J̃A

d · EB
d − J̃B

d · EA
d

)∗

−
∮

∂V
dA ·

(
EA

d × HB
d − EB

d × HA
d

)∗

ωd

= −2iε0

∫
V

dr
(
EB∗

d · ¯̄χ∗EA∗
p EA

s − EA∗
d · ¯̄χ∗EB∗

p EB
s

)
.

(A12)

Finally, subtracting the above two equations, we get∫
V

dr
[(

J̃A
s · EB

s − J̃A∗
d · EB∗

d

) − (
J̃B

s · EA
s − J̃B∗

d · EA∗
d

)]

−
∮

∂V
dA ·

[(
EA

s × HB
s

ωs
− EA∗

d × HB∗
d

ωd

)

−
(

EB
s × HA

s

ωs
− EB∗

d × HA∗
d

ωd

)]

= 2iε0

∫
V

dr
[
EB

s · (
¯̄χEA

p − EB∗
p

¯̄χ†
)
EA∗

d

− EA
s · (

¯̄χEB
p − EA∗

p
¯̄χ†

)
EB∗

d

]
. (A13)

Based on the structure of this relation, we can extend the
concept of Lorentz reciprocity to the nonlinear system by
requiring that the right-hand side of Eq. (A13) vanishes. One
general condition would be

¯̄χEA
p = EB∗

p
¯̄χ†. (A14)

In the special case of a real susceptibility ¯̄χ that is symmetric
over its signal and idler indices (i.e., when Kleinman’s sym-
metry is satisfied [22]), the condition reduces to

EA
p (r) = EB∗

p (r), for all r such that ¯̄χ (r) �= 0. (A15)

In the undepleted pump approximation, Ep is independent of
Es and Ed , and can be solved from

∇ × ∇ × Ep − ω2
p

c2
ε̄pEp = −iμ0ωpJp. (A16)

Thus, when the solution to Eq. (A16) is real in the regions
of the system where ¯̄χ �= 0, the following reciprocity relation
between signal and idler fields holds,
∫

V
dr

[(
JA

s · EB
s

ωs
− JA∗

d · EB∗
d

ωd

)
−

(
JB

s · EA
s

ωs
− JB∗

d · EA∗
d

ωd

)]

=
∮

∂V
dA ·

[(
EA

s × HB
s

ωs
− EA∗

d × HB∗
d

ωd

)

−
(

EB
s × HA

s

ωs
− EB∗

d × HA∗
d

ωd

)]
, (A17)

or, when there are no current sources within the system bound-
ary ∂V ,

∮
∂V

dA ·
(

EA
s × HB

s

ωs
− EA∗

d × HB∗
d

ωd

)

=
∮

∂V
dA ·

(
EB

s × HA
s

ωs
− EB∗

d × HA∗
d

ωd

)
. (A18)
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Now we proceed to derive the reciprocity constraints on
an S matrix based on Eq. (A18). For a scattering system
with predefined ports, the enclosing surface will be chosen to
perpendicularly cut through each port at z = 0. The complex
electric and magnetic signal field orthogonal to the propaga-
tion axis can then be expressed as

Es,k = (as,k + bs,k )es,k, (A19)

Hs,k = (as,k − bs,k )hs,k, (A20)

where es,k and hs,k are the field distributions for the signal
ports. Here, we assume that the port consists of lossless and
reciprocal materials, such that both the es,k and hs,k compo-
nents can be made real. This assumption is standard in the
discussion of the S matrix [3,4] since it allows one to focus on
the possibly unusual properties of the scattering matrix itself.
Idler fields are defined similarly.

We now expand the reciprocity relation using the port
amplitudes, which results in

∑
k

(
aA

s,kbB
s,k − aB

s,kbA
s,k

) ∫
Ak

dA · eA
s,k × hB

s,k

ωs

−
∑

k

(
aA∗

d,kbB∗
d,k − aB∗

d,kbA∗
d,k

) ∫
Ak

dA · eA
d,k × hB

d,k

ωd

= 0. (A21)

We will normalize the fields such that |a|2 and |b|2 represent
the photon number flux. Specifically,∫

Ak

dA · (
eA

s,k × hB
s,k

) = h̄ωs, (A22)

∫
Ak

dA · (
eA

d,k × hB
d,k

) = h̄ωd . (A23)

The integrals cancel out, and we are left with∑
k

aA
s,kbB

s,k −
∑

k

aA∗
d,kbB∗

d,k =
∑

k

aB
s,kbA

s,k −
∑

k

aB∗
d,kbA∗

d,k .

(A24)

Each side could be interpreted as an inner product between
input and output amplitudes. Similar to the main text, we
construct an input vector using both field amplitudes and con-
jugated amplitudes through a = (as,1 · · · as,ns , a∗

d,1 · · · a∗
d,nd

)T

and an auxiliary matrix,

Pz =
(

Ins×ns 0
0 −Ind ×nd

)
. (A25)

where ns (nd ) is the number of signal (idler) ports. The reci-
procity condition can then be rewritten as

aA · PzbB = bA · PzaB. (A26)

As b = Sa and the reciprocity holds for all aA and aB, we
finally get

PzS = ST Pz. (A27)

Moving the Pz on the right to the left side recovers Eq. (20).
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