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Path-length distributions, scattering, and absorption in refractive spheres and slabs
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We derive the path-length distribution (PLD) of light rays diffusely incident on a refractive sphere and slab
in the geometric optics case. Refraction affects the width of the distribution and internal reflection introduces
longer path lengths. Polarization is also taken into account and has a minor effect on the shape. For the slab,
we also consider the effect of a small amount of scattering in the medium which adds to the tail of the PLD
and significantly increases the mean path length. The absorption is calculated from the PLD, from which we
approximate the absorption in the slab and sphere to the second order in the absorption coefficient, and also to
the second order in the scattering coefficient for the slab.

DOI: 10.1103/PhysRevA.107.053509

I. INTRODUCTION

In geometric optics, the path length of a light ray through
some object is important for understanding quantities such
as absorption. An object’s absorption is calculated in the
geometrical optics limit as the integral over the path-length
distribution (PLD) of light rays, weighted by an exponential
absorption factor. Alternatively, the mean path length provides
a simple approximation to the absorption in the weakly ab-
sorbing limit. There has been recent progress on the mean
path length in refractive objects [1–5]—in particular, the mean
path length theorem provides a general formula in the case
of scattering [1,2]. However, to move beyond the weakly ab-
sorbing approximation, we need to study PLDs. Chord-length
distributions with no refraction effects have been studied an-
alytically for objects such as triangles, spheres, and prisms
[6], but PLDs accounting for reflection, refraction, and polar-
ization are much more complex. For example, the scattering
properties of atmospheric aerosol particles are currently mod-
eled with PLDs obtained from numerical ray tracing [7].
Analytically, chord-length distributions (not accounting for
reflection and refraction) have been derived for the sphere and
cube, but refractive effects are still modeled empirically [8], or
ignored [9]. The PLDs of light in an infinite slab are crucial to
study absorption of photovoltaic cells [10] and of refracting
ice layers [11], and they have been studied numerically and
analytically in the low scattering limit for a slab under normal
incidence [12]. It is well known that adding a scattering mech-
anism, e.g., a rough boundary or diffusing medium, enhances
the absorption of light in a dielectric slab, and this is used to
increase the efficiency of solar cells.

In this paper we derive exact analytic expressions for
the PLD in a refracting infinite slab and a sphere, for dif-

*mattmajic@gmail.com
†walter.somerville@vuw.ac.nz
‡Eric.LeRu@vuw.ac.nz

fusely incident light from all directions. While the sphere
and slab geometry have exact electromagnetic solutions for
their absorption properties, this is not true for more com-
plex geometries where geometric optics is a more necessary
approach. This study aims to provide the first step toward ob-
taining analytic results for PLDs in more complex geometries.
These are validated against numerical Monte Carlo ray tracing
simulations. We consider the effect of a scattering coefficient
and derive an approximate PLD in the weak scattering limit
for the slab. We then use these distributions to calculate the
absorption and expand it to second order in both scattering
and absorption coefficients.

II. PATH-LENGTH DISTRIBUTION

In this section we derive analytical expressions for the PLD
in spheres and infinite slabs.

A. Reflection and refraction at an interface

In general we consider an external medium 1 with re-
fractive index n1, encompassing a medium 2 with refractive
index n2 > n1, of which we are measuring the path lengths
of the rays inside. We assume that the dielectric constants
are both real, and that the wavelength of the light is suffi-
ciently small compared to the geometry that the geometric
optics approximation can be applied. A ray from medium 1
enters medium 2 with an angle θ1 to the normal. With some
probability (presented below), the ray may either reflect back
into medium 1 with angle θ1, or refract into medium 2 with
angle θ2 determined by Snell’s law,

sin θ2 = sin θ1

s
, (1)

where s = n2/n1. θ2 will never exceed the critical angle θc =
asin(1/s) (within geometric optics), and any ray traveling
from medium 2 to medium 1 cannot refract through the
boundary if θ2 > θc: in this case, it will undergo total internal
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FIG. 1. Refraction and reflection at an interface for a ray (red
arrows) heading from medium 1 to 2 (left) or vice versa (middle,
right). T and R are the probabilities of transmission and reflection.
The sparsely dotted lines indicate a low probability of occurrence
(typically T � R), and the darker shading indicates angles above θc

for which total internal reflection occurs if θ2 > θc.

reflection with a probability of 1. The possible scenarios are
illustrated in Fig. 1.

Unlike when simply calculating the mean path length, we
must also consider polarization. For purposes of calculating
PLDs, any ray that hits the surface can be split into com-
ponents of s and p polarization (electric field or magnetic
field parallel to the surface),1 and the probability of refracting
through the boundary is given by the Fresnel transmission
coefficients Ts and Tp [13]:

Ts = 4s cos θ1 cos θ2

(cos θ1 + s cos θ2)2

Tp = 4s cos θ1 cos θ2

(cos θ2 + s cos θ1)2
, (2)

where θ1, θ2 are related through (1). These give both the
probability that a ray will refract from medium 1 to 2, or
from medium 2 to 1. The probabilities of reflectance are then
Rp = 1 − Tp and Rs = 1 − Ts.

B. Sphere

Consider a sphere of radius a and a ray that is refracted
inward at an angle θ2 (see inset of Fig. 2). The chord length C
of this ray is

C = 2a cos θ2. (3)

Note that the path length L is the total path of the ray inside
medium 2, which may include multiple chords. We start with
an expression for the mean chord length, which is obtained
from an integral over all possible angles of incidence 0 �
θ1 < π/2, or equivalently over 0 � θ2 < θc. It was noted in
Ref. [2] that all probabilistic reflections (not including total
internal reflection) could be ignored and replaced by refrac-
tions when calculating the mean path length. This means that
in objects where total internal reflections are inaccessible from

1This is physically not the same as a ray with mixed polarization,
but in the limit of infinitely many rays the probability outcomes of
reflection and refraction are the same. To be safe, in our Monte Carlo
codes we did not assume that rays could split into s and p components
and gave each ray a random polarization vector (mixed s and p).

FIG. 2. Path-length distribution Eq. (11) p(L) for path length L
in a sphere of radius a. Numerical results are compared for s = 1.5
(numerical results compare well for s = 1, 1.33 also). s = 1 is the
chord-length distribution through an imaginary sphere boundary.
Inset: diagram of an example chord of length C in a sphere, where in
this case L = C since there are no internal reflections.

outside (like the sphere), the mean path length 〈L〉 and mean
chord length 〈C〉 are equal:

〈Lsph〉 = 〈Csph〉 = 2s2
∫ θc

0
C(θ2) cos θ2 sin θ2dθ2 (4)

= 4a

3
s2

[
1 −

(
1 − 1

s2

)3/2
]
. (5)

The integral (4) encodes the chord-length distribution
pchd(c), which can be extracted by expressing the mean chord
length as an integral over C:

〈Csph〉 =
∫ ∞

0
pchd(C)C dC. (6)

Comparing the integrals (4) and (6) through the relationship
(3) reveals the chord-length distribution:

pchd(C) = s2C

2a2
�(2a cos θc � C � 2a) (7)

where �(condition) = 1 if the condition is met and 0 other-
wise.

To find the PLD, we need to account for probabilistic
reflections inside the sphere, using the Fresnel coefficients.
For the sphere and slab, the polarization of rays relative to the
surface is the same at each reflection, so we can treat p and s
polarizations separately.

We will break down the PLD into a sum over contributions
from rays with n chords, starting with n = 1 for rays that
enter and do not internally reflect, with distribution p1(L). The
fraction of these rays compared to the total number incident on
the sphere is equal to the probability of entering the sphere, Tj

(for j = p or s), times the probability of leaving the sphere
Tj on the second contact with the surface. By using Snell’s
law (1) and inverting the relationship (3), we can express
the transmittance in terms of chord length, writing Tj (C),
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Rj (C). These rays are distributed according to the distribution
p1(L) = pchd(C) (note that L = C for the case of p1). pchd is
normalized to have a total probability of 1, so in the expression
for the total PLD we will multiply p1 by the probability Tj (C)2

of a ray having a single chord.
The probability of a ray having n chords is equal to the

probability that the ray enters, reflects n − 1 times inside, and
then leaves, which is Rj (C)n−1Tj (C)2. The PLD of these rays
is

pn(L) = 1

n
pchd

(
L

n

)
, (8)

where L/n = C is the chord length and the 1/n factor normal-
izes pn(L).

Note that standard expressions for mean path length in-
clude the average incident rays that reflect directly off the
object (rays of zero path length). For completeness, we also
include these rays in our distributions. These are described by
the delta function δ(L). Of the total, these make up a fraction
RF , the average of the reflection coefficients over all angles
[14]:

RF =
∫ π/2

0
2 cos θ sin θ

[
Rs

12(θ ) + Rp
12(θ )

]
dθ

= 1

2
+ (s − 1)(3s + 1)

6(s + 1)2
− 2s3(s2 + 2s − 1)

(s4 − 1)(s2 + 1)

+ 8s4(s4 + 1) ln s

(s4 − 1)2(s2 + 1)
+ s2(s2 − 1)2

(s2 + 1)3
ln

s − 1

s + 1
. (9)

The complete PLD is then the sum over the PLD for n chords,
and over the polarizations j = s, p:

p(L) = RF δ(L) + 1

2

∑
j=s,p

∞∑
n=1

Rj (C)n−1Tj (C)2 pn(L), (10)

which can be expressed more explicitly using (8) and (7):

p(L) = RF δ(L) +
∑
j=s,p

∞∑
n=1

s2L

4a2n2
Rj

(
L

n

)n−1

Tj

(
L

n

)2

�

(
2a cos θc �

L

n
� 2a

)
. (11)

Again, note that for each n, C = L/n is the chord length.
This distribution is plotted in Fig. 2, and agrees with Monte
Carlo simulations of 108 rays to an accuracy of 10−3–10−2

for L/a < 5 (the simulation accuracy decreases with L since
fewer rays have long L). Figure 2 corrects Fig. 6(b) of Ref. [9],
which did not account for effects of transmission probability,
probabilistic reflection, or polarization. The discontinuities
(including the gap at L � 2a) in the PLDs shown in Fig. 2
arise from the minimum and maximum chord lengths in the
Heaviside theta function in (11).

Note that while this expression is technically an infinite
series, each term only contributes to a confined range of L,
so it can be truncated at a finite n with zero loss of precision
below a certain range of L. If one is interested in a range of,
say, 0 < L < 10a, then only about ten terms are needed for
full precision (depending on s).

We can check analytically that the sum of all probabilities
is normalized:∫ ∞

0
p(L)dL

= RF + 1

2

∑
j=s,p

∞∑
n=1

∫ 2an

2an cos θc

R j

(
L

n

)n−1

Tj

(
L

n

)2

pn(L)dL

= RF + 1

2

∑
j=s,p

∞∑
n=1

∫ 2a

2a cos θc

R j (C)n−1Tj (C)2 pchd(C)

n
ndC

= RF + 1

2

∑
j=s,p

∫ 2a

2a cos θc

Tj (C)pchd(C)dC

= RF + s2

2

∑
j=s,p

∫ θc

0
T j

21(θ2)2 cos θ2 sin θ2dθ2 = 1.

(12)

The third equality above uses the geometric series∑∞
n=1 Rn−1

j = 1/Tj , and the last integral is the average
transmittance from medium 2 to medium 1, which is simply
TF = 1 − RF .

Similarly, one can check that the mean path length of this
distribution 〈L〉 = ∫ ∞

0 Lp(L)dL evaluates to (5).

C. Infinite slab

Like the sphere, each point on the surface of an infinite
slab (e.g., defined as occupying 0 � z � a) is equivalent by
symmetry. The relationship between the chord length C and
angle θ2 is

C = a

cos θ2
(13)

and the chord-length distribution is

pchd(C) = 2s2a2

C3
�

(
a � C � a

cos θc

)
. (14)

Again, when a ray reflects, it has the same angle and chord
length, so a ray that reflects n times has path length L = nC.
The PLD is then

p(L) = RF δ(L) +
∑
j=s,p

∞∑
n=1

s2a2n2

L3
Rj

(
L

n

)n−1

Tj

(
L

n

)2

�

(
a � L

n
� a

cos θc

)
, (15)

which is plotted in Fig. 3, and has been checked to match
Monte-Carlo simulations of 108 rays to within a relative error
of 10−3 ∼ 10−2.

III. WEAK SCATTERING

For refractive objects, weak scattering is not just a second-
order effect. Recall that the mean path length differs in
the case of zero scattering versus with scattering, which is
independent of the scattering coefficient. There is a discon-
tinuity at zero scattering, and this was somewhat addressed in
Ref. [2], but without explicit calculation of PLDs, which we
set out to do here. Specifically, we want to show that when
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FIG. 3. Path-length distribution Eq. (15) for a slab of thickness a.
Numerical results for 109 rays are compared for s = 1.5 (numerical
results compare well for s = 1, 1.33 also).

an arbitrarily small scattering coefficient is added, we can
approximate the effect of this on the PLD, and find that the
mean path length is equal to that in the scattering case.

For weak scattering, the main effect on the PLD is the
presence of trapped modes which indefinitely undergo total
internal reflection until they scatter again. A ray cannot enter
a trapped mode if it refracts into the object from medium 1,
but scattering allows a ray to enter such a mode.

To model minor imperfections in the material, we give
rays a small probability αs per unit length of scattering to
an isotropically random direction. We will focus on the slab
because in a sphere the density of rays is not uniform [4],
which complicates derivations.

The probability of a ray scattering at all is αs〈L〉, and we
consider the limit αs〈L〉 → 0. When a ray scatters it lands in
either a free mode with some probability PF , which is a tra-
jectory that could be populated via refraction from outside, or
a trapped mode with probability PT = 1 − PF , which is inac-
cessible from outside and can only be occupied via scattering.
In a slab, PT is calculated as the range of angles available via
isotropic scattering that correspond to total internal reflection.
The isotropic probability distribution for scattering to an an-
gle θ is pθ (θ ) = sin θ , and PT = ∫ π/2

θc
pθ (θ )dθ = cos θc (in a

sphere we cannot use such a simple calculation as rays have a
different probability of trapping depending on their position).

One can divide the PLD into contributions from rays that
do not scatter, p0(L) [given in Eqs. (11) and (15)], rays that
scatter but do not become trapped, pS (L), and those that be-
come trapped, pT (L). The total PLD is then

p(L) = (1 − αs〈L〉)p0(L) + αs〈L〉[PF pS (L) + PT pT (L)].
(16)

We will now make some observations and justify some
approximations towards obtaining a simplified expression for
the PLD in the low-scattering case.

(1) If the scattering coefficient αs is small, rays that scatter
into trapped modes, with PLD pT (L), will not escape for a
long time and therefore have a very long path length. These

are the rays we are interested in because they have a significant
impact on the PLD for large L.

(2) Rays that scatter into free modes, with PLD pS (L), are
both rare and have short path lengths. While short path lengths
may be interesting in some cases, we are ultimately interested
in absorption, for which these rays will have minimal effect.
We will ignore them altogether and set pS (L) = 0.

(3) Scattered rays may scatter from one trapped mode to
another. This is something we must account for, since the
probability of landing in a trapped mode after scattering is
significant, and the increase in path length is also significant.

(4) Trapped rays may scatter out of a trapped mode and
then scatter back in to a different trapped mode, but the odds of
this are small since it has to scatter twice before leaving. The
fraction of rays that do this is of the order of (αs〈L〉)2, so we
may ignore contributions from these rays. This approximation
will slightly underestimate the length of trapped rays.

(5) Trapped rays occur via scattering through a free mode,
and then leave the medium by scattering into a free mode. The
distance traveled in these free modes is likely much less than
the distance traveled in trapped modes, so for simplicity we
may ignore the contributions at the beginning and end of the
path. This approximation will again slightly underestimate the
path lengths of trapped rays.

With simplifications 4 and 5, the trapped rays effectively
undergo a simple random process where they have a constant
probability per unit length αsPF of escaping instantly. This has
the PLD of an exponential:

pT (L) = αsPF e−αsPF L, (17)

which with Eq. (16) [and setting pS (L) = 0] provides the PLD
of rays incident on a slab with a small scattering probability
throughout the medium.

One can check that Eq. (16) has a mean path length of
2as2 to zeroth order in αs〈L〉, which is the invariant mean
path length in a slab with scattering [1,2,15]. Equation (16)
is plotted in Fig. 4 against Monte Carlo simulation data with
107 rays for a slab with s = 1.5, a = 1, and αs = 0.0375.

The absence of pS (L) is apparent in Fig. 4 for short path
lengths. pS (L) is complicated to derive; we found rough
approximations by ignoring reflections, but even these have
complex piecewise expressions, so we decided not to present
them. More importantly, the distribution for large L is fitted
well by pT (L) of (17). These longer path lengths have a
significant effect on absorption.

IV. ABSORPTION

We compute the absorption as the fraction of rays that are
absorbed compared to the total number that hit the sample,
including rays that are reflected straight off the surface. A
simple model for an absorbing medium is where rays are
absorbed with a probability per unit time, governed by an
absorption coefficient αa such that they travel a mean distance
of 1/αa before absorption (assuming they do not leave the
medium).

An object’s absorption is an integral over the PLD:

A = 1 −
∫ ∞

0
e−αaL p(L)dL. (18)
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FIG. 4. Path-length distribution (16), with pS (L) = 0 and PTV (L)
from (17), compared to numerical simulations in a slab with s =
1.5, a = 1, and a low scattering coefficient α = 0.0375.

Note that this equation uses the PLD from Eq. (11) or (15),
even though the distribution itself is then modified by the
absorption.

For the sphere and the slab, ignoring scattering, we can
substitute the PLD (11) or (15) into the absorption integral
(18). Using Eq. (10),

A = TF − 1

2

∑
j=s,p

∞∑
n=1

∫ ∞

0

× Rn−1
j (C)T 2

j (C)pn(nC)e−αnCdC, (19)

where the integral bounds are confined by the � constraints in
pchd(C). Following the simplifications in Eq. (12), using the
closed form of the series over n, we can simplify this to

A = TF − 1

2

∑
j=s,p

∫ ∞

0

Tj (C)2 pchd(C)

eαaL − Rj (C)
dC, (20)

For the sphere, this expression is equivalent (with some
manipulation) to the integral for the absorption efficiency for
plane wave incidence, presented in Refs. [16,17]. It is also in
Ref. [18] [Eq. (7.1)] but with the error that the absorption of
different polarizations is not added separately.

In the low absorption limit, αa → 0, the integrand in (18)
may be expanded in a Taylor series, giving

A = αa〈L〉 − α2
aa2

2
A(2) + O

(
α3

aa3
)
. (21)

The first term is the standard approximation that the absorp-
tion is proportional to the mean path length in the weak
absorbing limit. The second-order correction A(2) can be eval-
uated analytically from (19), using the series

∑∞
n=1 n2Rn−1 =

1+R
(1−R)3 and integrating. For the sphere,

A(2)
sph = (s2+1)

s(s2+6s2−3) − (s2−3)(s2−1)2 coth−1(s)

4s2
,

(22)

FIG. 5. Approximations for the absorption in a slab with a = 1,
s = 1.5, a low absorbtion coefficient αa = 0.005, and a lower scatter-
ing coefficient αs on the horizontal axis. The approximations in the
legend correspond to including each term in (27) from left to right,
e.g., the O(α2

0, α
1
s ) line includes the first three terms.

and for the slab,

A(2)
slb = − s2 + 1

2
[(s2 + 1) coth−1(s) − s]. (23)

One problem with A(2)
slb is that it diverges for s → 1, because

the maximum chord lengths approach infinity—the series (18)
breaks down at order α2

s . This may be related to the fact that
infinitely long chords exist for s = 1. The approximation A(2)

slb
is still good for larger values of s—see Fig. 5 for s = 1.5.
For s = 1, the absorption can be expanded as a series with
a logarithmic term in α:

Aslb(s=1) = 2αaa +
[

log(αaa) + γ − 3

2

]
α2

aa2+O
(
α3

aα
3
a

)
,

(24)

where γ = 0.5772... is the Euler-Mascheroni constant. Note
that the case s = 1 is just the absorption through a region of
space with no refractive boundary.

We may now consider scattering. The approximation (21)
requires that there are no significant contributions from p(L)
for large L comparable to 1/αa, which may not be true when
there is a significant scattering coefficient αs. As discussed in
Ref. [2], it still holds in the limit of low absorption but lower
scattering.2 We want to amend the approximation (21) to

2A similar formula to (21) appears in Ref. [19] [first-order term
in their Eq. (1)] but where the mean path length 〈L〉 is taken to be
the value when scattering occurs, 〈Lsca〉. However, that formula only
holds for significantly lower absorption than scattering αa � αs, so
that the absorption mean path length does not affect the long-lived
scattered rays in trapped modes. Our numerical simulations confirm
this, but the focus of this paper is on the limit of low scattering.
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include higher-order terms in αs, in the limit αs � αa �1/〈L〉.
This can only be done for the slab, using the results of Sec. III.

We plug the PLD with scattering (16) into the integral (18):

Aslb = 1 −
∫ ∞

0
e−αaL[(1 − αsPT 〈L〉)p0(L)

+ αsPT 〈L〉pT (L)]dL. (25)

We can evaluate the integral over p0(L) to second order in
αa using (21), while pT (L) is given in (17) as an exponential
whose integral can be evaluated exactly:∫ ∞

0
e−αaL pT (L)dL =

∫ ∞

0
αsPF e−(αa+αsPF )LdL

= α2
s PF

αa + αsPF
. (26)

So the total absorption is, discounting terms of order αaαs〈L〉2

or higher,

Aslb ≈ αa〈L〉 − α2
aa2

2
A(2)

slb + αsPT 〈L〉 − α2
s PF PT 〈L〉

αa + αsPF
. (27)

This is plotted in Fig. 5 for small absorption and decreasing
scattering, and shows excellent agreement with numerical
simulations. The addition of each of the terms improves
the approximation significantly. The first two terms of or-
der αa〈L〉 and (αa〈L〉)2 approximate the absorption for
the case of no scattering. The third term of order αs ac-
counts for the absorption of trapped rays assuming that
all trapped rays are absorbed. The last term is of order
α2

s /αa〈L〉, which corrects the third term by accounting for the
small probability that trapped rays may escape before being
absorbed.

V. DISCUSSION AND CONCLUSION

We have derived PLDs for rays diffusely incident on a
refracting sphere and a slab. For the slab we were also able to
add scattering and approximate the PLDs in the low-scattering
limit. We then used these PLDs to calculate the absorption,
and found simple approximations for the absorption for low
absorption and lower scattering, which matched Monte Carlo
simulations accurately. These could, for example, provide
simple approximations for absorption in atmospheric aerosols
such as ice crystals or microplastics and for solar luminescent
concentrators. The analytic results for PLDs were obtain-
able for a sphere and slab due to their high symmetry. In
these geometries the chord length of each ray depends on
angle only, and does not change from reflection to reflec-
tion, rays do not undergo total internal reflection, and the
polarization relative to the surface does not change between
reflections. The infinite cylinder satisfies these properties,
except that polarization changes between reflections, so s
and p components cannot be added separately. We treat the
cylinder in the Appendix, but with making the nonphysi-
cal simplification of ignoring polarization. Still, the results
are shown to compare reasonably well with numerical sim-
ulations, because polarization only affects the distributions
slightly. Nonpolarized PLDs are still potentially interest-

ing as they may apply to high-frequency pressure or sound
waves.
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APPENDIX: INFINITE CYLINDER

The cylinder is another geometry where all surface points
are identical, and total internal reflection is not excitable from
rays outside. However, we cannot easily treat polarization,
because the polarization of a ray relative to the cylinder sur-
face changes between reflections. Nevertheless, we can get
a reasonable approximation to the PLD by simply averaging
the polarizations. This model is nonphysical for light, but a
similar mathematical analysis will apply to (high-frequency)
longitudinal waves, with a change of physical constants and
reflectivity.

We imagine a scenario where the reflectivity is taken as the
average of the two polarizations: R = [Rs + Rp]/2.

The chord length in a cylinder depends on θ2 and also φ, the
ray’s rotation around the normal to the surface, where φ = 0
points up the cylinder [2]:

C = 2a cos θ2

1 − sin2 θ2 cos2 φ
. (A1)

This behaves similar to that in a slab when φ ≈ 0 or π ,
and similar to a sphere when φ ≈ ±π/2. The PLD may be
deduced from the integral for the mean path length over θ2, φ,
substituting θ2, φ for θ2,C so that one can identify the inte-
grand of the integral over C as the chord-length distribution.
We leave the reflection and transmission as functions of θ2

FIG. 6. Path-length distribution (A2) for an infinite cylinder of
radius a, with averaged polarization effects. p(L) diverges at L/a =
2, 4, 6... for s > 1.
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to be integrated, R(θ2), T (θ2), and add the contributions from
different numbers n of internal reflections. The result is

p(L) = RF δ(L) +
∞∑

n=1

∫ θc

θl

R(θ2)n−1

n
T (θ2)2 4a

πC

× (cos θ2)3/2 sin θ2dθ2√
(C − 2a cos θ2)(2a − C cos θ2)

�

(
2a cos θc � C � 2a

cos θc

)
, (A2)

where again C = L/n and the lower integral bound is piece-
wise

θl =
{

cos−1 C
2a C < 2a

cos−1 2a
C C � 2a.

(A3)

This PLD is integrated numerically and plotted in Fig. 6.
It agrees with Monte Carlo simulations (with averaged polar-
ization effects) to within an error of 10−3 to 10−2, and agrees
with simulations that properly include polarization to within
roughly a few percent.
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