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Higher-order rogue-wave fission in the presence of self-steepening and Raman self-frequency shift
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Using the generalized nonlinear Schrödinger equation, we investigate how the effect of self-steepening and
Raman-induced self-frequency shift impact higher-order rogue-wave solutions. We observe that each effect
breaks apart the higher-order rogue wave, reducing it to its constituent fundamental parts, in a similar manner
to how a higher-order soliton undergoes fission. Applying a local inverse-scattering technique, we show that
under the effect of self-frequency shift, the emergence of a rogue wave significantly influences the surrounding
wave background, triggering solitons, breathers, and new rogue waves. We demonstrate that under the combined
effect of third-order dispersion, self-steepening, and Raman-induced self-frequency shift, the disintegrated
elements of higher-order rogue waves become fundamental solitons, creating an asymmetrical spectral profile
that generates both red- and blue-shifted frequency components. We also show the intermediary processes of the
fission steps prior to soliton transformation which can only be observed in the presence of weak perturbations.
These observations reveal the mechanisms that create a large number of solitons in the process of modulation
instability-induced supercontinuum generation from a continuous-wave background in optical fibers.
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I. INTRODUCTION

The rogue-wave solution of the nonlinear Schrödinger
equation (NLSE) is attractive because of its ability to explain
sudden extreme formations in nature, such as oceanic rogue
waves, light pulses with unusually high intensities, and lo-
calized structures in Bose-Einstein condensates. After three
decades of intense study, the rogue-wave solution has ex-
tended to a range of other multidisciplinary fields from optics
[1–14] to economics [15].

Optical rogue waves are short burst of light pulses with
high intensities that appear in a chaotic optical wave field. The
first observation of the existence of an optical rogue wave was
reported in the work of Solli et al. in fiber supercontinuum
generation [16]. Since then, the phenomenon has been studied
in various different branches of optics because of its multi-
plicity of applications and impact such as in optical cavities
[17,18], mode-locked lasers [19,20], photonic crystal fibers
[21], Raman fiber lasers and amplifiers [22,23], and optical
parametric processes [24]. A comprehensive report on recent
progress in the research of optical rogue waves can be found
in Refs. [25–27].

Instability seeded by noise acts as a breeding ground for the
emergence of optical rogue waves. This is described by a pro-
cess called modulation instability (MI) [28]. It is a complex
nonlinear process which can exponentially amplify a small
disturbance, leading to a drastic change in the system, such as
the optical rogue-wave formation in fibers. Despite the strong
interest, characteristics of optical rogue waves are not yet
fully understood. One prime example of such an unresolved
scenario is the process of continuous-wave supercontinuum
generation (CW-SCG), where MI plays a pivotal role [29].
Here, the pump can be considered as a higher-order soliton
with a very large soliton number [30]. The evolution is then

dominated by a noise-seeded MI, leading to its breakup [31].
The disintegration is highly nontrivial and is a multistage pro-
cess. At the beginning of the evolution, the presence of noise
among the large number of solitons makes the higher-order
soliton unstable, leading to its collapse. Immediately before
the collapse, a wide variety of rogue-wave-type substructures
appear. In the final stage, all the substructures become a
collection of fundamental solitons. The physics behind the
creation of a large number of solitons from the CW is not very
well studied.

The NLSE permits fundamental and higher-order rogue-
wave solutions [32]. In its normalized form, the fundamental
rogue wave has the maximum amplitude of 3, while a
higher-order rogue wave of order N consists of N (N + 1)/2
fundamental rogue waves and reaches the maximum am-
plitude of 2N + 1. They can be excited numerically via
noise-driven MI [33].

In this work, using the generalized nonlinear Schrödinger
equation (GNLSE), we show that, when the NLSE is per-
turbed with the third-order dispersion (TOD), self-steepening
(SS), and Raman-induced self-frequency shift (RIFS) ef-
fects, a higher-order rogue-wave solution undergoes fission,
similar to the higher-order soliton fission. We take each ef-
fect individually as well as simultaneously in our analysis.
An investigation of the fission under TOD is already com-
prehensively described in Ref. [34]. Hence, in the current
monograph, we only focus on the SS and RIFS effects to show
that each of these also breaks the higher-order rogue wave
to its constituent parts. Furthermore, using a local inverse-
scattering technique (IST) [35–37] based on a periodized local
structure, we demonstrate that the rogue-wave solution under
the influence of RIFS effect generates various other local sub-
structures such as solitons and breathers in the neighborhood.
As we shall see, while all these effects induce a rogue-wave
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fission, it is the RIFS effect that has the major impact on
transforming the disintegrated rogue wave to solitons. Finally,
we solve the full GNLSE numerically to study the combined
effect of the TOD, SS, and RIFS on the rogue-wave fission, as
well as its long-time evolution.

The article is organized as follows. In Secs. III and IV,
we investigate the effect of SS and RIFS on a second- and
third-order rogue waves, revealing that each of them indi-
vidually induces a rogue-wave fission. We also demonstrate
that under the RIFS effect, higher-order rogue waves generate
red-shifted frequency components while decelerating, until
eventually transforming into a soliton. In Sec. V, we examine
the combined influence of the TOD, SS, and RIFS effects,
showing that after the fission, the evolving rogue-wave com-
ponents create asymmetrical spectral profiles with both red-
and blue-shifted frequencies.

II. MODEL, SOLUTIONS, AND TECHNIQUES

The GNLSE in its normalized form is

i
∂ψ

∂z
− β2

2

∂2ψ

∂t2
+ γ ψ |ψ |2

= iε3
∂3ψ

∂t3
− is

∂

∂t
(ψ |ψ |2) + τRψ

∂|ψ |2
∂t

, (1)

where ψ = ψ (z, t ) is the complex field envelope, and z and
t are the evolution and transverse variables, respectively. ε3 is
the TOD parameter, and s and τR are the coefficients of SS and
RIFS, with their explicit expression given by

ε3 = β3

6|β2| t0
, s = 1

ω0 t0
, τR = Tr

t0
, (2)

where β2 is the group velocity dispersion, γ is the nonlinear
strength, β3 is the coefficient of TOD, ω0 is the carrier angular
frequency, t0 is the pulse duration, and Tr is the Raman time
constant [38]. Since the coefficients of TOD, SS, and RIFS in
Eq. (1) are inversely proportional to the pulse duration t0, they
are negligible in the long pulse regime, while they contribute
significantly in the ultrashort pulse regime.

With the group-velocity dispersion parameter β2 = −1,
nonlinear parameter γ = 1, and ε3 = s = τR = 0, Eq. (1) is
the NLSE and is the most basic equation that can be used to
model optical pulse propagation in nonlinear dispersive media
[39]. This form of the equation can be solved analytically us-
ing the inverse scattering transformation [40,41]. Equation (1)
with specific ratios of TOD, SS, and RIFS effect can become
integrable, permitting rogue-wave solutions [42]. In this work,
however, we assume that the TOD, SS, and RIFS effects are
arbitrary and solve Eq. (1) numerically.

To numerically generate higher-order rogue waves, we
adopt the analytic solutions of the NLSE as the initial con-
ditions well before their fully developed stage. Specifically,
we use the second- and third-order rogue-wave solutions as
presented in Ref. [32] [see Eqs. (23) and (26)]. The solutions
in their exact forms can be obtained by solving the NLSE
through Darboux transformation technique using a continu-
ous wave, ψ = exp(iz), as the seed [43]. The details of the
numerical technique employed to excite higher-order rogue
waves can be found in Ref. [34]. We should mention that by

FIG. 1. (a) Amplitude and (b) phase profiles of the rogue wave
from Eq. (4) with s = 0.2. It has the maximum amplitude of 3 with
a distorted phase shift of π across the peak. Note that this solution is
formed at t = z = 0 because of the closed-form nature of the analytic
solution.

applying different initial conditions, various other breather-
like solutions can be numerically excited [29,44].

We also study the impact of higher-order rogue-wave fis-
sion on the surrounding wave background under the influence
of RIFS effect. A variety of waves emerge in the neighborhood
of the rogue wave that undergoes fission. We employed a
local IST to identify the types of waves that are formed. The
details of the technique and its implementation are outlined in
Refs. [35–37].

III. EFFECT OF SELF-STEEPENING

Including the SS effect on the NLSE, the equation becomes

i
∂ψ

∂z
− β2

2

∂2ψ

∂t2
+ γ ψ |ψ |2 + is

∂

∂t
(ψ |ψ |2) = 0 (3)

where s is the coefficient of the SS effect. The first-order
rogue-wave solution of Eq. (3) can be extracted from the
rogue-wave solution of a cubic-quintic NLSE presented in
Ref. [45]. After reformulating it into a simpler form, it is given
as

ψs(z, t ) =
(

1 − G + iHz + 8isτ

Ds

)
ei[z(1+ 1

2 s2 )−ts+
], (4)

where τ = t − zs, κ = 1 + s2 and

Ds = D + 4is(2τ − t ) + 4sτ (sτ − 2z),

D = 1 + 4t2 + 4z2,


 = 2 tan−1

[
4s(zs − τ )

1 + 4κ (z2 + τ 2)

]
.

With s → 0 it directly reduces to fundamental rogue-wave
solution [4]. The SS effect induces a drift velocity [46],
proportional to s, in the development of the rogue wave
along with a distorted time-varying phase profile presented
in Figs. 1(a) and 1(b), respectively. The SS effect induced
velocity also makes the rogue wave to appear tilted at its
emerging point [47].

Note that with s = 0, the phase profile of a fundamental
rogue wave ψ (t, z = 0) across the maximum amplitude at z =
0 remains flat with a π phase shift as seen in Fig. 2(b). A finite
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FIG. 2. (a) The phase term 
. (b) Total phase profiles of the
rogue wave from Eq. (4). The coefficient s is varied from 0 to 1.
The light-blue lines are when s = 0.

SS effect deforms the phase profile for a range of s values.
While that modification is the result of several contributions,
we highlight that the deformation around t = 0 is mostly due
to the pure phase term 
 in Eq. (4). In Fig. 2(a), we present the
dependence of 
 on t for a varying s from 0 to 1. We shall see
later that the 
 phase term is responsible for a sharp spectral
dip in the frequency profile of the rogue wave.

A. Second-order rogue-wave fission

Taking the exact analytic NLSE second-order rogue-wave
solution as the initial condition, we numerically solved Eq. (3)
for a range of s values. We find that in the presence of SS, the
second-order rogue wave experiences fission, breaking apart
the structure shown in Fig. 3(a) and its phase in Fig. 3(b) into
three fundamental rogue waves. We observe that the disinte-
grated first-order components display the same temporal and
phase characteristics as those in Fig. 1. Most importantly, we
observe that the SS effect also shifts the disintegrated rogue
waves in the t direction.

When s = 0, the growth of MI for each of these funda-
mental rogue waves is the same, resulting in the bound state
formation of a second-order rogue wave. However, the SS
effect breaks this degeneracy, allowing a space-time-varying
MI development among the individual rogue waves. Each of
the breakaway rogue waves experiences different translational
distance in the positive t direction, inhibiting the bound state,
and leading to three fundamental rogue waves each appear-
ing in a distinct position and time. Note that with a weak
perturbation (s = 0.04), the transient fission state with three
fundamental rogue waves linked together are marked within
the dashed white box in Figs. 3(c) and 3(d). Within this box,
a doublet with two conjoined first-order rogue waves formed
in the right side while the other is on the left. With a stronger
s, separation distance among the disintegrated rogue waves
increases as shown in the temporal evolutions in Figs. 3(e)
and 3(g) with changing phase profiles as evident in Figs. 3(f)
and 3(h). The modulated phase profile of each of the separated
rogue waves closely matches that of the first-order rogue wave
shown in Fig. 1(b).

B. Third-order rogue-wave fission

The effect of SS on a third-order rogue wave shown in
Figs. 4(a) and 4(b) is similar to that on the second-order
one. To observe its fission under the influence of nonzero

FIG. 3. A second-order rogue wave under the influence of SS ef-
fect. Temporal and phase profiles when (a, b) s = 0.0, (c, d) s = 0.04,
(e, f) s = 0.08, and (g, h) s = 0.2.

s, we plot a few examples. When s = 0.04, the onset of a
second-order rogue wave within the white-dotted box is clear,
along with a group of three underdeveloped first-order rogue
waves to its right. This is observable in Figs. 4(c) and 4(d).
The emerging point is slightly translated towards the positive
t . When s = 0.06, the fission produces a triplet within the
white-dotted box instead of a second-order rogue wave. The
triplet corresponds to a transient state of three conjoined first-
order rogue waves. Note that there is another group of three
first-order rogue waves to its right. These are tied to the three
underdeveloped rogue waves that appear to the right-hand side
of the white-dotted box in Figs. 4(c) and 4(d).

When s is stronger, at 0.2, the third-order rogue wave
completely breaks apart into six fundamental rogue waves.
This is shown in Figs. 4(g) and 4(h). They are well separated
and arranged in an asymmetric way, located at transversely
shifted positions. Rogue waves 2, 3, and 5 are linked to the
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FIG. 4. Temporal and phase profiles of a third-order rogue wave
when (a), (b) s = 0, (c), (d) s = 0.01, (e), (f) s = 0.06, and (g), (h)
s = 0.2.

second-order rogue wave and triplet in Figs. 4(c) and 4(d)
and Figs. 4(e) and 4(f), respecitvely, whereas rogue waves 1,
4, and 6 correspond to the three first-order rogue waves that
disintegrate at smaller s values beside the second-order rogue
wave or triplet. The appearance of a second-order rogue wave
as shown in Figs. 4(c) and 4(d) at a small value s indicates
that under a weak perturbation, the higher-order rogue wave
disintegrates only partially, revealing its underlying composite
pattern. A comparatively strong perturbation is required to
achieve a complete disintegration.

C. Spectrum

The time-varying phase in each of the fissioned rogue
waves developed during the evolution under the SS effect
results in a sharp asymmetrical spectral broadening. To un-
derstand the spectral behavior, we study the exact solution of
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FIG. 5. Spectra at ψ (z = 0, t ) (a) with a finite 
 and (b) with

 = 0 when s is varied from 0 to 1. A cusp develops in all cases for
nonzero 
 except when s = 0.

a first-order rogue wave by taking the Fourier transformation
of Eq. (4) at z = 0. For a fundamental rogue wave with s = 0,
the spectrum is

F (ω, s = 0, z = 0) =
√

2π
[ − e− |ω|

2 + δ(ω)
]
, (5)

where δ is the Dirac delta.
For s �= 0, the expression becomes

F (ω, s, z = 0) =
√

2πδ(ω − s) −
{

a(s)eb(s)(ω−s)

(
ω + 1

s

)

[c(s)θ (s − ω)ed (s)(ω−s) + f (s)θ (ω − s)]

}
, (6)

where a(s), b(s), c(s), d (s), and f (s) are numerical coeffi-
cients that are not so crucial, while θ is the Heaviside step
function. One can observe that, due to the first factor on the
second line of Eq. (6), the Fourier transform becomes exactly
0 for ω = −1/s.

We plot several spectral profiles in Fig. 5(a) with s varying
from 0 to 1. For s = 0, the innermost triangular NLSE spectral
profile is symmetric around ω = 0. However, when s �= 0, the
spectral profiles become broadened and increasingly asym-
metric. Interestingly, a cusp appears in each of the profiles,
which is indicated by a black arrow in Fig. 5(a), at ω = −1/s.
If we artificially set the term 
 in Eq. (4) to be 0, the spec-
trum remains mostly unchanged but the cusp disappears. This
indicates that the time-varying nonlinear phase development
shown in Fig. 2(a) plays a key role in the spectral dynamics
with the SS effect.

These spectral features also arise in the numerical simu-
lations of SS-induced fission dynamics of higher-order rogue
waves. In Fig. 6(a) three distinct asymmetrical spectra 1, 2,
and 3 correspond to the three number-labeled rogue waves
formed in Figs. 3(g) and 3(h). Similarly, the spectra in
Fig. 6(b) correspond to the six disintegrated rogue waves pre-
sented in Figs. 4(g) and 4(h). While in Figs. 4(g) and 4(h) the
spectral features of rogue waves 1 and 6 appear undisturbed,
those from rogue waves 2–5 are mutually interacting, giving
rise to an interference pattern. Note that the same spectral cusp
which we have observed in the analytic first-order rogue wave
also arises in the higher-order cases and it is marked with
white arrows in Fig. 6.
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FIG. 6. (a), (b) Spectral profiles of the evolutions presented in
Figs. 3(g) and 3(h) and Figs. 4(g) and 4(h), respectively, with s = 0.2.
The number labels indicate the corresponding first-order rogue waves
in Figs. 3(g), 3(h), 4(g), and 4(h).

IV. EFFECT OF RIFS

The study of Raman effect on rogue waves has so far
been done mostly on the first-order rogue wave [48–50] and
breather solutions [51]. Similar studies on higher-order rogue
waves have not been reported until now. To include the RIFS
effect, we use the equation

i
∂ψ

∂z
− β2

2

∂2ψ

∂t2
+ γ ψ |ψ |2 − τRψ

∂|ψ |2
∂t

= 0, (7)

The RIFS effect in Eq. (7) is a non-Hamiltonian term, and
hence the equation does not exhibit an analytic solution. This
means that the energy of the evolving rogue wave structure
is not preserved [52]. As a result, when the rogue wave is
evolving in z, it dissipates energy, altering its amplitude and
width while the central frequency red-shifts.

Under a weak RIFS effect, the disintegration of higher-
order rogue wave follows similar steps as for the SS effect. For
instance, when we apply τR = 0.008 on a second-order rogue
wave and observe its fission, it breaks down into a doublet
(two first-order rogue waves joined together) to the left and
a first-order rogue wave to the right at around z = 30 and
t = 0, as shown in Fig. 7(a). The separated first-order rogue
wave immediately assumes the flight trajectory of a soliton
and gradually slows down. Along the path, while it deceler-
ates in the positive t direction, it emits red-shifted frequency
radiations as can be seen in Fig. 7(b). The energy dissipation
continues, forming a bent trajectory in the temporal domain.
Similar behaviors are noted for a third-order rogue-wave fis-
sion in Figs. 7(c) and 7(d). As a result of the noise-driven MI,
a breather-type structure forms at z ≈ 40, creating discrete
spectral components (a striped pattern) around ω = 0.

A complete disintegration of higher-order rogue waves
requires a stronger τR value. Figure 8(a) demonstrates a disin-
tegration of a second-order rogue wave into three fundamental
rogue waves when τR = 0.25. With such a strong RIFS ef-
fect, the separated rogue waves are distorted significantly. A
similar observation is also noted in the case of a third-order
rogue wave for the same value of τR as shown in Fig. 8(b).
The third-order rogue wave fissions into six heavily distorted
fundamental rogue waves.

FIG. 7. Impact of RIFS in (a) temporal and (b) spectral domains
for a second-order rogue wave with τR = 0.008, and (c) temporal and
(d) spectral domains for a third-order rogue wave with τR = 0.005.

A. Long-time evolution under RIFS effect and its
impact on the background

When a higher-order rogue wave emerges under the influ-
ence of RIFS effect, it significantly changes the neighboring
background wave, revealing rich dynamical features. This is
demonstrated in Fig. 9, where we simulate a second-order
rogue wave with τR = 0.004 for an extended propagation
length z of up to 50. The continuous-wave background is now
highly distorted, with a variety of other waves appearing in the
neighborhood. To classify the types of waves formed, we take
the solution at z = 43.8, indicated by a white dashed line in
the top panel in Fig. 9. The corresponding amplitude is plot-
ted in the middle panel. We select six representative profiles
(within shadows) from the solution at z = 43.8 and periodize
each of them hundreds of times to employ the local-IST
spectral analysis. This reveals their corresponding local-IST
spectra, from which we can identify the types of waves formed
around the emerging rogue wave [35]. The local-IST proce-
dure on the shaded localized structures reveals a combination

FIG. 8. Fission of (a) a second-order and (b) a third-order rogue
wave under the influence of a strong RIFS effect with τR = 0.25.
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FIG. 9. (Top) Long-time evolution of a second-order rogue wave
under the influence of RIFS effect with τR = 0.004. (Middle) Ampli-
tude extracted at z = 43.8 corresponding to the white dashed line in
the top panel. (Bottom) Local-IST spectra of the structures under the
shaded areas in the middle panel.

of IST bands. They are shown in the bottom panel in Fig. 9.
The classification is such that, if the number of bands is m,
the genus g of the structure is m − 1. The structures within the
green-shaded areas, i.e., (i) and (vi), have three spectral bands,
making them g = 2-type solutions, which are associated with
either breathers or rogue waves [37]. Similarly, (ii), (iii), and
(iv) in the pink-shaded areas exhibit two IST bands, belonging
to g = 1-type solutions and classified as solitons.

In the magenta-shaded area, a soliton is created from
the decelerating rogue wave. The corresponding eigenvalues
shown in (v) in the bottom panel is not centered around the
real line. This occurs because the shape of the soliton is
highly asymmetric. These observations indicate that higher-
order rogue waves under the influence of RIFS effect trigger
the formation of a series of other waves around it, such as
breathers and solitons.

Note that MI remains active in the wave field from the
beginning of the evolution. While the rogue wave is taking its
shape, the background instability seeded by noise also under-
goes amplification. The appearance of rogue waves at z = 30
reinforces the background MI to reach the first growth-return
cycle at z ≈ 40, and subsequent breather-type formation takes
place thereafter.

V. COMBINED EFFECT

We now address the case where all three perturbations—
TOD, SS, and RIFS effects—are present. We find that the
process of rogue-wave fission persists. Figure 10(a) is the
temporal evolution of a second-order rogue-wave fission. We
observe that all the disintegrated components assume the same
trajectory towards the positive t direction. When a higher-
order rogue wave fissions, the individual components appear
in a triangular arrangement in the t-z plane. For instance, in

FIG. 10. Combined effect of TOD, SS, and RIFS on higher-order
rogue waves. (a), (b) Temporal and spectral evolutions of a second-
order rogue wave with ε3 = 0.2, s = 0.10, and τR = 0.008. (c), (d)
Temporal and spectral evolutions of a third-order rogue wave with
ε3 = 0.15, s = 0.10, and τR = 0.005.

Fig. 3(g), rogue waves 1, 2, and 3 form a triangle. A similar
arrangement also appears for fission under the TOD effect,
except that rogue waves 1 and 3 develop in the opposite side
of 2. See Fig. 3 in Ref. [34]. When TOD and SS effects act
simultaneously, these opposite features cancel each other out,
aligning them in t . Since the RIFS effect is inversely propor-
tional to the pulse duration t0, the rogue-wave duration must
be short enough to come under the active influence of RIFS
effect. In Fig. 10(a), which shows the temporal evolution of a
second-order rogue wave with ε3 = 0.2, s = 0.10, and τR =
0.008, rogue waves 1 and 2 remain stationary because their
durations are too long to be affected by RIFS. However, rogue
wave 3 is at the trailing position and achieves comparatively
shorter duration that places it under the influence of RIFS,
resulting in a bent trajectory. For a more solid understanding,
an analytic treatment of this problem is essential. This will be
addressed in our future work.

The dynamics become more clear in the spectral domain
as shown in Fig. 10(b). Rogue waves 1 and 2 do not generate
red-shifted frequency components. Nevertheless, due to the
presence of TOD, they generate dispersive waves indicated
by the white arrow. On the contrary, rogue wave 3 undergoes
RIFS and continues to lose energy along the propagation.
The repeated compression stages of rogue wave 3 create a
cascaded emission of dispersive wave. A steady red-shifting
is clearly visible within the frequency range ω = 0 to −10,
as indicated by the white dashed arrow in Fig. 10(b). As
discussed earlier, a spectral cusp marked by the red arrow
appears due to the SS effect. The combined effect applied on a
third-order rogue wave follows similar dynamical features as
shown in Figs. 10(c) and 10(d).
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FIG. 11. Long-time evolutions of (a) Fig. 10(a) and (b) Fig. 10(c).

A. Long-time evolution under combined effects

As the system keeps evolving, the disintegrated rogue
waves eventually transform into a collection of fundamental
solitons. This is shown in Figs. 11(a) and 11(b), which are
the extended evolutions of Figs. 10(a) and 10(c), respectively.
The fission triggers a group of comparably low-amplitude and
straight-moving solitons around the central region, indicated
by the white dashed horizontal arrow. However, out of these
components broken out from the second-order rogue wave,
one transforms into a high-amplitude soliton that proceeds in
a bent trajectory. For a third-order rogue wave, two of the bro-
ken parts become the high-amplitude solitons. In both cases, a
breather-type formation emerges on the sides of the evolution
field due to MI. We note that the trajectories of low-amplitude
solitons around the central region are only weakly bent. Their
durations are not short enough to be influenced significantly
by the RIFS effect.

B. Demonstration in a long-pulse supercontinuum generation

The rogue-wave formation, its fission, and their subsequent
transformation to solitons can be observed in MI-induced
SCG. A long launch pulse corresponding to a higher-order
soliton of very large soliton number undergoes the MI and the
end product is hundreds of solitons [53,54]. We demonstrate
this numerically by simulating the propagation of N = 300
solitons in Eq. (1) with the combined effect of TOD, SS,
and RIFS. The evolution dynamics in the temporal domain
is presented in Fig. 12(a). It shows that the noise-driven MI
leads to the formation of rogue-wave-type substructures and
eventually transforms into many solitons. The onset of MI
is clearly visible in the spectral domain in Fig. 12(b) with
the appearance of two side lobes, indicated by the two white
arrows around ω = 0. The red arrow shows the discontinuity
in the spectral contents due to the SS effect.

A plane-wave background can be considered as an ensem-
ble of an infinite number of solitons [30,55]. Noise among the
solitons can spontaneously trigger MI, which leads to the de-
velopment of both fundamental as well as higher-order rogue
waves [33]. If the formation is a fundamental rogue wave,
the concurrent influence of TOD, SS, and RIFS transforms it
directly into a small number of those solitons [56]. However,
in the same scenario, if MI contributes to form a higher-order
rogue wave, it initially disintegrates into a group of funda-
mental rogue waves, which then in the later stage transform
into a bunch of solitons as shown in Fig. 12(a). A magnified

FIG. 12. (a) Temporal and (b) spectral evolutions of a N = 300
soliton when s = 0.1, ε3 = 0.03, and τR = 0.001. (c) A magnified
plot around the central region indicated by the two parallel white
dotted lines where the breather-type structure transforms to many
solitons.

plot of these transformations are shown in Fig. 12(c). In fact,
this multistep process of transformation is not quite apparent
in Figs. 12(a) or 12(c). This is because the applied pertur-
bations are too strong to observe the delicate nature of the
higher-order rogue-wave fission procedure and their succes-
sive transformation to solitons. The disintegrated higher-order
rogue waves are highly distorted and already in a state of
soliton formation, making the observation of individual steps
difficult. From Fig. 12(c), we can only say that whether it
is a fundamental rogue wave or a higher-order rogue wave
that forms in the initial stage, the end product of the com-
bined effects is always a large collection of fundamental
solitons.

In an effort to capture a clear higher-order rogue-wave
fission and its transformation steps to solitons in a MI-induced
SCG, we solve the system with the identical initial condition,
i.e., N = 300, but with very weak perturbations of s = 0.02,
ε3 = 0.002, and τR = 0.0001. This is shown in Fig. 13(a)
with an initial evolution distance of z = 2π . For reference, the
evolution in a system without the perturbations is presented in
Fig. 13(b) for the same initial condition, including the seeded
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FIG. 13. Evolution of a higher-order soliton of N = 300 when (a) s = 0.02, ε3 = 0.002, and τR = 0.0001, and (b) in the absence of the
higher-order effects. (iv), (v), and (vi) in (b) are the instances of second-order rogue waves in the unperturbed system. The corresponding
second-order rogue-wave fissions are shown in (i), (ii), and (iii).

noise. In the latter, breather-type formations appear with no
transverse velocity. They make frequent collisions, leading
to higher-order rogue-wave formations. A collision between
two breathers creates a second-order rogue wave around the
collision point, a collision among three creates a third-order
rogue wave, and so on. Note that the higher-order rogue
waves can also appear independently without the collision.
Several instances of second-order rogue waves are isolated in
Fig. 13(b) as (iv), (v), and (vi) within the red boxes. Corre-
sponding enlarged views of them are presented at the bottom.
We should mention that, due to the nonideal initial condition,
the amplitudes of the formed second-order rogue waves are
not exactly 5 as in the ideal case.

The isolated second-order rogue waves in Fig. 13(b) appear
disintegrated in the presence of the weak perturbations as (i),
(ii), and (iii) in Fig. 13(a). Their magnified views clearly in-
dicate that each of the second-order rogue waves breaks apart
into three fundamental rogue waves. The white dotted lines
are marking the exact locations of the second-order rogue-
wave formations and their corresponding fission positions.
Note that due to the SS effect, the fission positions are slightly
shifted in the positive t direction.

VI. CONCLUSION

We showed that a higher-order rogue wave can undergo
fission in a system weakly perturbed by SS and RIFS. Em-
ploying the second- and third-order rogue-wave solutions
in the presence of these effects, we revealed their breaking
mechanisms. In the weakly perturbed regime, the higher-order
rogue wave first partially disintegrates, revealing its hierarchi-
cal pattern. For instance, the second-order rogue wave exhibits

one doublet and a first-order rogue wave. Similarly, the third-
order rogue wave exposed that it is built on a second-order
rogue wave and three separate fundamental rogue waves. As
the perturbations become stronger, the higher-order rogue
waves undergo the intermediary process of rogue-wave fission
into their constituent fundamental rogue waves, then eventu-
ally into solitons. Also, we demonstrate that since RIFS is a
dissipative term, the disintegrated rogue wave loses energy
and decelerates during its evolution, which appears as a red
shift in the frequency domain. It eventually transforms the
rogue wave into one or more high-amplitude fundamental
solitons.

With the simultaneous influence of TOD, SS, and RIFS,
we observed that the higher-order rogue waves trigger a
collection of solitons on the background after the fission.
This is a multistep process and the fission of higher-order
rogue waves can only be observed when they are under the
influence of weak perturbations. In the frequency domain
this rogue-wave-to-soliton transformation appears as blue-
and red-shifted spectral components with an asymmetric pro-
file. These observations provide insights into the process of
MI, which can be beneficial for interpreting various nonlin-
ear phenomena in optics, hydrodynamics, and other similar
systems.

This study is a step forward in demonstrating how major
fiber optical effects can influence the evolution of higher-order
rogue waves. There are still many open questions that need to
be answered. For example, we do not know why from multiple
disintegrated rogue waves, only one or two rogue waves are
taking the path to become the high-amplitude fundamental
solitons. An analytical approach is likely required to address
this question. Moreover, we understand that the application
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of the local-IST procedure to identify solitons, breathers, and
rogue waves in a chaotic wave field as we employed here is
still a developing research area. We believe our work in this
manuscript will stimulate more studies and discussions in this
direction.
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