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Quantum decay of an optical soliton
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Optical solitons are known to be classically stable objects which are robust to perturbations. In this work we
show that due to quantum-mechanical effects, an optical soliton that is initially in a classical soliton coherent
state will shed photons into the continuum and hence decay. The standard formulation of the quantized soliton
uses the linearized version of the quantum nonlinear Schrödinger equation in the background of the classical
soliton, and the quantized soliton remains stable in this approximation. We show that if higher-order interaction
terms are taken into account, the soliton is no longer stable, and its photon number decreases quadratically as a
function of the number of soliton cycles. We compute the power spectrum for the continuum radiation and find
a narrow band that is localized about the initial soliton momentum with a cutoff that is inversely proportional to
the initial soliton width.
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I. INTRODUCTION

When light with sufficient intensity propagates within a
dielectric waveguide, the refractive index is modified due
to the Kerr effect, resulting in a nonlinear equation for
the propagating optical field [1–4]. In the slowly varying enve-
lope approximation, the resulting wave equation is known as
the nonlinear Schrödinger equation (NLSE), which gives rise
to localized solutions known as solitons [5,6]. Optical solitons
have many applications in photonics; for example, the field
of telecommunications has utilized the dispersionless nature
of solitons in long-distance data transmission [7,8] and the
field of integrated photonics has recently leveraged soliton mi-
crocombs in various applications [9–11]. Furthermore, optical
systems have been used as models for black hole analogs, with
optical solitons having been used to model Hawking radiation
[12,13], a phenomenon which is known more generally as
quantum evaporation. Optical quantum soliton evaporation
has previously been studied by way of computing an ap-
proximated power spectrum for a soliton which is initially
in a fundamental soliton state [14]. Similarly, geometric ap-
proaches have been utilized in calculating the temperature of
an optical soliton [15,16]. We would also like to highlight
the extensive work of Malomed and co-workers regarding the
analysis of decaying optical and nonoptical solitons subject to
perturbations in classical and quasiclassical quantized frame-
works [17–24].

Here we study the evaporation of a quantum-mechanical
soliton using the quantum NLSE in the background of the
classical soliton. Our approach is analogous to the tech-
niques used in the standard model of particle physics, where
the Higgs field is expanded around a constant classical
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expectation value, except that the classical soliton is both time
and space dependent [25]. At the linear level, the resulting
theory in the background of the soliton has exact solutions
in the form of four bound states, as well as continuum states
[26–30]. These bound states characterize the modified soliton
parameters. The bound-state and continuum solutions evolve
trivially in time in the linearized theory. To observe more
interesting dynamics, we include the higher-order interaction
terms that couple the bound states to the continuum. The
higher-order contribution acts as a perturbation on the lin-
earized theory and prompts the soliton to lose photons to
the continuum, resulting in soliton evaporation. The rigorous
treatment of this process is the subject of this paper.

The rest of this paper is organized as follows. In Sec. II
we review the linearized theory of the quantum soliton. In
Sec. III we perform a perturbative approach to the linearized
theory to show that the soliton’s photon number does indeed
decrease due to quantum effects. In Sec. IV we compute the
power spectrum of the generated continuum radiation as a
function of the number of soliton cycles and calculate the
bandwidth of the radiation spectrum. In the Appendixes a
more comprehensive review of the linearized NLSE is given,
along with a list of relevant vacuum state expectation values
and other supporting mathematical expressions.

II. LINEARIZED THEORY OF THE QUANTUM SOLITON

In this section an overview of the essential parts of the
linearized field approximation applied to the quantized NLSE
is given [26,27,31,32]; further technical details are provided
in Appendix A. The linearized theory of the quantized NLSE
allows one to treat the perturbations of the soliton parameters,
along with the generated continuum radiation, as quantum op-
erators. More precisely, the soliton perturbation operators are
given as the change in the four soliton parameters, namely, the
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photon number �n̂0, phase �θ̂0, position �x̂0, and momen-
tum �p̂0. The accompanied continuum radiation is denoted
by �v̂c.

The equation of motion describing the propagation of
a quantum soliton field envelope in a single-mode optical
waveguide (in the comoving frame of the soliton) is given
by the following equation, known as the quantized Nonlinear
Schrödinger equation [33–39]:

i
∂

∂t
φ̂(x, t ) = − ∂2

∂x2
φ̂(x, t ) − 2|c|φ̂†(x, t )φ̂(x, t )φ̂(x, t ). (1)

The quantum field operator φ̂(x, t ) obeys the usual commuta-
tion relations [40]

[φ̂(x, t ), φ̂†(y, t )] = δ(x − y), (2a)

[φ̂(x, t ), φ̂(y, t )] = [φ̂†(x, t ), φ̂†(y, t )] = 0. (2b)

The number operator is given by

N̂ =
∫

dx φ̂†(x, t )φ̂(x, t ) (3)

and is a conserved quantity of the above theory.
We are interested in the evolution of the quantum

fluctuations about the classical soliton background. These
fluctuations are viewed as perturbative in the sense that the
even-moment expectation values of the fluctuation operator
are small in comparison to the even-moments of the classical
soliton solution. The quantum field operator may be redefined
as the expansion about the classical soliton solution as

φ̂(x, t ) = φcl(x, t ) + v̂(x, t ) exp

(
i
n2

0|c|2
4

t

)
, (4)

where

φcl(x, t ) = n0|c|1/2

2
sech

(
n0|c|

2
(x − x0 − 2p0t )

)

× exp

(
i
n2

0|c|2
4

t − ip2
0t + ip0(x − x0) + iθ0

)
.

(5)

The constants n0, p0, x0, and θ0 represent the initial photon
number, momentum, position, and phase. We take p0 = x0 =
θ0 = 0 for the remainder of this work. Note that the vac-
uum state for the quantum fluctuation field operator v̂(x, t )
in Eq. (4) at t = 0 is the classical soliton coherent state.

From Eqs. (2) and (4), the quantum fluctuation operator
commutation relations take the form

[v̂(x, t ), v̂†(y, t )] = δ(x − y), (6a)

[v̂(x, t ), v̂(y, t )] = [v̂†(x, t ), v̂†(y, t )] = 0. (6b)

Inserting Eq. (4) into Eq. (1) and keeping terms up to first
order in v̂(x, t ), we arrive at the equation of motion

4

n2
0|c|2

∂

∂t
v̂(x′, t )

= i

[(
∂2

∂x′2 −1

)
v̂(x′, t )+2 sech2(x′)[2v̂(x′, t )+v̂†(x′, t )]

]
,

(7)

where we have used the following rescaling for convenience:

x′ = n0|c|x
2

. (8)

Unless explicitly mentioned, from here on we drop the prime
notation in x′; the proper scaling factors will be taken into
account when necessary.

We utilize a doublet notation [41] for the quantum fluctua-
tion operator and its adjoint, which allows Eq. (7) to be written
in the compact form

4

n2
0|c|2

∂

∂t
�̂v = L̂ �̂v (9)

such that

�̂v =
[

v̂(x, t )
v̂†(x, t )

]
(10)

and

L̂ = iσ3

[(
∂2

∂x2
− 1

)
+ 2sech2(x)(2 + σ1)

]
, (11)

where σ1 and σ3 are the usual Pauli matrices. The fluctuation
operator may be expanded in the following form:

�̂v(x, t ) = ∂ �φcl(x, t )

∂n0

∣∣∣∣
t=0

�n̂0(t ) + ∂ �φcl(x, t )

∂θ0

∣∣∣∣
t=0

�θ̂0(t )

+ ∂ �φcl(x, t )

∂ p0

∣∣∣∣
t=0

� p̂0(t ) + ∂ �φcl(x, t )

∂x0

∣∣∣∣
t=0

�x̂0(t )

+ ��̂vc(x, t ). (12)

The vectors in Eq. (12) are given as

∂ �φcl(x, t )

∂n0

∣∣∣∣
t=0

= 1

n0
[1 − x tanh(x)]φcl(x, 0)

[
1
1

]
, (13a)

∂ �φcl(x, t )

∂ p0

∣∣∣∣
t=0

= 2i

n0|c|xφcl(x, 0)

[
1

−1

]
, (13b)

∂ �φcl(x, t )

∂x0

∣∣∣∣
t=0

=
(

n0|c|
2

tanh(x)

)
φcl(x, 0)

[
1
1

]
, (13c)

∂ �φcl(x, t )

∂θ0

∣∣∣∣
t=0

= iφcl(x, 0)

[
1

−1

]
. (13d)

We will abbreviate the above vector equations as �φi, with i =
n0, p0, x0, θ0. The continuum radiation portion of the operator
may be expanded as

��̂vc(x, t ) =
∫ ∞

−∞
dk[ �fk â(k, t ) + �gkb̂(k, t )], (14)

where

�fk = e−ikx

[
[k − i tanh(x)]2

sech2(x)

]
(15)

and

�gk = e−ikx

[
sech2(x)

[k − i tanh(x)]2

]
. (16)

The first four operators of Eq. (12) represent the perturbed
parameters of the original soliton solution, while the last term
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represents the continuum radiation field. The physical moti-
vation for the above expansion lies in the observation that the
classical soliton is a stable object and a perturbation results
in the soliton returning to a soliton configuration (now with
modified photon number, phase, momentum, and position)
along with the generation of radiation which is shed into the
continuum.

With the field redefinition given in Eq. (4), the number
operator given in Eq. (3) now takes the form

N̂ = n0 + �n̂0(t ) + 2

n0|c|
∫

dx v̂†(x, t )v̂(x, t ), (17)

where

�n̂0(t ) = 1

|c|1/2

∫ ∞

−∞
dx sech(x)[v̂(x, t ) + v̂†(x, t )] (18)

and

v̂†(x, t )v̂(x, t ) = �v̂
†
sol�v̂sol + �v̂

†
sol�v̂c

+�v̂†
c �v̂sol + �v̂†

c �v̂c, (19)

with

�v̂sol(x, t ) = φn0 (x, 0)�n̂0(t ) + φθ0 (x, 0)�θ̂0(t )

+ φp0 (x, 0)�p̂0(t ) + φx0 (x, 0)�x̂0(t ) (20)

and �v̂c defined above in Eq. (14). The φi’s given in Eq. (20)
correspond to the first component of the vectors given in
Eq. (13).

Note that Eq. (17) is separated into the initial soliton pho-
ton number n0, the change in soliton photon number �n̂0(t ),
and four different couplings involving the change in soliton
parameters �v̂sol and the continuum radiation �v̂c. The phys-
ical interpretations of the terms in Eq. (19) are as follows. The
first term represents the photon number density embedded in
the perturbation of the four soliton parameters. Because the
photon number is proportional to the energy in the carrier en-
velope approximation, it can also be viewed as the amount of
energy needed to change the four soliton parameters, similar
to the gradient energy of a classical field. The second and third
terms represent the photon number density (or energy) due to
coupling between the change in soliton configuration and the
continuum. The last term represents the photon number den-
sity (or the amount of energy) found solely in the continuum.

As is derived in Appendix A, at the linear order, the opera-
tors evolve as

�n̂0(t ) = �n̂0(0), (21a)

�θ̂0(t ) = �θ̂0(0) + n0|c|2t

2
�n̂0(0), (21b)

�x̂0(t ) = �x̂0(0) + 2�p̂0(0)t, (21c)

�p̂0(t ) = �p̂0(0), (21d)

while the continuum operators in Eq. (14) evolve as

â(k, t ) = â(k, 0) exp

(
−i

n2
0|c|2
4

(1 + k2)t

)
,

b̂(k, t ) = b̂(k, 0) exp

(
i
n2

0|c|2
4

(1 + k2)t

)
. (22)

Thus we see at the linear order that the continuum evolves
as a free field, that is to say, with all of the time dependence
isolated in the phase, as can be seen in Eq. (22). Furthermore,
we see that the continuum portion of the field and the four
soliton parameters evolve independently of one another. In
order to see mixing between the continuum and soliton param-
eters and hence to study more complicated dynamics, we must
examine the higher-order terms which were excluded during
the linearization process. In the next section we do this by
taking the second-order corrections into account.

III. SOLITON DECAY

In this section we use an iterative perturbation approach to
calculate the expectation value and variance for the change in
photon number of the soliton at second order in v̂ [42]. The
change in photon number is given as a function of the number
of soliton cycles. We show that the change in photon number
is negative and hence the soliton does indeed decay.

We now take into account the second-order contributions
that were neglected during the derivation of Eq. (7). Again,
inserting Eq. (4) into Eq. (1), but now keeping terms up to
second order in v̂, and continuing with the doublet notation
results in the perturbation operator evolving as

4

n2
0|c|2

d

dt
�̂v = L̂ �̂v + N̂L �̂v, (23)

where

N̂L = 4i

n0|c|1/2
sech(x)

[
2v̂† + v̂ 0
−2v̂† −v̂†

]
. (24)

Using the orthogonality relations provided in Appendix A, the
time evolution for the change in photon number operator is
now given as

d

dt
�n̂0(t ) = in0|c|

∫ ∞

−∞
dx sech2(x)(v̂2 − v̂†2). (25)

We solve this equation by way of iterative perturbation. Using
Eqs. (12) and (21), the first-order linear solution v̂lin(x, t ) is
given as

v̂lin(x, t ) =
[

[φn0�n̂0(0) + φθ0�θ̂0(0)

+ φp0� p̂0(0) + φx0�x̂0(0)] + �v̂c(x, t )

+
(

n0|c|2
2

φθ0�n̂0(0) + 2φx0�p̂0(0)

)
t

]
. (26)

Inserting Eq. (26) into the right-hand side of Eq. (25) and
taking the expectation value of both sides results in

d

dt
〈�n̂0(t )〉 = −2n0|c|Im

( ∫ ∞

−∞
dx sech2(x)

〈
v̂2

lin(x, t )
〉)

.

(27)

Using the expectation values given in Appendix B, along
with evaluating the above integral in units of soliton period,
i.e., at tm = 8πm/n2

0|c|2, one arrives at the following quantity
for the change in photon number of the soliton after m cycles
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of the soliton phase:

〈�n̂0(m)〉 ≈ −160π2m2

9
. (28)

We note that the number of cycles m counts the nonlinear
phase shift modulus 2π , which is technically eight times the
soliton period [1]. The full solution to Eq. (27) takes the form
of a quadratic polynomial in m, with a negative coefficient
of order 10−1 for the linear term. This linear term may be
neglected when m > 10−3; this will be assumed to be the case
for the remainder of this work. This perturbative result is valid
whenever |〈�n̂0(t )〉| � n0.

The above calculation shows that the change in photon
number is a decreasing monotonic function and thus the soli-
ton decays. An important point to note in performing the
calculation of Eq. (27) is that the terms with no �v̂c(x, t )
dependence are the dominant contributors to the solution and
are solely responsible for the coefficient in Eq. (28), while
the integrals involving �v̂c(x, t ) give negligible contributions
and are responsible for the neglected linear term. Moreover,
the numerical coefficients which result from the integrals in-
volving �v̂c(x, t ) in Eq. (27) are four orders of magnitude
smaller than those terms which do not involve �v̂c(x, t ). Thus,
source terms which involve �v̂c(x, t ) may be neglected when
one considers soliton cycles which satisfy m > 10−3, as was
alluded to in the preceding paragraph. Furthermore, it must
be noted that although the soliton’s photon number decreases,
most of the change in photon number goes into modifying the
soliton parameters which are necessarily localized about the
soliton. With this in mind, when one speaks of soliton decay,
it should only be with respect to the continuum contribution,
since this will be the only term in the perturbation expansion
which disperses away from the soliton.

The soliton cycle is related to the propagation distance z
along the fiber as [34]

m = 1

4πζ 2
0

k′′

|k′|2 z, (29)

where k′′ is the group velocity dispersion (GVD) parameter,
k′ is the inverse group velocity, and ζ0 is related to the initial
soliton width. As an example, consider a 1-ps pulse with a
GVD parameter k′′ = 20 ps2/km and inverse group velocity
k′ = 3/2c, where c is the speed of light in vacuum. Combining
Eqs. (28) and (29), the soliton must propagate a distance of
approximately 47 m to lose its first photon.

From the conservation of particle number in Eq. (17), we
see that what is lost from Eq. (28) must be gained by the terms
in Eq. (19), at least up to the proper order in the perturbation
expansion. Moreover, it can be shown that the majority of
the soliton’s photon loss is accounted for by the first term in
Eq. (19), namely,

〈�n̂sol〉 = 2

n0|c|
∫

dx〈�v̂
†
sol�v̂sol〉. (30)

Inserting the linearized solution of the perturbation operator
into this equation (�v̂sol = v̂lin), where the linearized solution

is given as

v̂lin(x, t ) =
[

[φn0�n̂0(0) + φθ0�θ̂0(0)

+ φp0� p̂0(0) + φx0�x̂0(0)] + �v̂c(x, t )

+
(

n0|c|2
2

φθ0�n̂0(0) + 2φx0�p̂0(0)

)
t

]
, (31)

we see that �v̂
†
lin�v̂lin is a second-order polynomial in time;

the linear term evaluates to zero. Focusing on the second-order
contribution and comparing this with Eq. (28), we get the
following integral when evaluated at tm = 8πm/n2

0|c|2:

〈�n̂sol〉 =
〈

2

n0|c|
∫

dx

(
− n0|c|2

2
φθ0�n̂0(0) + 2φx0�p̂0(0)

)

×
(

n0|c|2
2

φθ0�n̂0(0) + 2φx0� p̂0(0)

)〉

= 160π2m2

9
. (32)

This is the opposite of the value we see in Eq. (28), and hence
conservation of the photon number is met at second order
in m for the dominant quadratic term; this is expected since
the continuum portion does not contribute to the second-order
polynomial in Eq. (28). The remaining terms involving the
coupling of �v̂sol and �v̂c terms may be computed and will
account for the neglected �v̂c terms in Eq. (28), which are
negligible in magnitude compared to Eq. (28). The terms
involving �v̂2

c and �v̂†
c �v̂c are higher-order terms and are

suppressed by a factor of 1/n0. They may not be exactly coun-
terbalanced due to neglecting cubic terms in the expansion
of Eq. (23), but on timescales for which |〈�n̂0(t )〉| � n0, the
total particle number is approximately conserved.

In the next section we turn to the question of how many
photons are emitted into the continuum as a function of soliton
period by calculating the continuum portion of Eq. (19).

IV. CONTINUUM RADIATION POWER SPECTRUM

Here, as was done in the preceding section, we consider
the effects of the second-order contributions of v̂, but now
with the purpose of calculating how the generated contin-
uum radiation grows as a function of soliton cycles. We
find that the continuum contribution, in comparison to the
other three terms in Eq. (19), makes up only a small portion of
the total photons lost, as calculated in Eq. (28). We find that
the spectrum of the continuum forms a band having bandwidth
k ∈ (−n0|c|, n0|c|), which is peaked about the initial soliton
momentum.

From Eq. (17), the contribution due solely to the continuum
radiation is given by

〈�n̂cont〉 = 2

n0|c|
∫

dx〈�v̂†
c (x, t )�v̂c(x, t )〉. (33)

Away from the soliton, the continuum radiation field operator
(14) takes the form

�v̂c(x > xsw, t ) ≈
∫ ∞

−∞
dk e−ikx (k − i)2â(k, t ), (34)

where xsw is the characteristic width of the initial soliton pulse.
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FIG. 1. Power spectrum of the continuum radiation for (a) m = 1, (b) m = 2, (c) m = 5, and (d) m = 10 soliton cycles. The spectrum is
peaked at the origin and is localized about the band k′ ∈ (−2, 2).

Thus we may calculate the power spectrum of the emitted
continuum radiation by evaluating

P(k) ≈ 4π

n0|c| (1 + k2)2〈â†(k, t )â(k, t )〉. (35)

Similarly to what we saw in Eq. (25), including the non-
linear term and utilizing the orthogonality relations given in
Appendix A results in the equation of motion for the
operator â(k, t ) to take the form

dâ

dt
= −i

n2
0|c|2
4

(1 + k2)â + n2
0|c|2
8

∫
dx �̄f †

k N̂L �̂v, (36)

with∫
dx �̄f †

k N̂L �̂v = 4i

n0|c|1/2π

∫
dx

sech(x)eikx

(1 + k2)2
{(2v̂†v̂ + v̂2)

× [k + i tanh(x)]2 + sech2(x)(2v̂†v̂ + v̂†2)}.
(37)

Once again, taking an iterative perturbative approach to solve
this equation, we insert the solution to the linear problem
(26) into the right-hand side of Eq. (36). To simplify the
calculation, we take note of the comments in the preceding
section where it was pointed out that the terms which in-
volve �v̂c(x, t ) in the driving source do not contribute in a
meaningful way in comparison to those terms solely involving
terms from Eq. (20). This applies equally well to Eq. (37);
hence with this observation, we drop �v̂c(x, t ) out of v̂lin(x, t )
and use only the modified soliton parameter operators as the
driving source.

Equation (37) evaluates to the form∫
dx �̄f †

k N̂L �̂v = f̂1(k) + t f̂2(k) + t2 f̂3(k), (38)

where f̂1(k), f̂2(k), and f̂3(k) are given in Appendix C in
Eqs. (C1), (C5), and (C6). From the form of Eq. (38), the

solution to Eq. (36) is given as

â(k, t ) = exp(−iαt )

α3

(
α3â(k, 0) + n2

0|c|2
8

[1 − exp(iαt )]

× [iα2 f̂1(k) − 2i f̂3(k) − α f̂2(k)]

+ n2
0|c|2
8

t exp(iαt )[2α f̂3(k) − iα2 f̂2(k)]

− i
n2

0|c|2
8

α2t2 exp(iαt ) f̂3(k)

)
, (39)

where

α = n2
0|c|2(1 + k2)

4
. (40)

Using Eq. (35), we plot the power spectrum in Fig. 1 for
multiple values of soliton cycles. The spectrum grows in am-
plitude as the soliton propagates, while the width of the power
spectrum remains constant. The spectrum is peaked at the
origin and is localized about the band k′ ∈ (−2, 2). Noting the
normalized units defined in Eq. (8), we see that the spectrum
is peaked about the band:

k ∈ (−n0|c|, n0|c|). (41)

The quantity n0|c| appears in Eq. (5) and is related to the initial
width of the soliton pulse.

In Fig. 2 we plot the total continuum contribution by inte-
grating the power spectrum. One can see that the continuum
grows as m4. Furthermore, due to being a higher-order effect
in the perturbation series, the continuum generation is sup-
pressed by a factor of 1/n0. Note that the power spectrum
grows as m4, while Eq. (28) grows as m2. This is not an
inconsistency; as was pointed out at the beginning of this
section, we have neglected the �v̂sol terms in Eq. (19). These
terms provide the necessary counterterms to account for the
total change in photon number, as they must by conservation
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FIG. 2. Total continuum contribution with the initial soliton pho-
ton number taken to be n0 = 108.

of Eq. (17). Thus, the amount of photons found solely as con-
tinuum radiation is minuscule. For example, comparing Fig. 2
to Eq. (28) and considering 100 soliton cycles, one can see that
the continuum makes up only approximately 1% of the total
photons lost as calculated in Eq. (28). Reiterating what was
stated above, the remaining loss of intensity is accounted for
in the terms �v̂

†
sol�v̂sol, �v̂†

c �v̂sol, and �v̂
†
sol�v̂c as defined

in Eq. (19).

V. CONCLUSION

By way of performing a perturbation analysis on the lin-
earized quantum nonlinear Schrödinger equation, we have
shown that the optical soliton which is initially in a
classical soliton coherent state decays solely due to quantum-
mechanical effects. It was shown that after m soliton cycles,
the soliton photon number decreases proportionally to m2,
while the generated continuum radiation grows proportionally
to m4. It was found that the continuum radiation accounts for a
small amount of the change of the soliton intensity and is sup-
pressed by a factor of 1/n0. The bandwidth of the continuum
radiation lies in the interval k ∈ (−n0|c|, n0|c|) while being
centered about the initial soliton momentum.

Here we make a few comments in regard to how our
analysis relates to the work on soliton evaporation presented
in Ref. [14]. Our approach has been to expand the quantum
soliton field about a classical soliton background, which al-
lows one to analyze the quantum fluctuations of the classical
soliton. In contrast, Ref. [14] utilizes the exact solutions of
the full quantum field theory of the NLSE to construct a field
whose expectation value approximates a classical soliton. The
initial state is such that the expectation value of the field re-
sults in an average over fundamental soliton solutions having
Gaussian distributed momentum and hence having different
phase and group velocities, and their dispersion contributes to
the evaporation of the soliton.

This work may be expanded by utilizing the above pertur-
bation analysis to investigate how the quantum evaporation
of an optical soliton modifies its squeezing behavior with
potential practical implications for precision interferometry
[43–46].

ACKNOWLEDGMENT

This research was supported by Grant No. W911NF-19-1-
0352 from the U.S. Army Research Office.

APPENDIX A: MORE DETAILS ON THE LINEARIZED
THEORY OF THE QUANTUM SOLITON

Here we provide a more complete overview of the lin-
earized theory of the quantized NLSE [41]. One can begin
from the linearized NLSE in the background of the classical
soliton, as presented in Eq. (9), with the linear operator L̂
defined in Eq. (11), and show that this operator acts on the
vectors in Eqs. (13), (15), and (16) such that

L̂ �φn0 = 2

n0

�φθ0 , (A1a)

L̂ �φp0 = 8

n2
0|c|2

�φx0 , (A1b)

L̂ �φx0 = 0, (A1c)

L̂ �φθ0 = 0, (A1d)

L̂ �fk = −i(1 + k2) �fk, (A1e)

L̂�gk = i(1 + k2)�gk . (A1f)

Introducing an inner product defined as

〈u|v〉 = 1

2

∫
dx u†v, (A2)

one may find a set of functions which give rise to useful or-
thogonality relations with respect to Eqs. (13), (15), and (16).
These functions are related through the adjoint of Eq. (11).
We list them below and denote them with an overbar:

�̄φn0 = 4

n0|c|φcl(x, 0)

[
1
1

]
, (A3a)

�̄φp0 = 2i

n0
tanh(x)φcl(x, 0)

[
1

−1

]
, (A3b)

�̄φx0 = 8

n3
0|c|2

x φcl(x, 0)

[
1
1

]
, (A3c)

�̄φθ0 = 4i

n2
0|c|

[1 − x tanh(x)]φcl(x, 0)

[
1

−1

]
, (A3d)

�̄fk = e−ikx

π (1 + k2)2

[
[k − i tanh(x)]2

−sech2(x)

]
, (A3e)

�̄gk = e−ikx

π (1 + k2)2

[
sech2(x)

−[k − i tanh(x)]2

]
. (A3f)

With the above-defined vectors and inner product, one can
show that the following orthogonality relationships hold:

〈 �̄φi| �φ j〉 = δi j, (A4a)

〈 �̄φi| �fk〉 = 〈 �̄φi|�gk〉 = 0, (A4b)

〈 �̄fk| �fk′ 〉 = 〈�̄gk|�gk′ 〉 = δ(k − k′). (A4c)

We may now solve for the time evolution of the perturbation
operators. Inserting Eq. (12) into Eq. (9) and multiplying both
sides by the proper adjoint equation, while making use of
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the orthogonality relations through the inner product (A2),
allows for the time evolution of each operator in Eq. (12) to
be isolated.

We arrive at the following equations of motion:

4

n2
0|c|2

d

dt
�n̂0(t ) = 0, (A5a)

4

n2
0|c|2

d

dt
�θ̂0(t ) = 2

n0
�n̂0(0), (A5b)

4

n2
0|c|2

d

dt
�p̂0(t ) = 0, (A5c)

4

n2
0|c|2

d

dt
�x̂0(t ) = 8

n2
0|c|2

�p̂0(0), (A5d)

4

n2
0|c|2

dâ

dt
= −i(1 + k2)â, (A5e)

4

n2
0|c|2

db̂

dt
= i(1 + k2)b̂. (A5f)

Thus, from the above equations, the change in soliton param-
eters evolve according to Eqs. (21) and (22).

APPENDIX B: EXPECTATION VALUES

In this Appendix we list the relevant expectation values
that are used in the calculation of Eqs. (27) and (35). Note
that when calculating the expectation value of the product
of four operators, the expectation value decomposes into a
linear combination of all permutations of products of two-
point expectation values; thus only the expectation values
provided below are required for the evaluation of Eqs. (28)
and (35).

From the linearized theory of the quantum soliton, pre-
sented in Sec. II, one may use the inner product defined in
Eq. (A2), along with the expansion given in Eq. (12), to isolate
the perturbed soliton parameter operators and the continuum
operator. They are given by

�n̂0(0) = 1

|c|1/2

∫ ∞

−∞
dx sech(x)[v̂(x, 0) + v̂†(x, 0)],

(B1)

�θ̂0(0) = −i

n0|c|1/2

∫ ∞

−∞
dx[1 − x tanh(x)]

× sech(x)[v̂(x, 0) − v̂†(x, 0)], (B2)

�p̂0(0) = −i|c|1/2

2

∫ ∞

−∞
dx tanh(x)sech(x)

× [v̂(x, 0) − v̂†(x, 0)], (B3)

�x̂0(0) = 2

n2
0|c|3/2

∫ ∞

−∞
dxx sech(x)

× [v̂(x, 0) + v̂†(x, 0)] (B4)

and

â(k, 0) = 1

2

∫ ∞

−∞
dx

exp(ikx)

π (1 + k2)2
{[k + i tanh(x)]2v̂(x, 0)

− sech(x)2v̂†(x, 0)}, (B5)

b̂(k, 0) = 1

2

∫ ∞

−∞
dx

exp(ikx)

π (1 + k2)2
{sech(x)2v̂(x, 0)

− [k + i tanh(x)]2v̂†(x, 0)}. (B6)

From the above six operator equations and making use of the
commutation relation [v̂(x, t ), v̂†(y, t )] = n0|c|

2 δ(x − y) [the
scaling factor in front of the δ function is due to the rescaling
introduced in Eq. (8)], one may calculate the following expec-
tation values on the vacuum state of the linearized theory:〈

�n̂2
0(0)

〉 = n0, (B7)

〈
�θ̂2

0 (0)
〉 = 0.6075

n0
, (B8)

〈
� p̂2

0(0)
〉 = n0|c|2

12
, (B9)

〈
�x̂2

0 (0)
〉 = π2

3n3
0|c|2

, (B10)

〈â(k, 0)â(k′, 0)〉
n0|c|

= (k′ + k)[2 − 6k2 + 6k(k′ + k) − (k′ + k)2]

48π (k2 + 1)2(k′2 + 1)2

× csch

[
1

2
π (k′ + k)

]
, (B11)

〈â(k, 0)b̂(k′, 0)〉
n0|c| = δ(k + k′)

( −k2k′2

4π (1 + k2)2(1 + k′2)2

+ 2π (1 − k2 − k′2 − 4kk′)
)

+ csch

[
1

2
π (k′ + k)

]

×
( −kk′(k + k′)

4π (1 + k2)2(1 + k′2)2
+ π (k + k′)

×
[
−10

3
+ 1

6
(13k2 + 13k′2 + 38kk′)

])
,

(B12)

〈b̂(k, 0)â(k′, 0)〉
n0|c|

= − (k′ + k)[(k′ + k)2 + 4]csch
[

1
2π (k′ + k)

]
48π (k2 + 1)2(k′2 + 1)2

, (B13)

〈b̂(k, 0)b̂(k′, 0)〉
n0|c|

= − (k′ + k)[6k2 − 6k(k′ + k) + (k′ + k)2 − 2]

48π (k2 + 1)2(k′2 + 1)2

× csch

[
1

2
π (k′ + k)

]
, (B14)
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〈�n̂0(0)�θ̂0(0)〉 = −〈�θ̂0(0)�n̂0(0)〉 = i

2
, (B15)

〈�x̂0(0)�p̂0(0)〉 = −〈�p̂0(0)�x̂0(0)〉 = i

2n0
, (B16)

〈�n̂0(0)â(k, 0)〉 = 〈â(k, 0)�n̂0(0)〉
= −〈�n̂0(0)b̂(k, 0)〉 = −〈b̂(k, 0)�n̂0(0)〉

= −n0|c|1/2

8

(
sech

(
kπ
2

)
1 + k2

)
, (B17)

〈�θ̂0(0)â(k, 0)〉
= 〈â(k, 0)�θ̂0(0)〉 = 〈�θ̂0(0)b̂(k, 0)〉 = 〈b̂(k, 0)�θ̂0(0)〉

= i|c|1/2

48

(
sech

(
kπ
2

)[
4 + (k + k3)π tanh

(
kπ
2

)]
(1 + k2)2

)
, (B18)

〈�n̂0(0)â(k, 0)〉 = 〈â(k, 0)�n̂0(0)〉
= −〈�n̂0(0)b̂(k, 0)〉 = −〈b̂(k, 0)�n̂0(0)〉

= −n0|c|1/2

8

(
sech

(
kπ
2

)
1 + k2

)
, (B19)

〈�θ̂0(0)â(k, 0)〉
= 〈â(k, 0)�θ̂0(0)〉 = 〈�θ̂0(0)b̂(k, 0)〉 = 〈b̂(k, 0)�θ̂0(0)〉

= i|c|1/2

48

(
sech

(
kπ
2

)[
4 + (k + k3)π tanh

(
kπ
2

)]
(1 + k2)2

)
, (B20)

〈� p̂0(0)â(k, 0)〉 = 〈â(k, 0)�p̂0(0)〉
= 〈� p̂0(0)b̂(k, 0)〉 = 〈b̂(k, 0)�p̂0(0)〉

= −n0|c|3/2

48

(
k sech

(
kπ
2

)
1 + k2

)
, (B21)

〈�x̂0(0)â(k, 0)〉
= 〈â(k, 0)�x̂0(0)〉 = −〈�x̂0(0)b̂(k, 0)〉
= −〈b̂(k, 0)�x̂0(0)〉

= −i

8n0|c|1/2

([−4k + (1 + k2)π tanh
(

kπ
2

)]
(1 + k2)2

)
sech

(
kπ

2

)
,

(B22)

and

〈�n̂0(0)� p̂0(0)〉 = 〈�p̂0(0)�n̂0(0)〉 = 0, (B23)

〈�n̂0(0)�x̂0(0)〉 = 〈�x̂0(0)�n̂0(0)〉 = 0, (B24)

〈�p̂0(0)�θ̂0(0)〉 = 〈�θ̂0(0)� p̂0(0)〉 = 0, (B25)

〈�x̂0(0)�θ̂0(0)〉 = 〈�θ̂0(0)�x̂0(0)〉 = 0. (B26)

APPENDIX C: FUNCTIONS FOR THE CONTINUUM RADIATION POWER SPECTRUM

Here we explicitly give the functions f̂1(k), f̂2(k), and f̂3(k) that were introduced in Eq. (38). They are given as

f̂1(k) = ĝ1(k) + ĥ1(k) + ĵ1(k), (C1)

where

ĝ1(k) = 4i

n0|c|1/2π

{
3|c|�n̂2(0)

1152(k2 + 1)2

[
πsech3

(
kπ

2

)
[32 − 3k2π2 − 6k4π2 − 3k6π2

+ (32 + k2π2 + 2k4π2 + k6π2) cosh (kπ ) + 16k(1 + k2)π sinh(kπ )]

]

+ n2
0|c|�θ̂2(0)

16
π sech

(
kπ

2

)
− � p̂2(0)

96|c|(1 + k2)2
π sech3

(
kπ

2

)
{32 − 9π2 − 18k2π2

− 9k4π2 + [32 + 3(1 + k2)2π2] cosh (kπ ) − 16k(1 + k2)π sinh (kπ )} − 3n4
0|c|3�x̂2(0)

576
k2π sech

(
kπ

2

)

+ n0|c|�n̂(0)�θ̂ (0)

480(1 + k2)2
iπ sech

(
kπ

2

)[
24 − 40k2 + k(33 + 50k2 + 17k4)π tanh

(
πk

2

)]

− n0|c|�θ̂ (0)�n̂(0)

480(1 + k2)2
iπ sech

(
kπ

2

)[
8(13 + 5k2) + k(23 + 30k2 + 7k4)π tanh

(
πk

2

)]

+ n2
0|c|2{�n̂(0),�x̂(0)}

192(1 + k2)
iπk sech

(
kπ

2

)[
8 + k(1 + k2)π tanh

(
kπ

2

)]}
, (C2)

ĥ1(k) = 4i

n0|c|1/2π

{
�n̂(0)�p̂(0)

960(1 + k2)2

[
π sech3

(
kπ

2

)
{k[−160 + 3(33 + 50k2 + 17k4)π2]

− k[160 + (33 + 50k2 + 17k4)π2] cosh(kπ ) + 16(−3 + 10k2 + 5k4)π sinh (kπ )}
]
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− �p̂(0)�n̂(0)

960(1 + k2)2

[
πsech3

(
kπ

2

)
{k[160 + 3(23 + 30k2 + 7k4)π2] − k[−160 + (23 + 30k2 + 7k4)π2] cosh (kπ )

+ 8(−11 + 10k2 + 5k40)π sinh(kπ )

]
− n3

0|c|2�x̂(0)�θ̂ (0)

480(1 + k2)
k(33 + 17k2)π sech

(
kπ

2

)}
, (C3)

and

ĵ1(k) = 4i

n0|c|1/2π

{
n3

0|c|2�θ̂ (0)�x̂(0)

480(1 + k2)
k(23 + 7k2)π sech

(
kπ

2

)

+ n0{�θ̂ (0),�p̂(0)}
48(1 + k2)

iπ sech

(
kπ

2

)[
− 8k + 3(1 + k2)π tanh

(
kπ

2

)]

− n2
0|c|�x̂(0)�p̂(0)

480(1 + k2)
iπ sech

(
kπ

2

)[
− 8(−3 + 15k2 + 10k4) + k(33 + 50k2 + 17k4)π tanh

(
kπ

2

)]

+ n2
0|c|�p̂(0)�x̂(0)

480(1 + k2)
iπ sech

(
kπ

2

)[
− 8(2 + 15k2 + 5k4) + k(23 + 30k2 + 7k4)π tanh

(
kπ

2

)]}
, (C4)

f̂2(k) = 4i

n0|c|1/2π

{
n2

0|c|3�n̂2(0)

96(1 + k2)
iπ sech

(
kπ

2

)[
− 8 + k(1 + k2)π tanh

(
kπ

2

)]

− n2
0|c|�p̂2(0)

24(1 + k2)
iπ sech

(
kπ

2

)[
4 − 4k2 + k(1 + k2)π tanh

(
kπ

2

)]

+ n2
0|c|2{�n̂(0),�p̂(0)}

1920(1 + k2)2
iπ sech

(
kπ

2

)[
− 512k + (135 + 161k2 + 45k4 + 19k6)π tanh

(
kπ

2

)]

+ n3
0|c|3{�n̂(0),�θ̂ (0)}

32
π sech

(
kπ

2

)
− n3

0|c|2� p̂(0)�θ̂ (0)

240(1 + k2)
π sech

(
kπ

2

)
k(33 + 17k2)

+ n3
0|c|2�θ̂ (0)�p̂(0)

240(1 + k2)
π sech

(
kπ

2

)
k(23 + 7k2) − n4

0|c|4�x̂(0)�n̂(0)

960(1 + k2)
π sech

(
kπ

2

)
k(33 + 17k2)

+ n4
0|c|4�n̂(0)�x̂(0)

960(1 + k2)
π sech

(
kπ

2

)
k(23 + 7k2) − n4

0|c|3{� p̂(0),�x̂(0)}
96

πk2sech

(
kπ

2

)}
, (C5)

and

f̂3(k) = 4i

n0|c|1/2π

[
n4

0|c|5�n̂2(0)

64
π sech

(
kπ

2

)
− n4

0|c|3�p̂2(0)

48
πk2sech

(
kπ

2

)

− n4
0|c|4�p̂(0)�n̂(0)

480(1 + k2)
k(33 + 17k2)π sech

(
kπ

2

)
+ n4

0|c|4�n̂(0)� p̂(0)

480(1 + k2)
k(23 + 7k2)π sech

(
kπ

2

)]
. (C6)
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