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Dissipative phase transitions in optomechanical systems
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We show that optomechanical quantum systems can undergo dissipative phase transitions within the limit of
a small nonlinear interaction and strong external drive. In such a defined thermodynamical limit, the nonlinear
interaction stabilizes optomechanical dynamics in strong- and ultrastrong-coupling regimes. As a consequence,
optomechanical systems possess a rich phase diagram consisting of periodic orbits and discontinuous and contin-
uous dissipative phase transitions with and without bifurcation. We also find a critical point where continuous and
discontinuous dissipative phase transition lines meet. Our analysis demonstrates that optomechanical systems are
valuable for understanding the rich physics of dissipative phase transitions and ultrastrong-coupling regimes.
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I. INTRODUCTION

One of the recent research foci in the field of open quantum
systems is the so-called dissipative phase transition (DPT) [1].
It is defined as an effect of the abrupt change in the physical
properties of the steady state caused by small variations of
the system’s external parameters in the appropriate thermo-
dynamic limit. Unlike their equilibrium counterparts, which
can be divided into two distinct categories based on the nature
of the fluctuations (thermal and quantum phase transitions),
DPTs generally support the coexistence of thermal and quan-
tum fluctuations [2], which leads in general to richer phase
diagrams. Dissipative phase transitions are typically accompa-
nied by intriguing phenomena [3–14], such as critical slowing
down [15], optical bistability [16], and breakdown of photon
blockade [17]. Some of these effects have been experimentally
studied in a variety of physical systems [18–23].

In the context of optical quantum systems, recent develop-
ments in control and manipulation, as well as their interaction
with the environment, make them good candidates for simu-
lating the physics of many-body systems and quantum phase
transitions [24–31]. A fundamental distinction between phase
transitions in quantum optical systems and conventional
phase transitions arises from the notion of the thermodynamic
limit. The latter is usually associated with the limit of a large
number of particles: Only in this regime can one observe a
phase transition. While phase transitions in quantum optical
systems can fall into this category, e.g., the Dicke model
[32,33], the observation of phase transitions is possible even
with a finite number of components due to their infinite-
dimensional Hilbert spaces [34,35]. In this paper we follow
this line of research and show that two coupled quantum
harmonic oscillators exhibit a very rich phase diagram encom-
passing all known types of DPTs. A physical system exempli-
fied in detail is the dissipative optomechanical system driven
by an external laser field [36]. The interplay between the
weak nonlinear interaction and a strong external drive (in the
exact thermodynamical limit) results in linear dynamics with
various steady states associated with different phase-space re-
gions. The stability diagram identifies these regions and their

separation is marked by transition lines at which dissipative
phase transitions occur. This is in contrast to a simplified stan-
dard linearized optomechanical approach, where the system
dynamics is considered to be unstable beyond the transition
lines [37–39]. Here we demonstrate that stabilization of the
system is possible through the dissipative phase transitions
in the whole red-detuned regime and partially in the blue-
detuned regime. Our analysis reveals a rich phase diagram
composed of discontinuous DPTs, continuous DPTs, and pe-
riodic orbits. The continuous DPT appears in two distinct
categories: with and without bifurcation. We find a single
critical point where bifurcation occurs in complete analogy to
the continuous phase transition with symmetry breaking. The
continuous DPT without bifurcation (symmetry breaking) is a
curious effect that has only very recently been studied theo-
retically in nonequilibrium quantum systems [40]. To confirm
the quantum properties of DPTs, we provide a numerical
study and show that quantum entanglement and squeezing
are maximized along transition lines, thus correctly marking
the phase transition. Finally, we specify the universality class
of the optomechanical systems by studying finite-size scaling
and critical exponents.

II. QUANTUM OPTOMECHANICS
IN THE THERMODYNAMIC LIMIT

Thermodynamic limit. A generic quantum optomechanical
system consists of a laser-driven optical cavity with a movable
mirror. The Hamiltonian of the system is typically of the
following form [41] (with h̄ = 1):

H = ωca†a + ωmb†b + g0a†a(b + b†)

− i(E∗eiωLt a − Ee−iωLt a†). (1)

Here a is the annihilation operator of the cavity mode with fre-
quency ωc and b is the annihilation operator of the mechanical
resonator mode with frequency ωm. The coupling rate between
the cavity field and the mechanical resonator is denoted by
g0, and E is the amplitude of the laser drive. Without loss of
generality, we assume E is a real number. In the frame rotating
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with the laser frequency ωL, the Hamiltonian becomes time
independent,

H = −�a†a + ωmb†b + g0a†a(b + b†) − iE (a − a†), (2)

where � = ωL − ωc is the detuning. The Markovian open
system1 is described by a time-independent master equation

ρ̇ = L[ρ] = −i[H, ρ] + κD[a]ρ + γD[b]ρ, (3)

where κ and γ are the damping rates of the cavity and
the mechanical resonator, respectively, and D[o]ρ = 2oρo† −
ρo†o − o†oρ is the Lindblad operator.

We begin our analysis by changing the picture ρ �→
U (t )ρU †(t ), with

U (t ) = exp[α∗(t )a − α(t )a†] exp[β∗(t )b − β(t )b†] (4)

the displacement operator and α(t ) and β(t ) yet to be deter-
mined. The master equation (3) keeps the form in the new pic-
ture with the new Lindblad operator L′[ρ] = −i[H (t ), ρ] +
κD[a]ρ + γD[b]ρ and the new time-dependent Hamiltonian,
which we split into three terms

H (t ) = H (1)(t ) + H (2)(t ) + Hint. (5)

These are

H (1)(t ) = i{α̇∗ + [i� − ig0(β + β∗) + κ]α∗ − E}a
+ i[β̇∗ − (iωm − γ )β∗ − ig0|α|2]b + H.c., (6)

H (2)(t ) = −(� − g0β − g0β
∗)a†a + ωmb†b

+ g0(α∗a + αa†)(b + b†), (7)

Hint = g0a†a(b + b†). (8)

Here we omit the explicit time dependence α = α(t ) and
β = β(t ) for simplicity. Operators a and b are small quantum
fluctuations around α(t ) and β(t ). Our goal is to show that
only the quadratic term H (2)(t ) survives in the thermodynamic
limit, leading to an exact linear dynamics of the system. The
necessary precondition is that the linear term vanishes, i.e.,
H (1)(t ) = 0, which gives the set of equations for α(t ) and
β(t ):

α̇(t ) = {i� − ig0[β(t ) + β∗(t )] − κ}α(t ) + E , (9)

β̇(t ) = −(iωm + γ )β(t ) − ig0|α(t )|2. (10)

These are the semiclassical equations of motion. We define
the thermodynamic limit (TDL) as

E → ∞, g0 → 0 s.t. Ẽ = g0E → const. (11)

Given the first condition E → ∞, the solution to the semi-
classical equations (9) are not well defined, since in this case
we get α(t ) → ∞ and β(t ) → ∞. However, multiplying (9)
with the interaction constant g0 from both sides, we obtain

˙̃α(t ) = {i� − i[β̃(t ) + β̃∗(t )] − κ}α̃(t ) + Ẽ ,

˙̃β(t ) = −(iωm + γ )β̃(t ) − i|α̃(t )|2, (12)

1The Markovian approximation can safely apply to optomechanical
systems at room temperature.

where α̃(t ) = g0α(t ) and β̃(t ) = g0β(t ) represent the rescaled
mean amplitudes of the cavity field and the mechanical res-
onator of the steady state. This is directly measurable in the
experiment [42] and used by default in theoretical analysis.
These equations now have well-defined solutions in the limit
E → +∞ for α̃(t ) and β̃(t ) only if g0 → 0 and Ẽ = g0E →
const (see I in [43]). This choice of (11) is also in analogy to
statistical mechanics, e.g., the TDL for a gas with n particles
confined in a volume V is reached as n → ∞ and V → ∞,
keeping the density N/V constant. Following this analogy in
optomechanical systems, we have the mean photon number in
the cavity n ∝ E and the length of the cavity L ∝ 1/g0 [36],
which is then consistent with the choice of the TDL (11).

Once we set the condition (11), the displaced nonlinear
interaction term (8) Hint = g0a†a(b + b†) → 0 vanishes as
g0 → 0, while the only term that survives in the limit is the
quadratic Hamiltonian (7) as a function of α̃(t ) and β̃(t ).
Thus, the dynamics becomes linear in the thermodynamical
limit.

To study the steady-state properties, we take the limit
t → +∞ for which Eqs. (12) can lead to stationary solutions
(α̃s, β̃s) obtained by solving ˙̃α(t ) = 0 and ˙̃β(t ) = 0, i.e.,

[i� − i(β̃s + β̃∗
s ) − κ]α̃s + Ẽ = 0,

−(iωm + γ )β̃s − i|α̃s|2 = 0. (13)

In this case, the Hamiltonian in (5) (and consequently the
corresponding master equation) becomes time independent.

Semiclassical solutions. Before proceeding to the quantum
regime, we will find the stationary solutions of the semi-
classical equations (13). These are the set of coupled cubic
equations which can be reduced to second order using the
following ansatz. First, we define the rescaled mean photon
number ñ = |α̃|2, which satisfies the equation[(

� + 2ñωm

ω2
m + γ 2

)2

+ κ2

]
ñ − Ẽ 2 = 0. (14)

In general, there are three solutions to the cubic equa-
tion above; however, only those satisfying ñ � 0 are physical.
It is well known that one solution, which we label ñ1, is always
physical in the whole parameter space [36]. We set ñ1 as the
reference and the corresponding solutions of (13) we denote
by (α̃1, β̃1), i.e., those satisfying ñ1 = |α̃1|2. On this basis, we
define two key parameters, effective detuning and coupling
strength:

�̃ = � − (β̃1 + β̃∗
1 ),

G = √
ñ1 = |α̃1|. (15)

Having assumed that one solution of the cubic equation (14)
is known (the parameter ñ1 = G2), we can find the analytical
expression for the other two solutions

ñ2,3 = 1

2
G2 − �̃

2ωm

(
γ 2 + ω2

m

)

±1

2

√
G4− κ2

ω2
m

(
γ 2 + ω2

m

)2 − 2G2
�̃

ωm

(
γ 2 + ω2

m

)
. (16)
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Finally, the stationary solutions to the semiclassical equa-
tions (13) can be expressed solely in terms of the parameters
�̃ and G, i.e.,

α̃ j = iG
√

�̃2 + κ2

�̃ + 2ωm (ñ j−ñ1 )
ω2

m+γ 2 + iκ
,

β̃ j = −|α̃ j |2
ωm − iγ

, j = 1, 2, 3. (17)

Each of these solutions, when substituted into (7), defines one
Hamiltonian in the thermodynamical limit, i.e.,

Hj = −(� − β̃ j − β̃∗
j )a†a + ωmb†b + (α̃∗

j a + α̃ ja
†)(b + b†),

(18)

with j = 1, 2, 3. This is our working Hamiltonian in the
thermodynamic limit, which has two new properties: (a) The
detuning of the cavity mode is shifted to the value β̃ j + β̃∗

j
and (b) the interaction between the modes is linear and its
strength is directly proportional to the amplitude |α̃ j |. More-
over, these Hamiltonians depend only on the parameters �̃

and G, which will serve to define our stability diagram.
For example, the Hamiltonian for the reference solution

reads

H1 = −�̃a†a + ωmb†b + G(eiθ (�̃)a + e−iθ (�̃)a†)(b + b†),
(19)

with θ = arg(α̃1) = arg(κ + i�̃).
Stability analysis and the quantum steady state. In this

section we examine the quantum-mechanical behavior of the
system in the thermodynamic limit. To do this, we find the
steady-state solution of the master equation

ρ̇ = L[ρ] = −i[Hj, ρ] + κD[a]ρ + γD[b]ρ, j = 1, 2, 3.

(20)

For simplicity, we use an equivalent formulation of the prob-
lem in terms of the Fokker-Planck equation for the Wigner
quasiprobability distribution associated with the density op-
erator ρ [44]. First, we introduce the cavity field quadratures
xc ≡ (a + a†)/

√
2 and pc ≡ (a − a†)/i

√
2 and the mechani-

cal resonator quadratures xm ≡ (b + b†)/
√

2 and pm ≡ (b −
b†)/i

√
2. The Fokker-Planck equation in terms of quadrature

vector in phase space 
x = (xc, pc, xm, pm) can be stated as

∂tW (
x, t ) = ( − 
∇Aj 
x + 1
2

∇T D 
∇)

W (
x, t ), (21)

with diffusion matrix D = diag(κ, κ, γ , γ ) and Aj the drift
matrix which can be calculated directly from the Hamiltonian
(18), i.e.,

Aj =

⎛
⎜⎜⎜⎜⎜⎜⎝

−κ −2
[

ωG2

ω2+γ 2 + Re(β̃ j )
] + �̃ 2 Im(α̃ j ) 0

2
[

ωG2

ω2+γ 2 + Re(β̃ j )
] − �̃ −κ 2 Re(α̃ j ) 0

0 0 −γ −ωm

2 Re(α̃ j ) −2 Im(α̃ j ) ωm −γ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (22)

The drift matrix Aj controls the time evolution of the first
moment 〈x〉(t ),

d〈
x〉
dt

= Aj〈
x〉, (23)

while the time evolution of the second moment, the correlation
matrix V , is given by

dV

dt
= AjV + VAT

j + D. (24)

Since the dynamics is linear, the steady-state solution to
Eq. (21) is a unique Gaussian state (provided the dynamics
is stable):

Ws(
x) = 1

4π2
√

detVs
e(
x− 
xs )T V −1

s (
x− 
xs )/2. (25)

Here xs and Vs are stationary solution to Eqs. (23) and (24),
respectively.

Each Aj (for j = 1, 2, 3) defines one steady-state solution,
which we label with roman numerals I (reference), II, and
III. We study their stability by considering the time evo-
lution of a small deviation around the stationary solution

x = xs + δx,

d〈δx〉
dt

= Aj〈δx〉, (26)

which has the time evolution 〈δx〉(t ) = etAj 〈δx〉(0). The
steady state is stable if all eigenvalues λi of Aj satisfy
Re(λi ) < 0 (more details about eigenvalues of the drift
matrix can be found in II in [43]). Using this condi-
tion, we obtain the necessary and sufficient conditions for
the stability of the solution, known as the Routh-Hurwitz
criterion [45]:

4γ κ

[
(γ + κ )2 +

(
2

ωmG2

ω2
m + γ 2

+ β̃i + β̃∗
i + ωm − �̃

)2
]

×
[

(γ + κ )2 +
(

−2
ωmG2

ω2
m + γ 2

− β̃i − β̃∗
i + ωm + �̃

)2
]

+ 16(γ + κ )2ωm|α̃i|2
(

2
ωmG2

ω2
m + γ 2

+ β̃i + β̃∗
i − �̃

)
> 0,

(27)
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(
γ 2 + ω2

m

)[
κ2 +

(
2

ωmG2

ω2
m + γ 2

+ β̃i + β̃∗
i − �̃

)2
]

− 4ωm|α̃i|2
(

2
ωmG2

ω2
m + γ 2

+ β̃i + β̃∗
i − �̃

)
> 0. (28)

Instability occurs if at least one of the above inequal-
ities is violated. This is closely related to the dissipa-
tive phase transition, which we will examine in the next
section.

III. DISSIPATIVE PHASE TRANSITIONS

When an abrupt change in the physical properties of the
steady state occurs (in the thermodynamic limit), we have
a dissipative phase transition. Mathematically, this situation
happens when the so-called Liouvillian gap closes [1]. More
precisely, consider the solution of the eigenvalue problem of
the operator in (20),

L[ek] = μkek, k = 1, 2, . . . . (29)

Given its specific form, one can show that all the eigenvalues
satisfy Re(μk ) � 0, with μ1 = 0 the eigenvalue associated
with the steady state [46,47]. For convenience, we sort the
eigenvalues in such a way that |Re(μ1)| < |Re(μ2)| < · · ·
and the relevant quantity is the Liouvillian gap μ = −μ2.
The DPT occurs when the real part of the gap vanishes,
i.e., Re(μ) = 0. For linear systems, this condition com-
pletely translates to a constraint on eigenvalues of the drift
matrix [32,48], i.e., for eigenvalues of Aj sorted in order
|Re(λ1)| < |Re(λ2)| < |Re(λ3)| < |Re(λ4)|, the DPT occurs
for Re(λ1) = 0. The last condition is precisely the Routh-
Hurwitz criterion (27) and (28) defined in the preceding
section. In this way, we establish a one-to-one correspondence
between instability and dissipative phase transitions for our
optomechanical system. The points for which the left-hand
side of Eq. (27) vanishes are called hard-mode instabilities and
correspond to the pure imaginary Lindblad gap Re(λ1) = 0.
In this regime the system exhibits periodic orbits [49]. On the
other hand, the points for which the left-hand side of Eq. (28)
vanishes are called soft-mode instabilities and correspond to
the closure of the Lindblad gap, i.e., λ1 = 0. In this regime
the system undergoes first- and second-order dissipative phase
transitions [1].

We investigate the stability of all three solutions and the
results are shown in the phase (stability) diagram in Fig. 1.
The diagram is composed of seven regions (described in detail
in the caption of Fig. 1) separated by hard- (red lines) and soft-
mode (blue and green lines) instability lines. Interestingly,
we find stability in the ultrastrong-coupling regime (typically
G > 0.1ωm), in the whole red-detuned regime and partially
in the blue-detuned regime, where the stabilization is ob-
tained via dissipative phase transition. This contrasts with the
common belief that this regime has fundamental parametric
instability (see II in [43]). Dissipative phase transitions occur
at transition lines, and we divide them into several distinct
categories:

First-order phase transition. First-order phase transi-
tions or discontinuous phase transitions correspond to a
discontinuous change in the behavior of an observable’s mean

FIG. 1. Phase (stability) diagram. Optomechanical systems pos-
sess three distinct steady-state solutions which we label I (reference),
II, and III. Based on the stability regions of these solutions, the
stability diagram can be decomposed into seven regions (A–G).
Two stable steady states coexist in regions A (II and III), B (I
and III), and C (I and II). Only one stable steady-state exists in
regions D (I), E (I), F (II), and G (II). The solutions are sepa-
rated by instability lines: the hard mode (red) and the soft mode
(blue and green) with one touching point (black dot, the criti-
cal point). For simplicity, the results are evaluated for κ = 1

4 and
γ = 0 in units ωm = 1. For other values the results do not change
qualitatively.

values across the transition line. The typical behavior is shown
in Fig. 2(a), where the rescaled mean photon number shows
a discontinuous change. The optomechanical system exhibits
a first-order phase transition along the blue soft-mode in-
stability line (see Fig. 1). For �̃c < �̃ < 0 (with �̃c/ωm =
−1/4

√
3) we have a first-order DPT between the steady states

I and II, whereas for �̃ < �̃c we have a first-order DPT
between the steady states I and III. Notably, the latter occurs
in the regime of parameters which is in the domain of ex-
perimental reach [38]. The first-order transition line separates
bistable regions, i.e., B and C, from the monostable region D.

(a) (b)

FIG. 2. Rescaled mean photon number ñ. (a) Discontinuous DPT
between the I and the III steady state. (b) Continuous DPT between
the I and the II steady state. The plots are evaluated for �̃ = −0.2,
κ = 1

4 , and γ = 0 in units ωm = 1.
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FIG. 3. Bifurcation diagram: the bifurcation in the rescaled
mean photon number in the cavity at the critical point (�̃c, Gc ) =
(−1/4

√
3,

√
1/4

√
3), for G = Gc, κ = 1/4, and γ = 0 in units

ωm = 1.

Typically, the system’s state in these bistable regions depends
on its history, which then gives rise to hysteretic behavior
[36,50].

Second-order phase transition. Second-order or continuous
phase transitions involve a continuous change in an observ-
able’s mean values across the transition line. The typical
behavior is shown in Fig. 2(b), where the rescaled mean
photon number displays a continuous change across the phase
transition. In our system, the second-order DPT occurs along
the soft-mode instability line where two different steady states
in the thermodynamic limit are equal. We find two categories
of continuous DPTs: with and without bifurcation. Dissi-
pative phase transitions without bifurcation occur when the
soft-mode instabilities of exactly two steady states are equal
such that each of the solutions is stable on one side of the
stability line. In our case, such a phase transition between
the steady states I and III occurs along the green soft-mode
instability line for �̃c < �̃ < 0 (see Fig. 1). Similarly, in the
region defined by �̃ < �̃c along the green instability line,
we have another continuous DPT without bifurcation between
the steady states I and II. The two soft-mode instability lines
(blue and green) meet at the critical point (�̃c, Gc), where

(a) (b)

FIG. 4. Periodic orbits. The optomechanical systems exhibit pe-
riodic behavior along the hard-mode instability line (red lines in
Fig. 1). (a) Mechanical phase space. The system dynamic is sensi-
tive to the initial condition. Blue and orange orbits correspond to
the initial conditions (xc, pc, xm, pm ) = (1, 1,−1, 1

2 ) and (1, 1
2 , 1, 1),

respectively. (b) Fluctuations in the mechanical resonator position
(blue) and momentum (orange) growing linearly in time, indicating
the instability of periodic orbits along the hard-mode instability line.
The plots are calculated from the solutions of Eq. (24) for V (0) = I,
for κ = 1

4 , γ = 0, �̃ = −1, and G = 1/4
√

2 in units ωm = 1.

FIG. 5. Entanglement and squeezing. (a) Logarithmic negativity
in the phase diagram. (b) Squeezing in the system as measured via the
smallest eigenvalue of the correlation matrix in the phase diagram.
The considered steady states in regions with more than one stable
steady state are as follows (regions are defined in Fig. 1): A (III), B
(III), and C (I). Here κ = 1

4 and γ = 0 in units ωm = 1.

we have a continuous DPT with bifurcation. This behavior is
depicted in Fig. 3.

Periodic orbits. The imaginary gap of the Liouvillian gives
rise to the onset of oscillations, which do not have any coun-
terpart in the closed system. These oscillations can be divided
into limit cycles and periodic orbits [49]. Limit cycles are iso-
lated trajectories, meaning all neighboring trajectories either
converge to the limit cycle or diverge to another attractor. Sta-
ble limit cycles are accompanied by self-sustained oscillations
and have been extensively studied in optomechanical systems
[51–54]. In contrast, periodic orbits are surrounded by closed
orbits and thus the amplitude of oscillations depends on the
initial conditions. Optomechanical systems experience peri-
odic orbits along the hard-mode instability lines. The typical
behavior is shown in Fig. 4.

Quantum properties. An interesting question is the behav-
ior of quantum properties such as entanglement and squeezing
in different phases of the system. To answer this question, one
must consider quantum fluctuations. In the thermodynamic
limit, stable linear dynamics results in a Gaussian steady state,
which is entirely characterized by its correlation matrix that is
found as the stationary solution of Eq. (24).

To study entanglement between the mechanical and cavity
modes we use Simon’s criteria [55]. We employ logarithmic
negativity as a measure of entanglement for continuous-
variable systems, which is defined as EN = max[0,− ln 2η−]
[56]. For a two-mode Gaussian state with a correlation matrix
of the form

V =
(

α β

βT γ

)
, (30)

we have η− ≡ 2−1/2[�(V ) −
√

�(V )2 − 4 detV ]1/2, where
�(V ) ≡ detα + detγ − 2 detβ. A Gaussian state is entangled
if and only if η− < 1

2 . The typical behavior of the logarith-
mic negativity is shown in Fig. 5(a). Entanglement reaches a
maximum value of EN = 1

2 at the continuous DPT between
steady states I and II, thus correctly marking the dissipative
phase transition in the system.

Next we perform squeezing analysis in the phase diagram.
A Gaussian state is called a squeezed state if there exists a ba-
sis in phase space in which at least one diagonal element of the
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(a) (b)

FIG. 6. Critical exponents. (a) Asymptotic decay rate κADR in
terms of |G − Gc| in the log-log plot displaying power-law behavior
near the continuous DPT point with exponent νADR = 1. (b) Mean
fluctuations of photon number in the cavity 〈δa†δa〉 in terms of
|G − Gc| in the log-log plot exhibiting power-law behavior near the
continuous DPT point with exponent νc = −1. Both plots have been
evaluated for κ = 1

4 , γ = 0, and �̃ = �̃c in units ωm = 1.

correlation matrix is smaller than 1
2 (shot-noise limit) [57]. We

evaluate the diagonal elements of the correlation matrix in the
(xc, pc, xm, pm) basis and we find all of them to be greater than
1
2 in the whole phase space. This means that measurement of
quadratures will not display squeezing effects at any point in
the space of parameters. However, investigation of the lowest
eigenvalue of the correlation matrix, presented in Fig. 5(b),
reveals that there exist regions with eigenvalues less than 1

2 .
This means that squeezing is present for a hybrid mode which
involves combination of the cavity and mechanical mode.2 As
can be seen from the evaluated plot, the maximum squeezing
also occurs at the continuous DPT line between steady states I
and II. These calculations show that squeezing properly marks
the phase transition. While squeezing changes continuously
along continuous DPTs, it changes discontinuously along dis-
continuous DPTs. This observation shows that squeezing also
reveals the nature of the DPTs.

Universality class. Universality is one of the remarkable
properties of continuous equilibrium phase transitions [58]
which originates from the long-range fluctuation close to the
continuous phase transition point. In such cases, the corre-
lation length becomes much larger than the typical range of
the interactions, which results in the cooperative phenomena
independent of the microscopic details of the considered sys-
tem. Unlike for equilibrium phase transitions, little is known
about nonequilibrium phase transitions due to the lack of a
general framework for studying DPTs. Still, it is believed that
nonequilibrium phenomena can be grouped into universality
classes similar to equilibrium systems. As we have shown,
the optomechanical system undergoes both continuous and
discontinuous DPTs in the thermodynamic limit. To specify
the universality class, we numerically compute the critical
exponents of two quantities (see Fig. 6): photon-number
fluctuations 〈δa†δa〉 ∝ |G − Gc|νc and asymptotic decay rate
(ADR) κADR ∝ |G − Gc|νADR (with νc = −1 and νADR = 1),
where the ADR determines the timescale at which the steady
state is attained [59].

2The hybrid modes can be obtained by applying appropriate linear
optical elements, e.g., beam splitters and phase shifters, to the cavity
and mechanical modes.

Finally, we calculate the finite-size scaling of optomechan-
ical systems with the Keldysh formalism [60,61] (see III in
[43]), which gives rise to the following scaling relation for the
photon number in the cavity:

〈nc〉 ≈ 〈
x2

cl

〉 ∼ N1/3. (31)

We find that optomechanical systems have the same critical
exponents as Dicke and Rabi models [32,34], but a different
finite-size scaling. This should not be surprising since all
these models have the same type of interaction approximately
(a + a†)(b + b†) in the exact thermodynamic limit [in the
Rabi model the interaction is approximately (a + a†)2]. In
contrast, their nonlinear interactions, which are the central
element for deriving the finite scaling, are different (quartic
versus cubic).

IV. CONCLUSION AND OUTLOOK

In this paper we showed that driven-dissipative optome-
chanical systems undergo dissipative phase transitions in the
well-defined thermodynamic limit. The system exhibits a rich
phase diagram composed of different regions which are sep-
arated by DPTs: first- and second-order dissipative phase
transitions and periodic orbits.

Some of the first-order DPTs happen in a regime of param-
eters that are within experimental reach. Our work predicts
the observation of the first-order DPT and its characteris-
tics, such as critical slowing down and hysteretic behavior
in the laboratory. Furthermore, our theoretical analysis at the
thermodynamic limit shows that the optomechanical system
is stable in the ultrastrong-coupling regime (more details in
II in [43]). This should allow experimental studies to probe
the physics related to the ultrastrong coupling, such as the
nontrivial ground state [62].

Optomechanical systems do exhibit second-order DPTs
with and without bifurcation. The equilibrium counterpart of
the second-order DPT without bifurcation cannot be explained
by Landau theory and in general it corresponds to the domain
of topological phase transitions [63]. This is a novel topic in
the context of out-of-equilibrium quantum systems, and our
work may help to improve the understanding of the matter.

We conclude with a final remark on the possible relevance
of our study to the domain of quantum computing. The fact
that the system is infinite dimensional and exhibits multiple
steady states may find potential applications in the quantum
information process [64].
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[4] M. Žnidarič, Solvable quantum nonequilibrium model exhibit-
ing a phase transition and a matrix product representation, Phys.
Rev. E 83, 011108 (2011).

[5] S. Diehl, A. Tomadin, A. Micheli, R. Fazio, and P. Zoller,
Dynamical Phase Transitions and Instabilities in Open Atomic
Many-Body Systems, Phys. Rev. Lett. 105, 015702 (2010).

[6] P. Werner, K. Völker, M. Troyer, and S. Chakravarty, Phase
Diagram and Critical Exponents of a Dissipative Ising Spin
Chain in a Transverse Magnetic Field, Phys. Rev. Lett. 94,
047201 (2005).

[7] L. Capriotti, A. Cuccoli, A. Fubini, V. Tognetti, and R.
Vala, Dissipation-Driven Phase Transition in Two-Dimensional
Josephson Arrays, Phys. Rev. Lett. 94, 157001 (2005).

[8] S. Morrison, and A. S. Parkins, Dissipation-driven quantum
phase transitions in collective spin systems, J. Phys. B 41,
195502 (2008).

[9] J. Eisert and T. Prosen, Noise-driven quantum criticality,
arXiv:1012.5013.

[10] M. J. Bhaseen, J. Mayoh, B. D. Simons, and J. Keeling, Dynam-
ics of nonequilibrium Dicke models, Phys. Rev. A 85, 013817
(2012).

[11] W. Nie, M. Antezza, Y.-x. Liu, and F. Nori, Dissipative
Topological Phase Transition with Strong System-Environment
Coupling, Phys. Rev. Lett. 127, 250402 (2021).

[12] E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M. D.
Lukin, and J. I. Cirac, Dissipative phase transition in a central
spin system, Phys. Rev. A 86, 012116 (2012).

[13] X. H. H. Zhang and H. U. Baranger, Driven-dissipative phase
transition in a Kerr oscillator: From semiclassical PT symme-
try to quantum fluctuations, Phys. Rev. A 103, 033711 (2021).

[14] W. Casteels, R. Fazio, and C. Ciuti, Critical dynamical proper-
ties of a first-order dissipative phase transition, Phys. Rev. A 95,
012128 (2017).

[15] F. Vicentini, F. Minganti, R. Rota, G. Orso, and C. Ciuti, Crit-
ical slowing down in driven-dissipative Bose-Hubbard lattices,
Phys. Rev. A 97, 013853 (2018).

[16] P. D. Drummond and D. F. Walls, Quantum theory of optical
bistability. I. Nonlinear polarisability model, J. Phys. A: Math.
Gen. 13, 725 (1980).

[17] H. J. Carmichael, Breakdown of Photon Blockade: A Dissipa-
tive Quantum Phase Transition in Zero Dimensions, Phys. Rev.
X 5, 031028 (2015).

[18] M.-L. Cai, Z.-D. Liu, W.-D. Zhao, Y.-K. Wu, Q.-X. Mei, Y.
Jiang, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan, Observa-
tion of a quantum phase transition in the quantum Rabi model
with a single trapped ion, Nat. Commun. 12, 1126 (2021).

[19] F. Brennecke, R. Mottl, K. Baumann, R. Landig, T. Donner,
and T. Esslinger, Real-time observation of fluctuations at the
driven-dissipative Dicke phase transition, Proc. Natl. Acad. Sci.
USA 110, 11763 (2013).

[20] S. R. K. Rodriguez, W. Casteels, F. Storme, N. C. Zambon,
I. Sagnes, L. Le Gratiet, E. Galopin, A. Lemaître, A. Amo,

C. Ciuti, and J. Bloch, Probing a Dissipative Phase Transition
via Dynamical Optical Hysteresis, Phys. Rev. Lett. 118, 247402
(2017).

[21] J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos,
Observation of the Photon-Blockade Breakdown Phase Transi-
tion, Phys. Rev. X 7, 011012 (2017).

[22] T. Fink, A. Schade, S. Höfling, C. Schneider, and A. Imamoglu,
Signatures of a dissipative phase transition in photon correlation
measurements, Nat. Phys. 14, 365 (2018).

[23] M. Fitzpatrick, N. M. Sundaresan, A. C. Li, J. Koch, and
A. A. Houck, Observation of a Dissipative Phase Transition in a
One-Dimensional Circuit QED Lattice, Phys. Rev. X 7, 011016
(2017).

[24] S. Barrett, K. Hammerer, S. Harrison, T. E. Northup, and T. J.
Osborne, Simulating Quantum Fields with Cavity QED, Phys.
Rev. Lett. 110, 090501 (2013).

[25] M. J. Hartmann, Quantum simulation with interacting photons,
J. Opt. 18, 104005 (2016).

[26] D. G. Angelakis, M. F. Santos, and S. Bose, Photon-blockade-
induced Mott transitions and XY spin models in coupled cavity
arrays, Phys. Rev. A 76, 031805 (2007).

[27] A. A. Houck, H. E. Türeci, and J. Koch, On-chip quantum
simulation with superconducting circuits, Nat. Phys. 8, 292
(2012).

[28] A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg,
Quantum phase transitions of light, Nat. Phys. 2, 856 (2006).

[29] R. Blatt and F. R. Christian, Quantum simulations with trapped
ions, Nat. Phys. 8, 277 (2012).

[30] I. Carusotto and C. Ciuti, Quantum fluids of light, Rev. Mod.
Phys. 85, 299 (2013).

[31] M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, Strongly
interacting polaritons in coupled arrays of cavities, Nat. Phys. 2,
849 (2006).

[32] E. G. Dalla Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P.
Strack, Keldysh approach for nonequilibrium phase transitions
in quantum optics: Beyond the Dicke model in optical cavities,
Phys. Rev. A 87, 023831 (2013).

[33] C. Emary and T. Brandes, Chaos and the quantum phase transi-
tion in the Dicke model, Phys. Rev. E 67, 066203 (2003).

[34] M.-J. Hwang, P. Rabl, and M. B. Plenio, Dissipative phase
transition in the open quantum Rabi model, Phys. Rev. A 97,
013825 (2018).

[35] M.-J. Hwang and M. B. Plenio, Quantum Phase Transition in
the Finite Jaynes-Cummings Lattice Systems, Phys. Rev. Lett.
117, 123602 (2016).

[36] W. P. Bowen and G. J. Milburn, Quantum Optomechanics
(CRC, Boca Raton, 2015).

[37] C. Genes, A. Mari, P. Tombese, and D. Vitali, Robust entangle-
ment of a micromechanical resonator with output optical fields,
Phys. Rev. A 78, 032316 (2008).

[38] G. A. Peterson, S. Kotler, F. Lecocq, K. Cicak, X. Y. Jin,
R. W. Simmonds, J. Aumentado, and J. D. Teufel, Ultra-
strong Parametric Coupling between a Superconducting Cavity
and a Mechanical Resonator, Phys. Rev. Lett. 123, 247701
(2019).

[39] S. G. Hofer and K. Hammerer, Quantum control of optome-
chanical systems, Adv. At. Mol. Opt. Phys. 66, 263 (2017).

[40] F. Minganti, I. I. Arkhipov, A. Miranowicz, and F. Nori, Con-
tinuous dissipative phase transitions with or without symmetry
breaking, New J. Phys. 23, 122001 (2021).

053505-7

https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1016/j.physrep.2019.11.002
https://doi.org/10.1088/0022-3700/13/18/009
https://doi.org/10.1103/PhysRevE.83.011108
https://doi.org/10.1103/PhysRevLett.105.015702
https://doi.org/10.1103/PhysRevLett.94.047201
https://doi.org/10.1103/PhysRevLett.94.157001
https://doi.org/10.1088/0953-4075/41/19/195502
http://arxiv.org/abs/arXiv:1012.5013
https://doi.org/10.1103/PhysRevA.85.013817
https://doi.org/10.1103/PhysRevLett.127.250402
https://doi.org/10.1103/PhysRevA.86.012116
https://doi.org/10.1103/PhysRevA.103.033711
https://doi.org/10.1103/PhysRevA.95.012128
https://doi.org/10.1103/PhysRevA.97.013853
https://doi.org/10.1088/0305-4470/13/2/034
https://doi.org/10.1103/PhysRevX.5.031028
https://doi.org/10.1038/s41467-021-21425-8
https://doi.org/10.1073/pnas.1306993110
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevX.7.011012
https://doi.org/10.1038/s41567-017-0020-9
https://doi.org/10.1103/PhysRevX.7.011016
https://doi.org/10.1103/PhysRevLett.110.090501
https://doi.org/10.1088/2040-8978/18/10/104005
https://doi.org/10.1103/PhysRevA.76.031805
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/nphys466
https://doi.org/10.1038/nphys2252
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1038/nphys462
https://doi.org/10.1103/PhysRevA.87.023831
https://doi.org/10.1103/PhysRevE.67.066203
https://doi.org/10.1103/PhysRevA.97.013825
https://doi.org/10.1103/PhysRevLett.117.123602
https://doi.org/10.1103/PhysRevA.78.032316
https://doi.org/10.1103/PhysRevLett.123.247701
https://doi.org/10.1016/bs.aamop.2017.03.003
https://doi.org/10.1088/1367-2630/ac3db8
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[42] U. Delić, M. Reisenbauer, D. Grass, N. Kiesel, V. Vuletić, and
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