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We study the role of dark and bright autoionizing states (AISs) in photoionization and high-order harmonic
generation (HHG) using a one-dimensional helium model. This model allows numerical integration of the
time-dependent Schrödinger equation beyond the single-electron approximation, completely taking into account
electronic correlation. We find the level structure of the system and the spatial distribution of the electronic
density for several states, including AIS. Studying the HHG efficiency as a function of the detuning from the
resonances with AISs, we find the HHG enhancement lines. The shapes of these lines are different from the
corresponding Fano lines in photoelectronic spectra, in agreement with experimental studies on HHG in helium.
Moreover, we simulate HHG under the conditions when the fundamental frequency is close to the even-order
multiphoton resonance with the dark AIS. We find enhanced generation of the neighboring odd harmonics. The
details of the enhancement lines for these harmonics can be understood by taking into account the temporal
delay between the nonresonant and resonant XUV emissions; this delay is defined by the AIS lifetime. Finally,
our simulations show that resonances with dark and bright AISs enhance HHG to a similar extent.
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I. INTRODUCTION

Two-electron atoms are probably the simplest sys-
tems where electronic correlations play a crucial role.
Schrödinger’s equation describing correlated three-body
Coulomb dynamics cannot be resolved analytically; several
approximate, but very accurate, analytical methods have been
developed to describe the helium atom in the absence of
the external field [1,2]. In the presence of an intense laser
field the numerical integration of Schrödinger’s equation is
the most effective tool to study the correlated dynamics in
a two-electron system. This can be done directly [3] for the
three-dimensional (3D) helium atom; however, such a calcula-
tion is feasible for only a limited range of field parameters, and
anyway, it is very computationally demanding (which makes it
relevant to consider a simplified 3D two-electron system [4]).
Moreover, many aspects of the multielectron dynamics can be
simulated via a one-dimensional (1D) helium model [5–8]. In
particular, it can be used to study such dynamics in the laser
field [9–19].

The existence of autoionizing states (AISs; quasistable
atomic states whose excitation energies exceed the ionization
threshold) is one of the striking multielectronic phenomena.
The role of these states in high-order harmonic generation
(HHG) is actively being studied both theoretically [20–25]
and experimentally [26–30] (for a review see [31] and ref-
erences therein). When the one-photon transition from an AIS
to the ground state is allowed (such an AIS is called a bright
one) and the transition frequency is close to the harmonic

*strelkov.v@gmail.com

frequency, the HHG can be strongly enhanced (by more than
an order of magnitude). This can be attributed to the AIS
population from the continuum in the rescattering process
and XUV emission via the AIS–ground-state transition [22].
Moreover, HHG enhancement by a bright AIS dressed by two
laser photons was observed [32].

If the transition is forbidden, the AIS is called a dark one. In
particular, this is the case when the AIS has the same parity as
the ground one. This AIS can be populated by an even number
of laser photons, but the XUV at the AIS–ground-state fre-
quency cannot be emitted. However, the dark AIS dressed by
the laser photon can absorb [33,34] or emit an XUV photon.
Very recently, HHG enhancement due to dressed dark AIS was
observed in an indium plasma plume [35].

In this paper we study the resonant properties of
HHG using the numerical integration of the time-dependent
Schrödinger equation (TDSE) for 1D helium. We investigate
the level structure of the 1D helium atom and ion with an
emphasis on the AIS properties. Knowledge of the level struc-
ture allows attributing HHG enhancement found in numerical
calculations to resonances with certain AISs. In particular, we
investigate the enhancement of two neighboring odd harmon-
ics due to a single resonance with the dark AIS. Calculating
intensities and phases of these harmonics, we show that the
shape of the resonant harmonic enhancement line can be
linked to the attosecond properties of the resonant XUV emis-
sion.

II. LEVEL STRUCTURE OF 1D HELIUM

We integrate numerically the two-electron TDSE for 1D
helium in an external field E (t ) (atomic units are used in all
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equations unless otherwise specified):

i
∂

∂t
ψ (x, y, t )

=
[
−1

2

∂2

∂x2
− 1

2

∂2

∂y2
+ V (x, y) + (x + y)E (t )

]
ψ (x, y, t ),

(1)

where x and y are the electrons’ coordinates and V (x, y) is the
atomic potential. Note that only a linearly polarized field E (t )
can be considered within the 1D helium model.

The atomic potential is

V (x, y) = −2√
x2 + a2

+ −2√
y2 + a2

+ 1√
(x − y)2 + b2

− iVabs(x) − iVabs(y), (2)

where a and b are constants and Vabs describes the wave-
function absorption at the numerical box boundaries; this
potential is zero everywhere except in the narrow region
near the boundaries (see the Appendix). We use a = 1/

√
2 =

0.707 and b = 1/
√

3 = 0.577 to reproduce the first and
second ionization potentials of the actual helium (see the
Appendix). Note that a similar value of the latter constant was
found in [17], and the former constant was found in Ref. [36].
The TDSE (1) is solved numerically with the approach de-
scribed in [37]. Calculations described in this section and
Sec. III use E = 0, while in other sections E �= 0. The solution
is done on a spatial grid of N × N nodes; the number N
depends on the conditions: for calculations with zero field or
an XUV field we use N = 500, and for calculations with an IR
field we use N = 1000, so that the free wave packet oscillating
in the field is described adequately. The spatial step is 0.2 a.u.;
100 nodes at the boundaries of the numerical box are occupied
by the (almost nonreflecting) absorbing layers where Vabs �= 0.

The level structures of the ion and the atom are illustrated
in Fig. 1; the method for calculating the energies of the levels
is described in the Appendix. We present both the binding
energies of the levels (multiplied by −1) and the excitation
energies with respect to the atomic ground state.

An atomic level is characterized by a pair of integer quan-
tum numbers nx and ny; nx,y = 0, 1, . . . . The state is even if
nx + ny is even and odd if nx + ny is odd. A quantum number
can be understood as describing the state of one electron.1

So the states (0, n) are the bound atomic states. For n � 1
these are the Rydberg states. The state (1,1) is the first doubly
excited state. Using the modified Pöschl-Teller potential (see
the Appendix), we can estimate the energy of this state in
zero approximation neglecting the electron-electron interac-
tion. Within this approximation the energy of the state is twice
the energy E1 given by Eq. (A4); this gives 2 × −18.6 eV =
−37.2 eV, which is in reasonable agreement with the level
energy of −34.0 eV found by numerically solving the TDSE.

1In contrast to the 3D atom, the ground state in a one-electron
1D system is usually denoted by n = 0 (so that n gives the number
of wave-function nodes), not n = 1; see, for instance, Eq. (A4).
Keeping this tradition, we use nx,y = 0, 1, . . . to number the states
of our system.

FIG. 1. The level structure of the model 1D helium atom and the
1D hydrogenlike ion. Zero of the excitation energy corresponds to
the energy of the ground state of the atom; zero of the binding energy
corresponds to the second ionization threshold.

III. SPATIAL DISTRIBUTION OF THE ELECTRONIC
DENSITY IN THE AIS

The wave functions for several states found via the numer-
ical TDSE solution are shown in Fig. 2, and details of the
corresponding calculations are presented in Sec. A 2

Let us discuss the properties of the wave functions shown
in Fig. 2. First, the potential and the wave functions are
symmetric with respect to the line y = x. This is a result
of the indistinguishability of the electrons. Note that we as-
sume that the two electrons can find themselves in the same
point, so we consider parahelium. Second, in Fig. 2 one can
see that the ground (0,0) and dark AIS (1,1) states are even
because the wave functions do not change sign after the inver-
sion of the space coordinates x → −x, y → −y and the first
excited state (0,1) is odd (see the middle and right columns in
Fig. 2). Third, the AIS wave function consists of a part which
is well localized near the origin and the running waves, which
“leak out” from the atom along the valleys (x = 0 and y = 0)
of the potential (see Fig. 10).

IV. RESONANCES WITH AUTOIONIZING STATES IN
ONE- AND TWO-PHOTON IONIZATION

In this section we study the resonant features appearing in
the photoelectronic spectrum due to bright and dark AISs. To
calculate the photoelectronic spectrum we numerically solve
the TDSE for an atom irradiated by an XUV field, thus finding
the wave function as a function of space and time ψ (x, y, t ).
Then we calculate its spectrum ψ (x, y, ω) and the energy
distribution for the part of the wave function where at least
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FIG. 2. Wave functions of several states in a 1D helium atom. Absolute value squared (left column) and real (middle column) and imaginary
(right column) parts of the wave functions of the ground (0,0) (top row), first excited (0,1) (middle row), and lowest dark AIS (1,1) (bottom
row) states. (Note the different scale in the bottom row.)

one electron is free:2

W̃ (ω) =
∫

x2+y2>r2
dxdy|ψ (x, y, ω)|2. (3)

We used r = 30 and checked that the results are not sensi-
tive to this parameter provided that r > 20. In Eq. (3) ω is
the binding energy (negative when the system is in atomic
bound states or in ionic bound states plus a free electron).
It is more convenient to deal with the excitation energy
ω − E0, where E0 = −79.3 eV is the atomic ground-state
energy. In the excitation energy range between the first ion-
ization energy (24.9 eV) and the first excited state of the
ion (53.9 eV) photoionization leads to the appearance of a
free electron and an ion in the ground state. So the energy

2This operation requires storage of a large amount of data in
computer memory; to make it less demanding, we store the wave
function not at every step of numerical integration dt = 0.05, but at
every eighth step. Correspondingly, we find only the lowest-energy
part of the photoelectronic spectrum. This is definitely sufficient here
because the inverse step of the numerical integration is much higher
than reasonable electronic energies.

of the ion is defined; thus, the spectrum (3) directly cor-
responds to the photoelectron spectrum. Figure 3 presents
the spectrum as a function of the excitation energy. Note
that the spectra are normalized, so they are not affected by
the absorption of the wave packet at the boundaries of the
numerical grid.

The bright AISs lead to resonant features in the spectrum
of the electrons detached due to one-photon ionization. To find
this spectrum we solve the TDSE for an atom irradiated by a
short XUV pulse. Its central frequency is 50.7 eV [thus close
to the lowest bright AIS (1,2) excitation energy], its duration
is 1.25 fs (the FWHM bandwidth is 3 eV), the peak intensity
is 3.5 × 1012 W/cm2 (the field amplitude is 0.01 a.u.), and the
pulse shape is sin2. The TDSE is solved over a time interval
of 200 fs, thus over the irradiation time plus a long time after
the pulse. For the short XUV pulse used here the latter time
period is important for the correct photoelectron spectrum cal-
culation because the AISs continue to decay after the pulse has
already passed. Calculating the spectrum over the whole time,
we find the spectrum with the Fano [38] feature appearing
in the photoelectron spectrum in Fig. 3 (red line). Note that
a similar feature was found in the 1D helium photoelectron
spectrum in Ref. [17]. We have found the width and the Fano
parameter of the line, which are shown in the graph.
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FIG. 3. Normalized photoelectron spectra calculated for the case
of irradiation of the atom by one-color (thick red curve) and two-
color (dashed blue and thin violet curves) XUV fields; see the text
for more details. The two-photon resonance leads to a Fano feature
in the total spectrum (thin violet curve) due to the interference
of the resonant and nonresonant terms, whereas the resonant term
can be separated by calculating the spectrum over the time interval
after the irradiation (dashed blue curve). The central frequencies, the
FWHM, and the Fano parameter of the peaks are shown in the graph.

To find the resonances with the dark AIS, we solve the
TDSE for an atom irradiated by a two-color XUV pulse. The
carrier frequencies are 130 and 85 eV; the pulse duration is
100 as. These frequencies of the fields are chosen to have a
two-photon response in the studied spectral range (due to the
Raman-type transition 130 − 85 = 45 eV) and no one-photon
response in this range. The short duration of the pulse provides
the wide spectral range covered by the two-photon response
(more precisely, the spectrum of the field squared has a wide
peak near 45 eV, and the FWHM of this peak is 27 eV).
The fields’ amplitudes are 1.0 a.u. Such high amplitudes are
chosen to have a pronounced yield of the two-photon pro-
cess. The TDSE integration time is 50 fs. Calculating the
spectrum over the whole time, we find the spectrum with
the Fano feature (see the solid violet curve in Fig. 3). This
feature appears due to the interference of the nonresonant and
resonant contributions to the two-photon ionization; the latter
contribution is due to the dark AIS. Moreover, calculating the
spectrum for the time interval where the field is off, we find
only the resonant contribution (see the dashed blue line).

Note that the authors of Ref. [10] studied the parameters of
the Fano resonance appearing as a result of the single-photon
ionization from the first atomic excited state to the dark AIS.
The width of the resonance is very close to that found in our
simulations (hence, the parameters of the 1D He potential in
Ref. [10] are a = b = 1). The Fano parameter is also negative,
but it is much higher; thus, the line shapes of the single-photon
transition from the first excited state to the (1,1) AIS and of the
two-photon transition from the ground state to the (1,1) AIS
differ essentially.

(a)

(b)

FIG. 4. (a) Intensity and (b) phase of harmonics 15 (blue circles),
17 (violet triangles), and 19 (cyan diamonds) in the vicinity of the
17-photon resonance with the bright AIS (1,2).

V. RESONANCES WITH AUTOIONIZING STATES IN HHG

In this section we study the role of resonances with the
AISs in HHG simulating the XUV spectrum emitted by our
model atom in an external laser field. The peak pulse intensity
is 8 × 1014 W/cm2, and the fundamental frequency ωl is
about 3 eV [the wavelength is about 400 nm, the cutoff is
approximately at harmonic 19 (H19) to H21, and the Keldysh
parameter is γ ≈ 0.95]; it is tuned near the 14th-order res-
onance with the transition from the ground state to the dark
(1,1) AIS and near the 17th-order resonance with the bright
(1,2) AIS. The laser pulse intensity increases for four cycles,
and then it is constant for eight cycles and then decreases
down to zero for four cycles; the slopes of the pulse have sin2

shape.
In Fig. 4 we show the intensities and phases of H15, H17,

and H19 as a function of laser frequency (the horizontal axis
above the graph) in the vicinity of the resonance with the
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FIG. 5. HHG spectra in the vicinity of the 14-photon resonance
with the dark AIS (1,1). The fundamental frequency and the fre-
quency of harmonic 14 is shown in the graph.

bright AIS. The H17 frequency is shown for reference in the
axis below the graph. We can see a pronounced enhance-
ment of the resonant harmonic intensity. The “enhancement
line” (enhancement as a function of the laser frequency) is
shifted and broadened with respect to the resonant line in
the one-photon photoelectron spectrum shown in Fig. 3. This
can be attributed to the line modification by the laser field
(to the Stark shift of the levels and photoionization of the
AIS).3 Moreover, there is even a qualitative difference be-
tween the shapes of the lines in the photoelectronic spectrum
and harmonic enhancement: in the spectrum the dip is on the
high-energy side of the maximum; in the enhancement line
it is on the low-energy side. This agrees with experimental
studies on HHG in helium: in the photoabsorption spectrum
[41] the dip is on the high-energy side, and in the XUV
spectrum [27] it is on the low-energy one. A similar difference
was discussed in [24].

One can also see a pronounced modification of the har-
monic phase by the resonance; such distortion was measured
in [42]. Also there is some enhancement of the harmonic
above the resonance (H19) and almost no enhancement of
the harmonic below it (H15). However, the phases of all three
harmonics are affected by the resonance. The total variation of
the laser frequency in Fig. 4 is small (approximately 5%), so
the nonresonant contribution to the generation of a harmonic
should not vary much; the resonant one vanishes at the edges
of the considered frequency range. Thus, the total phase vari-
ation over this range for a harmonic is approximately either
zero or 2π .

3Note that the Stark shift of the ground-state energy can be esti-
mated [39] as −αE 2/2, where α is the polarizability of the atom.
Using the experimental polarizability from [40], we find that the
shift in the used field is about 0.5 eV. This value can be used as
an order-of-magnitude estimation of the Stark shifts of the transition
frequencies. The value of the resonant frequency shift in Fig. 4 agrees
with this estimation.

(a)

(b)

FIG. 6. (a) Intensity and (b) phase of harmonics 11 (yellow tri-
angles), 13 (red squares), 15 (blue circles), and 17 (violet triangles)
in the vicinity of the 14-photon resonance with the dark AIS (1,1).

The HHG modification by the dark AIS has been studied
much less than that for the bright AIS. Very recently, the
resonance of an even number of laser photons with the dark
AIS was considered [35], and an enhancement of the har-
monic with an order differing by unity from this number was
observed. This phenomenon can be understood as a resonance
between the harmonic and the dark AIS, dressed by a laser
photon.

Our simulations presented in Fig. 5 show that in the case
of the 14th-order resonance with the dark AIS the two neigh-
boring harmonics (i.e., H13 and H15) are enhanced by the
resonance. Note that there are no one-photon resonances that
can cause the HHG enhancement in the considered spectral
range (see Fig. 3).

To study this enhancement in more detail we present in
Fig. 6 the intensity of H13 and H15 as a function of the fun-
damental frequency in the vicinity of the 14-photon resonance
with the dark AIS. Comparing Fig. 6 with Fig. 4, we can see
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that the enhancements caused by the resonances with dark
and bright AISs are comparable in the considered conditions.
The width of the enhancement lines for H13 and H15 are
close to the one in the two-photon photoelectron spectrum in
Fig. 3; the center of the HHG enhancement line is slightly
shifted due to the Stark shift of the levels in the laser field.
Counterintuitively, the enhancement lines for H13 (red) and
H15 (blue) are different: the peak enhancement is achieved for
different laser frequencies; moreover, zero enhancement for
H13 near 44.6 eV does not correspond to any specific feature
of H15 at this frequency.

The difference in the enhancement lines for H13 and H15
can be understood by taking into account that XUV emission
time is different under resonant and nonresonant conditions:
one can assume that, similar to the HHG enhancement with
the bright AIS, the resonant XUV emission is delayed (with
respect to the nonresonant one) by the AIS lifetime [43,44]. In
more detail, the difference in the harmonic enhancement lines
can be explained as follows.

Similar to the Fano line in the photoionization cross sec-
tion, the harmonic enhancement line originates from the
interference of the resonant and nonresonant terms [24] in the
harmonic amplitude. The phase of the resonant term varies
strongly near the resonance as a function of the detuning,
whereas the phase of the nonresonant term does not. Let us de-
note the phase difference of these terms for the qth harmonic
as

δϕq = ϕr
q − ϕnr

q . (4)

The difference in the H15 and H13 phases 
ϕ = ϕ15 −
ϕ13 defines the emission time [45] of the attosecond pulse
consisting of H15 and H13: te = 
ϕ/(2ωl ). (Note that 
ϕ

should not be confused with δϕq: the former gives the phase
difference between the neighboring harmonics, whereas δϕq

describes the interference of the resonant and nonresonant
terms of the same harmonic.)

Far from the resonance the nonresonant term dominates:
ϕq ≈ ϕnr

q , so the emission time is defined by this term:


ϕnr = ϕnr
15 − ϕnr

13 = 2tnr
e ωl . (5)

Note that the phases of the nonresonant terms do not vary
much within the considered small detuning interval of the
fundamental; in particular, this equation is valid near the res-
onance as well.

Near the resonance the resonant term dominates: ϕq ≈ ϕr
q,

so the emission time is defined by this term. This emission
time, as we mentioned above, is t r

e = tnr
e + τ , where τ is the

AIS lifetime. So near the resonance


ϕr = ϕr
15 − ϕr

13 = 2
(
tnr
e + τ

)
ωl . (6)

From Eqs. (4), (5), and (6) we conclude that near the res-
onance δϕ15 − δϕ13 = 2τωl . So the enhancement line shapes
defined by the interference of resonant and nonresonant con-
tributions to the harmonic emission are different for H13 and
H15.

From the harmonic phases shown in Fig. 6 we find that

ϕnr ≈ 0 and 
ϕr ≈ 2.8 rad. From Eqs. (5) and (6) we find
τ = 300 as. This agrees with the fact that this delay is compa-
rable to but less than the inverse FWHM of the resonant term

FIG. 7. Attosecond pulses produced by the harmonics near the
resonance with the dark AIS (dashed, dotted, and dash-dotted lines)
and by the cutoff harmonics (solid lines) for the three fundamental
frequencies shown in the graph.

in the two-photon ionization cross section (blue line in Fig. 3),
namely, 1/� = 470 as.

Note that in Ref. [42] the resonant phase was measured
under some detuning from the resonance because closer to
the resonance the intensity difference between the resonant
and nonresonant harmonics makes RABBIT (reconstruction
of attosecond beating by interference of two-photon transi-
tions) measurements problematic. For HHG enhanced by the
dark AIS such measurements can be done near the center of
the resonance because the two harmonics are enhanced in a
similar way.

Figure 7 shows the attosecond pulses obtained from the
cutoff harmonics (H19–H23) and harmonics near the 14-
photon resonance with dark AIS (H13–H17). Naturally, the
emission time of the cutoff attosecond pulse does not depend
on the detuning from the resonance. So this emission time
gives a straightforward reference for the emission times of
the attosecond pulses obtained from H13 to H17. The latter
pulses in the off-resonance conditions are emitted before the
cutoff attosecond pulse. (This shows that the short quantum
path dominates in HHG response; see [45].) The H13–H17
pulses are emitted approximately at the same time for the
above-resonance conditions (laser frequency of 3.22 eV) and
the below-resonance ones (laser frequency of 3.07 eV), so the
resonance does not affect the attosecond pulses emission. In
the resonant case the attosecond pulse is much more intense
and emitted later than in the off-resonant cases, in agreement
with the considerations presented above. The delay of 310 as
is close to the one found above from the harmonic phases.

VI. CONCLUSIONS

In this paper we studied the role of dark and bright AISs
in resonant HHG using the 1D helium model allowing ab
initio numerical TDSE simulations beyond the single-electron
approximation.
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The analytical model using a modified Pöschl-Teller po-
tential allowed us to obtain a reasonable estimate of the
lowest doubly excited state energy. We presented the structure
of the (lowest) levels of the studied system. The simplicity
of the system allows straightforward graphical presenta-
tion of the wave functions of different states, including the
AI ones.

We made detailed simulations of the interaction of the
atom with electromagnetic field. The photoelectronic spectra
demonstrated pronounced features due to resonances with
AISs. In particular, the resonances lead to asymmetric Fano
peaks in the spectrum of the photoelectrons appearing due to
one- and two-photon ionization.

We simulated the HHG enhancement via the resonance
with the bright AIS and found a pronounced difference be-
tween the shapes of the above-mentioned Fano maximum in
the photoelectronic spectrum and the harmonic enhancement
line. We found an essential enhancement of the resonant har-
monic, some enhancement of the harmonic above it, and no
enhancement of the harmonic below it.

Moreover, we simulated HHG under the conditions in
which the fundamental frequency is close to a multipho-
ton resonance of an even order with the dark AIS. We
found enhanced generation of the neighboring harmonics.
The shapes of the enhancement lines for the harmonics are
different. The difference can be understood by taking into
account the harmonic phase properties defined by a delay
between the nonresonant and resonant XUV emissions; this
delay is close to the AIS lifetime. Simultaneous enhancement
of the two harmonics by the resonance with the dark AIS
makes the experimental measurement of resonance-induced
dephasing between them feasible. Finally, our simulations
showed that the HHG enhancement rates due to resonances
with the dark and bright AISs are comparable in the studied
system.
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APPENDIX

1. One-dimensional hydrogenlike ion

A 1D hydrogen atom or hydrogenlike ion with a Coulomb
potential or a soft-Coulomb potential was studied in a num-
ber of papers [46–51]. In contrast to the 3D system, the
bound state of the 1D hydrogen cannot be found analyti-
cally for either the Coulomb or soft-Coulomb potential. Here
we describe our numerical method and approximate an an-
alytical approach to find the eigenstates’ energies and wave
functions.

To study a He+ ion we remove the electron-electron
repulsion term in Eq. (2). Then the TDSE describes two non-

(a)

(b)

FIG. 8. (a) Soft-Coulomb and (b) modified Pöschl-Teller po-
tentials. Thin solid and dashed lines show the ground- and
first-excited-state wave -functions, respectively.

interacting ions, and the interpretation of the TDSE solution
results in terms of a single ion is straightforward. The ion’s
potential is

Vion(x) = −2√
x2 + a2

− iVabs(x). (A1)

Under a = 1/
√

2 the ground-state energy of the model ion
is equal to the actual ionization energy of He+ [36]. The
soft-Coulomb potential [the first term in Eq. (A1)] is shown
in Fig. 8(a), and the absorbing potential (the second term) is
shown in Fig. 9. The absorption is zero in the central part
of the numerical box and turns on softly for |x| > xabs. We
choose xabs = x0 − 100dx (x0 is the boundary position and
dx = 0.2 is the spatial step of the TDSE integration) and
V max

abs = 0.1/dt (dt = 0.05 is the temporal step). A soft in-
crease of the absorption for |x| > xabs in conjunction with the
proper choice of xabs and V max

abs provides vanishing reflection
for different wavelengths.

Solving the TDSE, we find the energies of the ground state
and several first excited ones. The energy and wave functions
of the states are found as follows. The initial wave function of
the nth state (n = 0, 1, . . . ) is set as the corresponding wave
function of a harmonic oscillator; then the wave-function evo-
lution is simulated with a numerical TDSE solution.
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FIG. 9. The absorbing potential used in the numerical TDSE
solution. See the text for more details.

The part of the initial wave function that is orthogonal to
the bound eigenstates of the ion spreads in space and finally
is absorbed by the absorbing boundary of the numerical box.
So the part of the wave function bound near the origin corre-
sponds to the eigenstate of the potential (A1) (more precisely,
it corresponds to a superposition of the eigenstates; however,
choosing the initial wave function with a proper number of
zeros guarantees that the weight of all eigenstates except one
is very small). The numerical TDSE solution gives us the
wave function as a function of space and time ψ (x, y, t ). We
calculate its spectrum ψ (x, y, ω) and the following energy
distribution:

W (ω) =
∫

dxdy|ψ (x, y, ω)|2. (A2)

(In contrast to Eq. (3), here the integration is done over the
whole numerical box.) The energy of the maximum in this
distribution gives the energy of the found state; this negative
energy is the state’s binding energy, multiplied by −1. Other
peaks in the energy distribution, if any, are much weaker;
the ratio of the peaks to the main one gives the weights
of the other eigenstates in the found state. (In our calculations
the difference was six orders of magnitude when finding the
wave function of the ground state and more than four orders of
magnitude when finding wave functions of the first and second
excited states.)

In [46] the approximate equation for the ground states’
energies of the truncated Coulomb potential was found. The
accuracy of the approximation becomes better as the trun-
cation parameter (roughly analogous to the parameter a)
tends to zero. However, under a = 1/

√
2 the accuracy for the

ground and first excited states is insufficient. A much better
analytical approach can be developed by approximating the
soft-Coulomb potential (A1) with the modified Pöschl-Teller
potential:

VPT(x) = −α2

2

λ(λ − 1)

cosh2(αx)
, (A3)

FIG. 10. Potential given by Eq. (2) describing the model 1D
helium atom.

where α and λ are parameters. The bound states’ energies for
this potential are [52]

En = −α2

2
(λ − 1 − n)2,

n = 0, 1, . . . ,

n � λ − 1, (A4)

and an even n gives the energy of an even state, and an odd n
gives the energy of an odd one.

The parameters α and λ are chosen so that (i) the minimum
of the potential (A3) is equal to the minimum of the potential
(A1) and (ii) the energy of the ground state E0 is equal in
both potentials. The obtained approximated potential is shown
in Fig. 8(b). Using Eq. (A4), we find the energy of the first
excited state E1 = −18.6 eV.

2. One-dimensional helium: Calculation of the electronic
density spatial distribution in the AIS

Setting b ≈ a in potential (2), we consider a two-electron
atom. The parameter b is chosen so that the atom ionization
energy is close to that of real helium. The found value is
b = 1/

√
3 = 0.577. The energy of the atomic ground state is

the energy of the ionic ground state (−54.4 eV) minus the
ionization energy 24.9 eV (24.6 eV in actual helium); the
found energy of the ground state is −79.3 eV. The potential
given by Eq. (2) under a = 1/

√
2 and b = 1/

√
3 is shown in

Fig. 10.
To find analytically the energy of the (1,1) state in the

zero approximation one can neglect the electronic interaction.
Within this approximation the energy of the state is double
the energy E1 given by Eq. (A4); this gives 2 × −18.6 eV =
−37.2 eV. This is pretty close to the level energy of −34.0 eV
found by numerically solving TDSE. This similarity can
be explained as follows: for n � 1 the 1D soft-Coulomb
potential’s levels are lower than those of the modified Pöschl-
Teller potential. However, the electronic repulsion in the atom
moves them up. So, finally, these two “shifts” partly com-
pensate each other for n = 1. The wave functions for several
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states found via the numerical TDSE solution are shown in
Fig. 2.

The wave functions and the energies of the bound states
(the top and middle rows in Fig. 2) are found similarly to
those in the case of the hydrogenlike ion: the initial wave
function for a state (nx, ny) is set as a symmetrized product of
the one-electron wave functions (nx ) and (nx ) in the modified
Pöschl-Teller potential; TDSE is solved for a long enough
time that the eigenstate survives and the remaining part of
the initial wave function is absorbed after spreading. The
maximum in the energy distribution (A2) gives the eigenstate
energy.

However, this procedure cannot be applied directly for
an AIS: this state decays, so after some time we find zero
population in all states. So the procedure is slightly modi-
fied. First, we set the initial wave function (1,1) as described
above and propagate the TDSE for a long enough time so
that the wave-function norm vanishes. Then using the wave
function found during the TDSE integration ψ (x, y, t ), we
calculate the spectrum ψ (x, y, ω). The energy of its maxi-
mum is the AIS energy EAIS. Finally, we find the spatial
distribution of the spectral component with this energy:
�(x, y) ≡ ψ (x, y, ω = EAIS). This function is shown in Fig. 2
(bottom row).
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