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Modulational instability in P77 -symmetric Bragg grating structures with saturable nonlinearity
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We investigate the nontrivial characteristics of modulational instability (MI) in a system of Bragg gratings
with saturable nonlinearity. We also introduce an equal amount of gain and loss into the existing system, which
gives rise to an additional degree of freedom, due to the concept of P77 symmetry. We obtain the nonlinear
dispersion relation of the saturable model and discover that such dispersion relations for both the conventional
and P7T -symmetric cases contradict the conventional Kerr and saturable systems by not displaying the typical
signature of loop formation in either the upper branch or lower branch of the curve drawn against the wave
number and detuning parameter. We employ a standard linear stability analysis to study the MI dynamics of the
continuous waves perturbed by an infinitesimal perturbation. The main objective of this paper is twofold: We
investigate the dynamics of the MI gain spectrum at the top and bottom of the photonic band gap followed by a
comprehensive analysis carried out in the anomalous and normal dispersion regimes. As a result, this perturbed
system driven by the saturable nonlinearity and gain or loss yields a variety of instability spectra, which include
the conventional sidebands, monotonically increasing gain, the emergence of a single spectrum in either of the
Stokes wave-number regions, and so on. In particular, we observe a remarkably peculiar spectrum, which is
caused predominantly by the system parameter, though the perturbation wave number boosts the former. We
also address the impact of all the physical parameters considered in the proposed model, which include the
coupling coefficient, dispersion parameter, and saturable nonlinearity on the phenomenon of MI for different

PT -symmetric regimes ranging from the unbroken one to the broken one in greater detail.
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I. INTRODUCTION

Bender and Boettcher introduced the concept of parity
(P) and time (7) symmetry to prove the conjecture which
was put forward by Bessis in field theory (see [1-3] and
references therein), which then stimulated unprecedented in-
terest across a wide range of fields in physics, including
optics [4-9], photonics [10,11], and condensed-matter physics
[12]. In quantum mechanics, the concept was introduced
to demonstrate that a non-Hermitian Hamiltonian can admit
eigenvalues of real energy spectra when the operators P and
T are applied simultaneously. It was later demonstrated that
the realization of the P77 symmetry can be achieved in optics
by the practical inclusion of a complex refractive index with
equal gain or loss profile in optical systems [4]. As is well
known, the distribution of a complex refractive index in an
optical system is defined by n(x) = ng(x) + in;(x), meaning
that the index profile will be P7T symmetric if the real and
imaginary components of the index profile are equal to an
even function ng(x) = ng(—x) and an odd function n;(x) =
—ny(—x), respectively [4,5,7]. This concept has been ex-
perimentally observed in several physical settings, including
coupled waveguides and synthetic photonic lattices [7,10]. In
non-Hermitian P7 symmetry, there exists a distinct phase-
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transition point at which the eigenvalue shifts from real to
imaginary in its energy levels. [7]. In the presence of a cer-
tain P77 -symmetric threshold level, in particular, below the
phase-transition point, the system becomes stable, referred to
as the unbroken-P7 -symmetric regime, and above the P7T -
threshold level, the system exhibits an exponential growth in
its energy, thereby leading the former to an unstable state and
eventually leading to spontaneous symmetry breaking. This
unstable region is then known as the broken-P7 -symmetric
regime [13]. The phase transition of P77 symmetry is the key
phenomenon underpinning the existence of different kinds of
unusual dynamics, including nonreciprocity [6] and double
refraction [5]. These advances in P77 symmetry would enable
the design of novel artificial optical systems that include pe-
riodic optical systems involving optical gain and loss profile
periodic lattices, coupled structures, and passive experimental
arrangements [14-16].

The propagation of light in periodic structures, particularly
in fiber Bragg gratings (FBGs), offers a number of highly
versatile platforms for achieving a wide range of lightwave
telecommunication applications. These include wavelength-
stabilized pump lasers, dispersion compensators, narrowband
filters, and add-drop multiplexers [17,18], to name a few. In
the conventional FBG, the refractive index of the fiber is
systematically altered by an intracore Bragg grating, while the
FBG operates in the ultraviolet region [18,19]. To date, two
distinct theories have been proposed to explain the propaga-
tion of light in FBGs: standard coupled-mode theory, which
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explains the propagation of forward and backward waves in
a variety of distributed feedback structures [20], and the less-
known Bloch-wave theory, which describes electron motion in
semiconductors [21]. The photonic band gap, as in the linear
domain, refers to the amount of chromatic dispersion present
in the FBG, also known as the stop band since the light trans-
mission over a range of frequency is restricted by the band-gap
region [21-23]. There are many exciting phenomena that re-
sult from the combination of linear dispersion resulting from
the band gap and nonlinearity introduced by the waveguide
material, including Bragg solitons [24], gap solitons [25,26],
optical switching [27], pulse compression [28], optical bi-
and multistability [29], and modulational instability [30]. Re-
cently, the notion of P7 symmetry was realized in FBGs
in order to demonstrate the dynamic behavior of localized
structures [31]. The formation and stable dynamics of solitons
in PT -symmetric FBGs for different kinds of linear effects
and corresponding spectra have been extensively studied [15].
Also, exactly solvable Dirac Hamiltonians are constructed by
employing the confluent Crum-Darboux transformation in the
PT-symmetric Bragg gratings [32]. Moreover, the concept
of PT symmetry provides a stable platform for the develop-
ment of various intriguing features, including unidirectional
wave transport at exceptional points [33], coherent complete
absorption in coupled resonators [34], and nonreciprocal dy-
namics [6]. The role of P77 symmetry has also been realized
in linear FBG settings as a result of periodic modulation of
the index and gain profiles which lead to a number of exotic
dynamics such as asymmetrical mode coupling manifesting in
unique reflection and transmission spectra. In particular, there
is a single reflection peak if the light is launched from the
left end, while it becomes transparent on the rear end, which
means that it does not reflect at all [35,36].

Modulation instability (MI) is a phenomenon that precedes
the formation of localized modes in almost all nonlinear
media, including FBGs. It is well known that MI leads to
an exponential growth of the continuous wave (cw) as a
consequence of a small perturbation imposed on it and even-
tually it breaks up into a train of localized ultrashort pulses
[37,39]. This phenomenon originated in fluid dynamics as
Benjamin-Feir instability [40] and then spread to a variety
of other fields, including optics [37,38], solid-state physics
[41], plasma physics [42], and electrical lines [41]. As a re-
sult of MI dynamics, prominent light-matter interactions are
stimulated, which include phenomena such as Fermi-Pasta-
Ulam-Tsingou recurrence in optics [43] and the formation of
Akhmediev breathers and Peregrine solitons [44], which can
further be witnessed through the nonlinear stage of MI in opti-
cal fibers [45,46]. The implementation of MI could be utilized
to achieve several potential applications, including the gener-
ation of ultrashort pulse trains at terahertz frequencies with
high repetition rates [47], the generation of supercontinuum
[48], and the development of optical frequency combs [49,50].
These intriguing characteristics of the MI phenomenon in
fiber optics have been investigated both theoretically and an-
alytically in a wide range of nonlinear media and have also
been extended to emerging areas such as negative index mate-
rials and P77 -symmetric media [51].

It is important to note that the studies on MI have been
quite extensively investigated in conventional FBGs, such as

Kerr and non-Kerr nonlinear media, and apodized grating
structures in which the cw states are then converted into
a train of ultrashort pulses [30,52,53]. As with other non-
linear media, saturable nonlinear media play a prominent
role not only in the formation of stable solitons but also in
the MI dynamics, where the nonlinear saturable parameter
has a substantial impact on the MI gain spectrum and its
bandwidth. By and large, the refractive index of a saturable
nonlinear medium increases with the intensity /, whereas it
becomes saturated when the system is exposed to a suffi-
ciently high level of input intensity [54,55]. In a Kerr-like
medium, this saturable nonlinearity is typically character-
ized by its nonlinear refractive index [ny (/)] profile, such
as ny(I) = neo[l — 1/(1 +1/I4)] (where Iy and ny indi-
cate the saturation intensity and the maximum change in the
refractive index, respectively). A considerable amount of at-
tention has been paid to this type of nonlinearity [56,57]. In
particular, the saturable nonlinearity plays a very important
role in preventing the catastrophic collapse of the nonlinear
Schrodinger equation in higher dimensions [57]. Also, such a
saturable nonlinear medium supports the existence of stable
localized solitons in various physical settings, such as two-
level atomic systems [54] and photorefractive materials like
photovoltaic LiNbO5 [58]. Along these lines, the impact of
saturable nonlinearity has been thoroughly analyzed in the
ubiquitous process of MI in the framework of nonlinear optics,
in particular, semiconductor-doped glass fibers and optical
fibers [55,59,60]. In the context of FBGs, the saturable nonlin-
earity has also been used to study the existence and stability of
various types of solitons. The physical mechanism to realize
such a model in the spatial region has also been put forward
by using a planar waveguide composed of photorefractive
material with a longitudinal diffraction lattice written in its
cladding [61]. Although there exists a great deal of research
on the conventional FBGs, barring a single work [62], there
seems to be no work dealing with the study of MI in the
PT-symmetric FBG in the literature. In addition, there is no
study emphasizing the impact of saturable nonlinearity on
the MI dynamics in both conventional and P7T-symmetric
media. With these considerations in mind, in this paper we
carry out an extensive study elucidating the importance of
saturable parameters in both conventional and P77 -symmetric
settings.

Following the detailed explanation of the proposed model
in Sec. II, the analytical procedure of the linear stability anal-
ysis which is employed for the investigation of MI is provided
in Sec. III. In Sec. IV we then examine the dynamics of the
MI gain spectrum near the edges of the photonic band-gap
and normal and anomalous dispersion regimes. Each of these
cases is analyzed for the effect of various physical parameters,
including gain or loss and saturable nonlinearity under differ-
ent P77 -symmetric regimes. We conclude our findings with a
detailed summary in Sec. V.

II. MODEL

We consider P T -symmetric fiber Bragg gratings with a pe-
riod A imprinted on the core of the fiber of refractive index ng
and length z. Mathematically, the distribution of the refractive
index [n(z)] profile for a P77 FBG with saturable nonlinear
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media can be described as follows [63]:

_ 217 . . (2mz
n(z) = ng + nyg cos (T) ~+ iny; sin (T)
—m/ (IEP). (1)

Here n; represents the strength of the modulation parameter
and its real and imaginary parts are indicated through terms
nig and ny;, respectively, which are responsible for the P77 -
symmetric potential. The term n, represents the nonlinear
refractive index pertaining to the saturable nonlinearity of
the Bragg structure. The function £(JE|?) can be expressed
as 1/(1+ |E|?), where E stands for the optical field [61].
By taking the square of the above nonlinear refractive index
profile (1) and neglecting the higher-order terms in n; and n,,
one can obtain the reduced form

2 2
nz(z) = ng + 2ngn g cos (TZ) + 2inigny; sin <Tz>

—2nomf (|E|?). 2

The dynamics of the system under study can be modeled by
the time-dependent Helmholtz equation for the optical field £
as

2E  0°E n*(z)
—— b —— 4k E=0, 3
02 " T ng ©)

where k represents the wave vector. We seek an optical field
E(z,t) that consists of forward and backward components
propagating inside the FBG as

E(z,t) =W (z, t)explitkz — wot)]
+ Wa(z, 1) exp[—i(kz — wot)], “4)

where the terms W;(z, t) and W,(z, t) indicate slowly varying
amplitudes of the forward and backward electric fields, re-
spectively and w, indicates the frequency of the incident light.
Substituting Eq. (4) into Eq. (3) and applying the synchronous
approximation, one can obtain the normalized coupled-mode
equations with the saturable nonlinearity and equal amounts
of gain and loss as [26,61]

o 10w
1(8—' N -—‘) bt W — £ (W)W =0, (5a)

z v ot

A 1 oW
_,-(_2 _ -—2> = QW £ (W 3))W, = 0, (5b)

a4z v ot

where the group velocity of light is given by v, = ¢/n. Here ¢
indicates the speed of light and the nonlinear term 4 (|\IJ1,2|2)
can be expressed as I'/(1 + |¥;|> 4 |W,|?), in which T =
2mny /Ao refers to the strength of the saturation parameter,
with Ao the wavelength in free space. For a detailed deriva-
tion of the theoretical model, one may refer to Refs. [26,61].
Following the general settings, the total intensity of light can
be calculated using the expression / = Zi:l [ |2.In Eq. (5),
k =mnig/Ao and g = mny /Ao are the linear coupling coef-
ficient and gain and loss profile of the fiber Bragg grating
system, respectively. Based on the parameters g and «, three
distinct P7T -symmetric conditions can be formulated. For
instance, when g = x, we obtain a unique exceptional point
(also known as the P7T-symmetric threshold level), while

g < k leads to the broken-P7 -symmetric regime. Similarly,
the condition g > « is known as the unbroken-P7 -symmetric
regime as the system tends to show stable dynamics in this
case [64]. Note that these classifications are utilized to de-
scribe the characteristic behavior of MI in four different
domains, including the conventional case (g = 0) and below,
at, and above the P7T -symmetric regimes for Eq. (5), in the
present study.

Prior to performing a linear stability analysis of the pro-
posed system (5), we wish to study the dispersion relations for
both the conventional and P7 -symmetric cases. To this end,
we consider the following counterpropagating cw solutions:

W) = aexpli(gz — dvr)], (6a)
W, = Bexpli(qgz — dvt)]. (6b)

Here the parameters « and g indicate the forward and back-
ward wave amplitudes that are assumed to be real constants,
and the total power of the grating structure is defined as o> +
B% = P, which can also be calculated from |¥,|> 4 |W,|%.
We now introduce a term that represents a ratio between
the two constants as f = B/a, where a = \/P/(1 + f2) and

P f2/(1 + f2). Substituting Egs. (6) into the system
(5), one can obtain a mathematical expression for nonlinear
dispersion relations as given by

2
s_ T _1((K+g)f+('c—g)>’ -
a+pP 2 f

k+9ff—k+g

q= 2F .

Before studying the nonlinear dispersion relation, it is always

instructive to first look into the characteristics of the linear

dispersion relation, which can be obtained in the following

way by turning off the saturable nonlinear parameter (I' = 0)
in Eq. (5), so that from Eq. (7), we have

(7b)

(k9P —g)

3_—§< - ) (8a)
2 _

q:(K+g)f kK+g (8b)

2f
By using Eqgs. (8a) and (8b), the exact linear dispersion rela-
tion 6(g) can be found as

¢ =8 —k*+ ¢ 9)

Similarly, the exact nonlinear dispersion relation can be de-
duced as

2 r ? 2
q =<a——> — K>+ & (10)

Figure 1 reveals the photonic band-gap structure as a result
of the linear dispersion relation of the Bragg grating. As
there exists a photonic band gap formed within a range of
frequencies (which is also called forbidden frequencies), the
propagation of light is restricted inside it, viz., between the
upper and lower branches, and most of the light is reflected.
Outside this region, light is allowed to traverse. Note that in
a uniform medium without the presence of Bragg gratings,
light propagates at its own speed. However, the inclusion of
the Bragg grating exhibits a slowly decreasing dispersion at
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FIG. 1. Dispersion curve plotted between § and ¢ for the linear
grating structure. Here f = F1 refers to the top and bottom of the
photonic band-gap structure with the system parameters « = 1 and
g=0.

frequencies near the edges of the photonic band gap, where
light experiences a slow propagation when compared to the
uniform medium.

The parameter f is closely related to the group veloc-
ity in such a way that v, =dd/dg = [xk(1 — ) —g(l+
O (1 4+ £2) — g(1 — £2)]. In particular, for f = %1, the
edges of the upper and lower branches of the dispersion curve
are very close together and f = —1 and f = 1 are specified

as the top and bottom of the photonic band gap, respectively.
Also, when f < 0 it corresponds to the upper dispersion curve
and the group velocity dispersion becomes negative, indi-
cating the anomalous dispersion regime. On the other hand,
f > 0 refers to the normal dispersion regime by the lower
branch dispersion curve.

Based on Eq. (10), we present the characteristics of the
nonlinear dispersion in Fig. 2 for the Bragg gratings under
three different P77 -symmetric conditions with P = 10 and
k =TI'=1. When g =0, which refers to the conventional
case, there is a typical propagation of forward and back-
ward wave vectors, as shown in Fig. 2(a), with a broad band
gap in which the formation of gap solitons would exist in
the considered grating system. Upon increasing the value of
g further (g = 3), i.e., below the P7T -symmetric threshold,
one can observe that the size of the band gap has reduced
considerably compared to the previous conventional case, as
seen in Fig. 2(b). In contrast to the prior cases, no dispersion
curve and band gap exist at the exceptional point (the P7T
threshold, g = 5), as seen in Fig. 2(c). Also, in this case, it
is apparent that no localized structure, including gap soli-
tons, can be observed. The role of the dispersion curve in
the broken-P7 -symmetric regime is addressed in Fig. 2(d),
where it can be clearly seen that the characteristics of the
dispersion relation are similar to those of the regions such as
conventional and below the P7T -symmetric threshold, except
that the dynamics of the forward and backward wave vectors
have been shifted clockwise by 90°. It is worth noting that
the results corresponding to the nonlinear dispersion relations

6
6 (a) 6f(b) ()
af 4 4
2} 2 2
o of ) 16 o
-2 -2
—2
—4 —4
—6 . -6k ~y T4
—4 -2 0 2 4 —4 -2 0 2 4 —4 -2 0 2 4
q q
61\ (@
4
2
0
-2
—4
N A
-10 -5 0 5 10
q

FIG. 2. Characteristics of the nonlinear dispersion relation drawn between § and ¢ for (a) the conventional case g = 0, (b) below the
PT -symmetric threshold g = 3, (c) at the P77 symmetry g = 5, and (d) above the P77 -symmetric threshold g = 10. The rest of the parameters
are P=10andk =T =5.
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can be utilized to find Bragg and gap solitons in the nonlinear
P T -symmetric fiber Bragg gratings. Generally, the formation
of a loop structure on either the upper or lower branches of
a nonlinear dispersion curve is noticed in various types of
periodic structures [52,53,65,66]. Nevertheless, the saturable
PT-symmetric FBG system under study never allows the
formation of such a loop structure on the nonlinear disper-
sion curve due to the unique form of saturable nonlinearity
considered here. In particular, the level of the nonlinearities
(self-phase and cross-phase modulations) has been assigned
with a ratio of 1:1 in the present system (5) as opposed to the
1:2 ratio, which is generally adopted in the Kerr-like Bragg
grating structures [52,53,65,66]. As a result, this new ratio
has changed the nonlinear dispersion relation in a way that the
nonlinearity parameter I" is present in Eq. (10) alone instead
of appearing in both the dispersion relations, which in turn is
one of the reasons for not supporting the formation of the loop
in the dispersion curves.

For the investigation of the characteristic behavior of MI
for the proposed system (5), we employ the standard method,
namely, the linear stability analysis, in the next section.

ITI. LINEAR STABILITY ANALYSIS

In the linear stability analysis, infinitesimal perturbations
are imposed on the cw state that result in the exponential
growth of its amplitude. Based on the general procedure, let
us consider the cw solutions (6) with small perturbations as
follows:

W = [a +a;(z,t)] expli(gz — Svr)],
WU, = [B + ax(z, t)] expli(gz — Svt)].

The functions |a;»| (K, B) are the perturbations imposed
on the steady-state solution. Substituting Eq. (11) into Eq. (5)
and linearizing with respect to the perturbations a; », one can
obtain the equations

(11a)
(11b)

i
iay ; + ;al,, +ea+ ear +e(ai+fa5) =0, (12a)

i
—iay; + ;az,z + €3ar + €40 + e(fa*lll—fza;) =0, (12b)

where

rp
€:(1+—fz)’ €eg=€—flk+g, e=k-+g+fe,
es=g;K+f26, €= fe+ (k- g). (13)

Next we consider the Fourier components of the perturbed cw

amplitudes a; 2(z, t) as
i(Ka=Qo) | p,e_i(KZ_QT) (14a)

(14b)

ai(z, 1) = pie
Wz, 1) = gy @K 4 g o itKe=an)

Here p. and g represent the forward propagation, whereas
p— and g_ represent the backward propagation. Also, K and €2
indicate the wave number and frequency of the perturbation,
respectively. In what follows, on the basis of the terminology
adopted in the study of light scattering in quantum mechanics
[67], we will refer to the region in which the wave number
takes negative values (K < 0) as the Stokes wave-number

region and the other region in which the wave number is
positive (K > 0) is known as the anti-Stoke wave-number
region [68]. Substituting the above solutions (14a) and (14b)
into the governing equations (5) and linearizing the resultant
equations with the perturbed amplitudes p; and p_ and g
and g_, one obtains four homogeneous equations in the matrix

form
YIix " =0, u" =i qep-rq-), (15)

where Y is a 4 x 4 matrix with the elements

yiu=—flk+g—-K+e+Q, yn=c¢,
yizs=k+g+fe.yu=fe, yu=¢,
y22:—f(K+g)+K+E_Qs y23=f67

Yu =g+ K+ fe,

yi = (@—K)/f+K+fe—+Q, yy=«—g+fe,
yi=fe, yu=fe yu=fe, yu=fl€,
yo=Kk—g+fe, yu=@€—K)/f—K+fe—Q. (16)

It is important to note that the Y matrix has nontrivial solutions
when its determinant vanishes, which in turn leads to the
quartic polynomial equation in €2,

Q' +aP +bQ+c=0, (17)
where
K2drg@® +2e1gk + k2 + A% +21%e3
= — 7 ,
2Ke g + ejk? 4+ 2g(—2f3 4+« + f4«)
b - — f2 ’
dig +2ei1gk — 2f3ei + K+ fHi? — fle
= — f2 y
dio= 1+ 2P, e =(=1+f",

er = [K*+2c(3fe + k)], e3=(K*+«?). (18)

This quartic polynomial equation has four branches of the
solution when Q(K) satisfies the relations

Q= i%[\/sgnmnm + sl (19)
where

T
V] = —4a + Tl =+ 2(2/3)T2,
2

T 12 x v/6b
b= ga— ey, 4 1200
T, VT

T =2 %27 +120),
Y, = 2d® + 27b* — T2ac + )M,
n= \/—4(a2 + 12c)3 + (2a3 4+ 272 — 72ac)2, (20)

Note that one can find the conditions for which the four
branches of the above relation given in Eq. (19) become
imaginary, which include (i) sgn(v;) < 0 and sgn(v,) < 0,
(i1) sgn(vy) > 0 and sgn(v;) < 0, and (iii) sgn(v;) < 0 and
sgn(vy) > 0. Hence the growth rate of the MI gain spectrum
G(K) can be calculated using the relation G(K) = Im(2p,x),

053510-5



K. TAMILSELVAN et al.

PHYSICAL REVIEW A 107, 053510 (2023)

20 4o 0 9 20 0 20 40
K g
FIG. 3. (a) MI gain spectra with the variation in g at the bottom of the photonic band gap f = 1, (b) its corresponding contour view, and

(c) peak gain of the peculiar MI spectrum as a function of the gain or loss parameter for different values of the wave number. The other

parameters are k =5, P = 1,and ' = 5.

where Qnax represents the largest imaginary part of the four
branches. The purpose of this study is to examine the dynam-
ics of cw instability in the two different dispersion regimes,
namely, the anomalous dispersion regime (f < 0) and the
normal dispersion regime (f > 0). As a first step, we examine
the MI gain spectrum emerging at the bottom and top of the
photonic band gaps. We will also analyze how the various sys-
tem parameters, such as gain or loss, the saturable nonlinear
coefficient, and power, influence the MI spectrum in each of
the PT -symmetric domains.

IV. INVESTIGATION Of MODULATIONAL INSTABILITY

A. Bottom of the photonic band gap

We investigate here the MI gain spectrum as a function of
the gain and loss parameter g at the bottom of the photonic
band gap (f = 1). When the value of the linear coupling
coefficient is fixed at k = 5, the resultant MI gain spectrum is
illustrated for the continuous variation of g invoking all three
PT-symmetric regimes in addition to the conventional case.
The results are shown in Figs. 3(a) and 3(b), where one can
observe a peculiar spectrum for a certain range of g (0 < g <
4.9) on only one side (left) of the zero value of perturbation
wave number, while on the other side the system does not ex-
perience any instability at all by exhibiting no sideband there
even after the addition of the perturbation with a wide range
of input wavelengths. It is pertinent to note that the spectrum
obtained in the unbroken-P7T -symmetric regime is unique in
two aspects when compared to the standard spectrum obtained
in conventional systems. First, although the growth rate of cw
instability tends to rise gradually with an increase in the value
of wave number, the exponential growth is predominantly
noticed as a function of the gain or loss parameter, which
is clearly seen in Fig. 3(c). Second, the shape of the MI
spectrum is different as the exponential growth is observed
with the increase in the value of the gain or loss parameter
with a peak gain in the middle of these values in contrast to
the perturbation wave number. We would like to emphasize
that the finding of such a spectrum has not been reported in
any conventional and P7T -symmetric FBGs. With a further
increase in g leading to the broken-P7 -symmetric regime,
it is quite interesting to observe the conventional MI gain
spectrum (as obtained in the standard nonlinear Schrédinger
equation in the anomalous dispersion regime) appearing on
either side of the perturbation wave number K for a certain
(minimum) range of gain or loss parameter g (5.8 < g < 7).

Nevertheless, subsequently, it turns out to be a case of two
distinct sidebands (asymmetric spectra) that include a huge
gain spectrum with a wide bandwidth that appeared in the
Stokes wave-number region while a split occurs in the MI
spectrum on the other side which eventually leads to two
different additional spectra, including the primary one found
near the zero-perturbation wave number with a lower gain and
bandwidth and a secondary MI band which is far detuned with
a higher gain and bandwidth.

To gain further insight into the characteristic behavior of
the instability spectra obtained at the bottom of the photonic
band gap, we present two additional plots in Fig. 4 that
delineate the MI growth rates as a function of g for two
different values of the saturable nonlinearity, including I' = 6
and 10. From Fig. 4(a) it is clear that the structure of the MI
spectrum changes differently as a result of tuning the param-
eter g from the conventional case to different P7T -symmetric
regimes. As pointed out earlier, here too we notice the peculiar
MI spectrum in the unbroken-P7 -symmetric regime. Upon
reaching the P77 -symmetric threshold condition, there are two
different sidebands that got split up from the conventional
one: the primary MI spectrum located further in the Stokes
wave-number regime and a secondary MI spectrum in the
positive wave-number region having a lower gain compared
to the former. The gain and bandwidth of MI spectra are
dramatically enhanced by one-third as much as in the former
case when we increase the value of g further (g = 15). Fur-
thermore, when we set the value of the nonlinear saturable
parameter at I' = 10 [see Fig. 4(b)], we observe a slightly
modified MI gain spectrum compared to the previous one for
each value of g. For example, the peculiar spectrum appears in
the anti-Stokes wave-number region too for g = 1. Similarly,
the MI band observed in the Stokes wave-number region is

FIG. 4. One-dimensional MI spectra for different values of g for
(T =6and (b) I' = 10. The parametersare k = Sand P = f = 1.
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FIG. 5. (a) MI gain spectra as a function of « at the bottom
of the photonic band gap f = 1 for the conventional case (g = 0).
(b) Maximum gain of a peculiar MI spectrum versus the coupling
coefficient « for distinct wave numbers. Here the parameters are
P=1landI' =1.

also split up into two different bands as noticed in the previous
case, as shown in Fig. 4(a). In addition, the values of gain and
bandwidth are significantly suppressed at each g value relative
to the previous case. These ramifications clearly reveal the fact
that the role of saturable nonlinearity is intense in altering the
MI spectrum in the presence of the gain or loss parameter.

1. Impact of the coupling coefficient k

We now investigate the role of the coupling coefficient « in
the development of the MI gain spectrum at the bottom of the
photonic band gap (f = 1) as shown in Fig. 5(a). Note that
we present here only the conventional case by setting the gain
or loss parameter to zero, since the different P77 -symmetric
conditions exhibit the same MI pattern as witnessed in Fig. 4
when we tune the value of gain or loss parameter. Now ar-
riving at the conventional system, the role of the coupling
parameter results in the peculiar MI spectrum appearing on
either side of the perturbation wave number K in the range
0 < k < 1. By further increasing the value of «, it is apparent
that the cw exhibits complete stable propagation on both sides
of the wave number without exhibiting any instability. Also, in
light of this investigation, it can easily be interpreted that the
cw propagation is unstable whenever the coupling coefficient
k has a nontrivial value (up to unity in the normalized scale)
in the conventional system for the given system parameters.
Also note that the maximum MI gain of the peculiar spec-
trum significantly increases as the wave number K increases,
though the spectrum is obtained as a function of the coupling
coefficient as seen in Fig. 5(b).

2. Impact of power

This section examines how power affects the MI gain spec-
trum at the bottom of the photonic band gap. As can be seen
in Fig. 6(a), in the conventional case (g = 0), a symmetric
pattern of monotonically increasing side gain emerges on
either side of the central perturbation wave number (K = 0),
which appears to become wider with an increase in the value
of P. There is also a significant separation distance between
the monotonically increasing side gains. These symmetric
MI patterns can be turned into asymmetric ones as shown
in Fig. 6(b) by tuning the value of g to g = 3, i.e., below
the PT -symmetric threshold. Also, the increase in the value
of g results in a suppression of the monotonically increasing
side gain located in the Stokes wave-number region, thereby

0

FIG. 6. MI gain spectra as a function of P at the bottom of the
photonic band gap f = 1 for four different cases: (a) conventional,
(b) below, (c) at, and (d) above P7T -symmetric thresholds. The
parameters are k =5, " =5, and f = 1.

leading to a drop in its growth rate from that of the side gain
in the anti-Stokes wave-number region. At the P77 -symmetric
threshold regime [see Fig. 6(c)], monotonically increasing the
side gain in the Stokes wave-number region gets completely
suppressed and the cw exhibits stable dynamics, whereas the
side gain located in the anti-Stokes wave-number region re-
mains the same against the variation in P. Note that in all of
the above situations, the side MI gain increases as the input
power increases. In the case of the broken-P7 -symmetric
regime, the MI spectrum qualitatively changes into an unusual
one featuring two asymmetric MI sidebands on either side of
the zero-perturbation wave number as seen in Fig. 6(d). In
particular, one can observe a huge MI gain spectrum with a
wide bandwidth in the Stokes wave-number region and a set of
two distinct spectra that include the primary MI sideband and
secondary MI band in the anti-Stokes wave-number region.
With a small increase of P, these MI spectra tend to split
on the side of the Stokes wave number and try to merge
together on the other side. A further increment in the value of
P combines all the former spectra into a single huge spectrum
with a monotonically increasing side gain in the anti-Stokes
wave-number region.

3. MI as a function of saturable nonlinearity

In this section we analyze the impact of the nonlinear
parameter I" on the development of the MI gain spectrum at
the bottom of the photonic band gap, as presented in Fig. 7
with constant values of P and « for four different cases of
the P7T -symmetric system. For the conventional case, the
instability spectrum as a function of I" can be seen in Fig. 7(a).
Here the monotonically increasing side gains are visible on
either side of the zero wave number, where the peak gain rises
with an increase in the I parameter. On the other hand, in the
unbroken P77 -symmetric regime, as shown in Fig. 7(b), there
exist the asymmetric MI spectra, while in the P7T -symmetric
threshold regime a single monotonically increasing side gain
arises in the anti-Stokes wave-number region [Fig. 7(c)]. Note
that in both cases too, the growth rate tends to increase as the
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FIG. 7. Development of instability gain spectra with the variation
of the nonlinear parameter I" at the top of the photonic band gap
f =1 for four different cases: (a) conventional, (b) below, (c) at,
and (d) above PT -symmetric thresholds. The parameters are k = 5,
P=1,and f = 1.

nonlinear saturable parameter is increased. On the other hand,
the broken-P7T -symmetric regime [see Fig. 7(d)] reveals two
distinct MI gain spectra on either side of the zero wave number
(K = 0), in which the gain and bandwidth increase as I" is
decreased, in contrast to the previous cases. Here, interest-
ingly, when the saturation parameter is increased to ' = 12
(red dash-dotted sideband), the dramatic dynamics of MI is
observed where the spectra become completely shifted from
the Stokes to the anti-Stokes wave-number region and vice
versa.

B. Instability at the top of the photonic band gap

In this section we explore the dynamics of instability at
the top of the photonic band gap (f = —1), where the gain
or loss parameter g is assumed to vary continuously while
the other parameters such as power, k, and I are kept con-
stant. The instability spectrum for the top of the photonic
gap is shown in Fig. 8(a) and its corresponding contour di-
agram is plotted in Fig. 8(b). Here the MI gain spectrum
primarily overlaps with the conventional MI gain spectrum
(as obtained in the standard nonlinear Schrodinger equa-
tion in the anomalous dispersion regime) appearing on either
side of the zero-perturbation wave number (K = 0) in the
unbroken-P7 -symmetric regime and it continues to exhibit
similar features near the P77 -symmetric threshold region (i.e.,
0 < g < 4.8). Note that in this case the MI peak gain and
bandwidth increase moderately with an increase in the value
of g on both sides of the anti-Stokes and Stokes wave number
until it reaches the P7 -symmetric threshold. As the value
of g increases further, which translates the system into the
broken-P7 -symmetric regime, there is an emergence of a
huge MI gain spectrum with a wide bandwidth in the Stokes
wave-number region, while a narrow sideband emerges in the
anti-Stokes wave-number region. Specifically, the MI spec-
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FIG. 8. (a) MI gain spectra as a function of g at the top of the
photonic band gap f = —1. (b) Corresponding contour plot. The
maximum gains of the MI spectra obtained in the (c) Stokes and
(d) anti-Stokes wave-number regions are illustrated for the variation
in g. (e) Peculiar MI spectrum versus the gain or loss parameter g
for different wave numbers. The parameters are k = 5, P = 1, and
r=3.

trum found in the Stokes wave-number region has a gain that
is three times greater than the other spectrum observed in
the anti-Stokes wave-number region. Another notable rami-
fication is the formation of a peculiar MI gain spectrum in
the Stokes wave-number region which is perpendicular to the
huge primary MI spectrum. There is an increase in the value
of MI gain and the bandwidth of the former as the value of K
increases in the negative direction. For further understanding,
we separately present the growth rate of the MI gain spectrum
obtained in the Stokes and anti-Stokes wave-number regions
in Figs. 8(c) and 8(d), respectively, where we observe that
peak gain significantly increases when the gain or loss pa-
rameter varies from the unbroken-P7 -symmetric regime to
the broken-P7T -symmetric regime. Following that, we present
the maximum gain of the peculiar MI spectrum obtained in
the Stokes wave-number region for different values of the
wave number K in Fig. 8(e). In this case, needless to say, the
maximum MI gain of the peculiar spectrum is significantly
increased with increasing wave number K besides an increase
ing.

1. Role of the coupling coefficient k

We next study the MI dynamics as a function of the
coupling coefficient « at the top of the photonic band gap
(f = —1), where all other parameters such as the gain or loss
parameter g, the power P, and nonlinearity coefficient I" are
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FIG. 9. (a) Role of the coupling coefficient in the MI gain spectra
at the top of the photonic band gap f = —1 for the conventional case.
(b) Corresponding one-dimensional plot. (¢) Maximum gain of the
MI spectra versus « in the Stokes wave-number region. The other
parameters are P = land I"' = 1.

kept constant with the values P = I" = 1. The conventional
case is only shown here by setting g = 0; see Fig. 9, where
one can clearly notice that the system is stable until the value
of « attains unity. Upon increasing the value of «, a typical MI
gain spectrum appears on either side of the zero-perturbation
wave number (K = 0), where the gain and bandwidth of the
spectrum are enhanced by increasing the value of « further,
which is then corroborated in Fig. 9(c).

2. Role of power

To analyze the role of power at the top of the photonic band
gap, we keep the values of k and " as k = 5 and I = 3 with
a variation in the value of g that corresponds to different P7 -
symmetric regimes. Figure 10(a) shows the conventional case,
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FIG. 10. Impact of the power on the instability spectra in the top
of the photonic band gap for (a) conventional, (b) below, (c) at, and
(d) above PT -symmetric thresholds. The parameters are k = 5, =
2,and f = —1.
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FIG. 11. Role of the nonlinear I" parameter on the MI gain spec-
tra in the top photonic band gap for (a) conventional, (b) below,
(c) at, and (d) above the PT -symmetric threshold. The parameters
arek =5,P=5,and f = —1.

where the MI gain spectrum evolves primarily as a typical MI
gain spectrum on the two sides of the wave number. However,
after a particular value of power (P > 2.7), the MI sidebands
begin to break into primary and secondary MI bands in both
the Stokes and anti-Stokes wave-number regions. In both
spectra, the gain and bandwidth of the secondary sideband
are approximately twice that of the primary sidebands and
the dynamics persist even after a further increase in P. It is
worth mentioning that the structure of these MI spectra seems
to have a shape of v. In the unbroken-P7 -symmetric regime
[see Fig. 10(b)], the previous v-shaped spectrum transforms
into a complete single spectrum (without revealing any dis-
creteness in the spectrum) in the Stokes wave-number region,
while its counterpart remains unchanged, as seen in Fig. 10(a).
The impact of the power in the P7T -symmetric threshold re-
gion is depicted in Fig. 10(c). In this case, the MI spectrum
in the Stokes wave-number region gets enhanced moderately
in both its gain and width. On the other hand, the spectrum
observed in the anti-Stokes wave-number region is drastically
suppressed, revealing a very thin bandwidth. In the broken-
PT -symmetric regime [see Fig. 10(d)], when the value of
P is low, there exists an emergence of the typical spectrum
after which one can observe the emergence of an additional
peculiar MI gain spectrum in the Stokes wave-number region
with an increase in the value of P (P > 3.5). On the other
hand, the sideband on the anti-Stokes wave-number region
almost disappears compared to the previous case. Note that
in all of the above four cases, a common increase in the gain
and bandwidth of the MI spectra is clearly visible as the value
of P increases.

3. Impact of the nonlinear parameter T

We now examine the impact of the nonlinear parameter I"
at the top of the photonic band gap in different regimes of
PT symmetry. These results are shown in Fig. 11, with fixed
values of the system parameters P and «. In the conventional
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case, the spectrum primarily exhibits a typical MI gain spec-
trum for the low value of the nonlinear parameter (I' = 1), as
shown in Fig. 11(a). However, as I" increases, the secondary
MI spectrum starts to emerge followed by the former primary
MI gain on either side of the zero wave number. In addition,
as the value of I' increases, the spectrum gets enhanced and
the separation distance between the primary and secondary
MI bands also increases by shifting towards the higher wave
number. We then analyze the MI dynamics in the unbroken-
PT -symmetric regime, which is illustrated in Fig. 11(b). Here
it is obvious that the system exhibits asymmetric MI gain
spectra on both sides of the wave number, including a huge
primary MI spectrum in the Stokes wave-number region while
its counterparts remain almost unchanged except for I' = 1 as
in Fig. 11(a). Further, it can be seen in Fig. 11(c) that the MI
gain spectrum retains the same dynamics even when moving
to the P77 -symmetric threshold regime. Nevertheless, for each
nonlinear saturation parameter value, the peak gain of the
sidebands in the Stokes wave-number region increases mod-
erately compared to the previous cases shown in Figs. 11(a)
and 11(b); however, the gain in the sidebands on the other side
falls as the value of T increases. In the broken-P7T -symmetric
regime, the sidebands become a monotonically increasing
gain in the Stokes wave-number region, while the other side
displays the stable dynamics of the cw state except for I' = 1,
as shown Fig. 11(d).

C. Modulational instability in the anomalous dispersion regime

Another significant part of this study is to investigate the
dynamics of MI in the anomalous dispersion regime of the
proposed system (5). As studied in the previous sections, we
also investigate here the emergence of the MI gain spectrum in
three PT -symmetric regimes, besides the conventional case.
Also, we investigate the MI gain spectrum for four differ-
ent dispersion parameter values in the anomalous dispersion
regime. Compared to the earlier results presented in the paper,
all of these cases give rise to various unique MI gain spec-
tra. For instance, in the unbroken-P7 -symmetric regime, two
different MI sidebands can be observed when the value of f
is fixed at f = —0.1 [see Fig. 12(a)]. Note that the MI side-
band located in the anti-Stokes wave-number region side is
slightly larger in gain and wider in bandwidth compared to the
spectrum that appeared on the other side. It is also observed
that an additional secondary MI spectrum emerges closer to
the MI sideband in the Stokes wave-number region. When
we increase the value of the gain or loss parameter further, in
particular, towards the P7 -symmetric threshold, all these MI
spectra tend to merge in the Stokes wave-number region and
disappear in the anti-Stokes wave-number region due to the
presence of singularity. In the broken-P7 -symmetric thresh-
old regime, one can notice the magnified mirror image of
the MI gain spectrum found in the unbroken-P7T -symmetric
regime. However, the gain and bandwidth of the MI spectrum
are significantly enhanced in this case compared to the unbro-
ken regime.

Figure 12(b) shows the MI gain spectrum as a function
of g by fixing the dispersion parameter as f = —0.5. In this
case, the patterns of these MI sidebands seem to be more
complicated than the previous one with some irregularities

50 0

K

FIG. 12. Instability gain spectra in the anomalous dispersion
regime as a function of g for different dispersion values: (a) f =
—0.1,(b) f = —0.3,(c) f = —3, and (d) f = —5. The other param-
etersare P =10,k =5,and "' = 3.

in all the P7T -symmetric regimes. To elucidate the dynamics
further, it is apparent that most of the MI dynamics resemble
the previous spectra except for the emergence of an additional
peculiar MI spectrum parallel to the primary MI spectrum
formed in the Stokes wave-number region. This spectrum
continues to extend as the wave number increases. By further
decreasing the value of the dispersion parameter to f = —3, it
becomes evident that the dynamics of the MI gain spectrum,
portrayed in Fig. 12(c), is significantly simpler than in the
previously studied cases [cf. Figs. 12(a) and 12(b)]. There
are two distinct MI sidebands, where the gain of the MI
sideband in the Stokes wave-number region is higher than the
spectrum in the anti-Stokes wave-number region. Addition-
ally, a secondary MI band can be observed in the anti-Stokes
wave-number region with a higher MI gain than the primary
MI spectrum. Upon increasing the value of g further, the MI
sideband in the Stokes wave-number region transforms into
a pronounced monotonically increasing gain. The structure
of the MI spectrum remains the same when the dispersion
parameter is further decreased to f = —5, as illustrated in
Fig. 12(d). However, the gain of the primary and secondary
MI bands is significantly enhanced from the spectra obtained
when f = —3.

1. Influence of k on the MI gain spectrum

Figure 13 shows the impact of the coupling coefficient
k on the formation of MI gain spectrum in the anomalous
dispersion regime for f = —0.1 in the conventional case
alone. For this purpose, we continuously change the coupling
coefficient ¥ while maintaining constant values for the gain
or loss parameter, power, and saturable nonlinear parameter.
As in the previous case, shown in Fig. 9(a), here too, a typical
MI gain spectrum is observed which further extends on either
side of the zero-perturbation wave number as the coupling
coefficient varies. When « is increased, the MI gain and
bandwidth of the spectrum are significantly increased in the
anti-Stokes and Stokes wave-number regions, which is further
corroborated in Fig. 9(b).
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FIG. 13. (a) MI gain spectra as a function of « for the anomalous
dispersion regime. (b) Maximum gain of the peculiar spectra versus «
in the Stokes wave-number region. The parameters are g = 0, "' = 1,
P =10,and f = —0.1.

2. Influence of input power P

The role of input power in the anomalous dispersion regime
has also been analyzed in greater detail for all the P7T-
symmetric threshold regimes as well as the conventional case.
Figure 14(a) delineates the MI gain spectrum for the con-
ventional case as a function of power. Here the typical MI
gain spectrum is observed around the zero-perturbation wave
number and the values of gain and bandwidth become more
pronounced by further increasing the value of P. In particular,
one can witness a small range of irregularities due to the
singularity arising in the Stokes wave-number region. The
same MI structure remains almost unchanged qualitatively
when the system is operated in the unbroken-P7 -symmetric
regime [see Fig. 14(b)]. However, the gain and bandwidth
of the MI spectrum are somewhat reduced and the range of
irregularities that appear in the Stokes wave-number region
is extended. The scenario has been changed when switch-
ing to the P7 -symmetric threshold regime, where one can
observe the manifestation of asymmetric MI gain spectra
that include the typical MI spectrum in the Stokes wave-
number region and a very narrow sideband in the anti-Stokes
wave-number region, as shown in Fig. 14(c). In this case
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FIG. 14. MI gain spectra in the anomalous dispersion regime as
a function of P for (a) conventional, (b) below, (c) at, and (d) above
PT-symmetric thresholds. The parameters are k =5, I' = 3, and
f=-0.1.

FIG. 15. MI gain spectra as a function of I" in the anomalous dis-
persion regime for (a) conventional, (b) below, (c) at, and (d) above
‘PT -symmetric thresholds for f = —0.1 andx = P = 5.

too the MI gain increases with the increase in the value
of P. In the broken-P7 -symmetric regime [see Fig. 14(d)]
there exist two asymmetric MI spectra, which include a
wider MI spectrum in the anti-Stokes wave-number region
and two different MI sidebands in the Stokes wave-number
side.

3. Impact of the nonlinear saturation parameter T

We now investigate the influence of the nonlinear satura-
tion parameter on the instability spectrum in the anomalous
dispersion regime under three different 7 -symmetric con-
ditions with the conventional case. Figure 15(a) shows the
MI dynamics in the conventional case where a symmetric MI
spectrum is observed on both sides of the wave number. How-
ever, when the value of the saturation parameter is increased to
' = 6, the spectrum becomes asymmetric, wherein two differ-
ent MI bands start to appear. Also, the MI gain and bandwidth
of both the primary and secondary MI gain spectra increase
as the value of I' increases. When the system is operated in
the unbroken regime [see Fig. 15(b)], though the MI spectrum
seems to overlap with the conventional case for lower values
of I', a further increase in the value of I', for instance, I’ = 6,
transforms the symmetric spectrum into an asymmetric one.
What differentiates this from the former is that the spec-
trum results in a slightly narrower bandwidth and lower gain
compared to the conventional case. The exceptional point,
shown in Fig. 15(c), reveals a different MI spectrum where
very thin and lower gain MI peaks emerge in the anti-Stokes
wave-number region, while on the other side the spectrum
features a wider bandwidth and higher gain. Finally, in the
broken-P7 -symmetric case as illustrated in Fig. 15(d), it re-
tains the same MI patterns obtained in both the conventional
and unbroken-P7 -symmetric cases. Nevertheless, the sepa-
ration distance between the primary and secondary MI bands
is much higher in the Stokes wave-number region, while the
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FIG. 16. MI gain spectra as a function of the gain or loss param-
eter in the normal dispersion regime for different f values: (a) f =
0.1, (b) f =0.5,(c) f =0.7,and (d) f = 5. The other parameters
arexk =5and P =T =2.

spectrum in the anti-Stokes wave-number region exhibits a
much wider bandwidth.

D. Modulational instability in the normal dispersion regime

This section presents another important study of the MI
spectrum obtained in the normal dispersion regime (f > 0).
For this reason, all the parameters except g are fixed and,
like in the preceding section, we present the investigation
by assigning different values of the dispersion parameter f
by continuously varying the gain or loss parameter. The MI
gain spectrum is shown in Fig. 16(a) as a function of g
when the value of f is set to a low value, such as f = 0.1.
Unlike in the anomalous dispersion regime, here the MI spec-
trum takes place only in the anti-Stokes wave-number region
and on further increasing the value of gain or loss coeffi-
cient, the spectrum drifts towards the zero-perturbation wave
number with a magnitude drop in its gain. Near the broken-
PT-symmetric region, the MI spectrum in the anti-Stokes
wave-number region drifts again in the opposite direction.

Upon further increasing the value of f to 0.5 (f = 0.5)
[Fig. 16(b)], a unique MI gain spectrum is observed. The
spectrum primarily appears with a monotonically increas-
ing sideband gain in the anti-Stokes wave-number region.
In parallel, a peculiar MI gain spectrum can be seen in the
Stokes wave-number region, which is enhanced further as K
increases. Once the system reaches the broken-P7 -symmetry
regime, the monotonically increasing MI side gain transforms
into two distinct primary MI spectra around K = 0, with the
MI sideband in the anti-Stokes wave-number regime being
more prominent than the MI sideband on the other side, whose
gain and bandwidth increase with increasing g values. We no-
tice that the scenario changes a bit when we assign the value of
f as f = 0.7. This increase in the value of the dispersion pa-
rameter separates the monotonically increasing spectrum from
the primary MI spectrum in the anti-Stokes wave-number
regime, as shown in Fig. 16(c). Also, the peculiar MI spectrum
in the negative wave-number region is significantly enhanced
compared to the previous case [see Fig. 16(b)]. In contrast

Anti-Stokes region

Stokes region

FIG. 17. (a) MI gain spectra as a function of the coupling co-
efficient « in the normal dispersion regime. (b) Maximum gain of
the peculiar MI gain as a function of coupling coefficient . The
parameters are g =0, P =5,and " = 1.

to the previous spectrum shown in Fig. 16(b), the broken-
PT-symmetric regime produces a comparatively wide and
large gain spectrum. For f =5, the system reveals quite a
different MI structure compared to the previous case (f =
0.7), in which the peculiar MI gain spectrum disappears in
the anti-Stokes wave-number regime and the monotonically
increasing side gain shifts from the anti-Stokes to the Stokes
wave-number region. Further, in the broken-P7T -symmetric
regime, the primary MI gain spectra emerge on either side
of the wave number with pronounced gain and bandwidth, as
shown Fig. 16(d).

1. Role of k in the MI gain spectrum

In this section we analyze the impact of the coupling
coefficient x on the MI gain spectrum in the normal dis-
persion regime for f = 0.7 in the conventional case alone
by setting the gain or loss parameter to zero as shown in
Fig. 17(a). Interestingly, it shows two different peculiar MI
gain spectra that appear around the zero wave number (K =
0), where the peculiar MI gain spectrum observed in the
anti-Stokes wave-number regime features a wider bandwidth

FIG. 18. MI gain spectra as a function of input power in the
normal dispersion regime for (a) conventional, (b) below, (c) at, and
(d) above PT thresholds. The parameters are x =5, I' =5, and
f=0.6.
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FIG. 19. MI gain spectra with the variations of I" in the nor-
mal dispersion regime for (a) conventional, (b) below, (c) at, and
(d) above PT thresholds. The parameters are x = 5, P = 10, and
f=0.6.

compared to the other one found in the Stokes wave-number
region. In particular, the gain of this peculiar MI spectrum
is twice as high as in the MI spectrum on the other side,
while the bandwidth is about four times wider. It should be
stressed that such an unusual MI gain spectrum as a result
of the coupling coefficient is a different finding in the con-
text of coupled nonlinear systems. The peak gain traced as
a function of «, displayed in Fig. 17(b), also confirms the
same.

2. Influence of input power P

We next analyze the effect of power on the character-
istics of the instability spectrum in the normal dispersion
regime in four different P7 -symmetric regimes in Fig. 18.
First, in the conventional case [Fig. 18(a)], one can observe
a monotonically increasing MI gain only in the anti-Stokes
wave-number region for P = 1. However, when we increase
the value of input power further, the monotonically increas-
ing gain appears on both sides of the wave number. Note
that the peak gain in the anti-Stokes wave number is higher
than the one in the Stokes wave-number region. The MI
characteristics retain the same dynamics and pattern when
moving on to the unbroken-P7 -symmetric regime, as shown
in Fig. 18(b). However, the value of the monotonically in-
creasing gain located in the Stokes wave-number region has
been considerably suppressed. When it comes to the case of
the P7T-symmetric threshold, the monotonically increasing
gain in the Stokes wave-number region is completely sup-
pressed while the spectrum found on the other side remains
unchanged, which is shown in Fig. 18(c). For the case of
the broken-P7 -symmetric regime [see Fig. 18(d)], the MI
spectrum completely transforms into a typical one for the
lower value of the power P = (0.1. With a further increase
in the value of P, for example, P = 0.5 and 1, the spectra
get swapped in the different wave-number regions. When we
increase the value of P to a higher value such as P = 2, the
MI sideband located in the anti-Stokes wave-number regime
transforms into a monotonically increasing gain, while the MI
spectrum on the other side vanishes.

3. Impact of the nonlinear saturation parameter T

We finally investigate the effect of the nonlinear saturation
parameter on the MI gain spectrum in the normal dispersion
under four different conditions, including the conventional
case as shown in Fig. 19. When g = 0 (conventional case) [see
Fig. 19(a)], it produces an asymmetric MI structure consisting
of two different monotonically increasing gains, where the
peak gain in the anti-Stokes wave-number region is more
pronounced than the other side. Figure 19(b) depicts the MI
dynamics in the unbroken-P7 -symmetric regime, where one
can observe that the system almost retains the same MI pat-
terns though the range of monotonically increasing gain gets
increased in the Stokes wave-number region. Further, when
the system is operated at the P7 -symmetric threshold, the
monotonically increasing gain disappears in the Stokes wave-
number region as shown in Fig. 19(c). In contrast to the above,
the broken-P7T -symmetric regime reveals a narrow sideband
in both the Stokes wave-number regions for small values of
I', as can be seen in Fig. 19(d). Comparing the gain of all
these spectra, note that the broken-P7 -symmetric produces a
relatively higher gain. As the system exhibits rich and com-
plex MI patterns, for an easier and better understanding of
the ramifications obtained for various cases, we have provided
the summary of the main results in Table I when the system
changes from the conventional to different P7T -symmetric
regimes as a function of g.

V. CONCLUSION

We have investigated theoretically the formation of MI
gain spectra in a physical setting of fiber Bragg gratings with
saturable nonlinearity and gain and loss. We have found that
the obtained nonlinear dispersion curves do not exhibit the
loop structure in either the upper branch or the lower branch as
opposed to the conventional systems due to the ratio assigned
between the different nonlinearities. We have systematically
classified our investigation of the MI gain spectrum based on
the analysis of the dispersion curves into four cases, namely,
the bottom and top of the photonic band gaps and the anoma-
lous and normal dispersions. Having analyzed the dispersion
relation first, we then examined the MI gain at the bottom of
the photonic band gap. The system has remarkably revealed
the emergence of instability spectra with variations in the
gain or loss parameter g rather than the function of wave
number, in the unbroken-P7 -symmetric regime. It is worth
mentioning that the finding of such a peculiar MI spectrum
is different in the framework of any periodic structures. In
addition, the cw manifests in a stable state at the exceptional
point and asymmetric spectra tend to appear in the broken-
PT -symmetric regime. On the other hand, the role of input
power and saturable nonlinearity gives rise to the different
MI spectra, namely, the monotonically increasing gain, which
further increases with the increase in these parameters. It
is interesting to note that in this unbroken-P7 -symmetric
regime the coupling coefficient has also exhibited the ram-
ification of the peculiar MI bands. The peculiar spectrum
persists in the top of the photonic band gap too, accompa-
nied by the conventional symmetric and asymmetric spectra
on varying the value of gain or loss parameter. Though the
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TABLE 1. Summary of the MI gain spectrum obtained in the P77 FBG with saturable nonlinearity. Here Convl denotes Conventional;
type-1 MI, primary (or symmetric) MI gain spectrum; type-II MI, asymmetric MI sidebands; type-III MI, secondary MI spectrum; type-IV MI,

peculiar MI gain spectrum; and type-V, monotonically increasing gain.

Does the MI gain spectrum exist?

Types of MI gain spectrum

Types of Convl  Unbroken  Exceptional  Broken Convl Unbroken Exceptional Broken
regimes case regime point regime case regime point regime
top no yes no yes nil (i) type-1V MI nil (1) type-11 MI
photonic (ii) type-V MI (i1) type-11I MI
band gap
bottom yes yes yes yes type-1 MI type-1 MI type-1I MI (1) type-11 MI
photonic (ii) type-I1I MI
band gap (iii) type-1V MI
anomalous yes yes yes yes (i) type-11 MI (1) type-11 MI (i) type-V MI (1) type-11 MI
dispersion (ii) type-III MI (i) type-1II MI (ii) type-1V MI (ii) type-111 MI
(iii) type-V MI
normal yes Yes yes yes type-V MI (1) type-V MI type-V MI (1) type-11 MI
dispersion (ii) type-IV MI (ii) type-11I MI
dispersion (iii) type-V MI

coupling coefficient makes the system experience the sym-
metric spectrum on either side of the zero wave number,
the input power and saturable nonlinearity mainly separate
the symmetric ones into the multiple structures featuring
a primary and a secondary spectrum with a clear mani-
festation of discreteness in the sidebands. Note that in all
the cases, peak gain increases as all the system parameters
increase.

The system has shown diverse MI gain spectra for each
PT-symmetric regime when it comes to the anomalous dis-
persion regime. Although the gain or loss parameter has
manifested in the complex spectrum when switching from the
unbroken- to the broken-P7 -symmetric regimes, the increase
in both the gain or loss and coupling parameters substantially
increases the peak gain of the sidebands in every regime,
while the increase in the power and saturable nonlinearity
suppresses the spectrum in the anti-Stokes wave-number re-
gion. Conversely, in the normal dispersion regime, we have
primarily observed the emergence of monotonically increas-
ing gain in addition to the peculiar spectrum when we tune
the value of both the coupling coefficient and the gain or loss
parameter. In a similar way, the saturable nonlinearity and the
input power cause the system to exhibit the monotonically

growing gain, which in turn translates into a conventional
symmetric MI band when it operates in the above P7 thresh-
old. It is important to stress that all of the instability spectra
obtained in this study in various dispersion regimes and under
PT-symmetric conditions have qualitative differences from
the ones obtained in a conventional Bragg grating structure.
We hope that our findings present an opportunity for future
studies of localized modes such as Bragg solitons, using
the synthetic grating structures that imprint the gain or loss
profile.
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