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All-dielectric apodized photonic crystals: A nondissipative pseudo-Hermitian system
hosting multiple exceptional points
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Optical systems obeying non-Hermitian dynamics have been the subject of intense and concerted investigation
over the past two decades owing to their broad implications in photonics, acoustics, electronics, and atomic
physics. A vast majority of such investigations rely on a dissipative, balanced loss-gain system which introduces
unavoidable noise, and consequently this limits the coherent control of propagation dynamics. Here, we show that
an all-dielectric, nondissipative photonic crystal (PC) could host at least two exceptional points in its eigenvalue
spectrum. By introducing optimum apodization in the PC architecture, namely 1D-APC, we show that such a
configuration supports a spectrum of exceptional points which distinctly demarcates the PT -symmetric region
from the region where PT symmetry is broken. The analytical framework allows us to estimate the geometric
phase of the reflected beam and derive the constraint that governs the excitation of topologically protected optical
Tamm-plasmon modes in 1D APCs.
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I. INTRODUCTION

Optical systems which are governed by non-Hermitian
Hamiltonian dynamics through an engineered gain and loss
mechanism provide a route to overcome the limitations
imposed by closed optical systems that obey the Hermitian-
Hamiltonian-led dynamics. Such non-Hermitian systems give
rise to a real eigenvalue spectrum when the Hamiltonian
commutes with the parity-time (PT ) operator. A continu-
ous change in the parameter governing the Hermiticity (of
the Hamiltonian) breaks the PT symmetry which mani-
fests in the form of a complex eigenvalue spectrum. In
the parameter space, such points where the real and com-
plex eigenvalues coalesce are termed as exceptional points
(EPs) [1–3]. This spontaneous PT -symmetry breaking has
catalyzed a plethora of nonintuitive outcomes such as direc-
tional invisibility [4,5], coherent perfect lasing and absorption
[6–11], negative refraction [12], single-particle based sens-
ing [13–15], distortion-free wireless optical power transfer
[16], and a few more [17–22]. It is, however, worth not-
ing that the incommensurate gain and loss distribution in
non-Hermitian systems impose the primary limitation on the
practical applications due to unpredictable signal-to-noise ra-
tio near EP [23–26]. In order to circumvent such bottlenecks,
a few possibilities have been explored. One such promising
route employs an asymmetric loss in the system (without gain)
whose dynamics could be explored using a non-Hermitian
Hamiltonian with a uniform background loss [23,27–29].
Such a configuration would exhibit PT symmetry that could
be broken through scaling up the loss asymmetry. In a
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different scheme, a pseudo-Hermitian system was explored
which allowed strong coupling between a large number of
modes via manipulation of the parameters governing the
Hamiltonian [27]. This led to the existence of EPs of mul-
tiple order and the interaction of eigenvalues around each
EP provides a robust control on the propagation dynam-
ics [30–32]. In spite of the aforementioned developments, a
useful and practical proposition would be to devise a configu-
ration hosting a multitude of EPs with the constraint that the
electromagnetic (EM) energy lost due to the non-Hermitian
dynamics is stored in a reservoir. This essentially implies
that the dissipative channel associated with a non-Hermitian
system drives a separate Hermitian system which could allow
reverse flow of EM energy by virtue of cyclical dynamics.
Such systems have been explored in the area of parametric fre-
quency conversion processes where the EM energy lost in one
of the parametric processes (obeying non-Hermitian dynam-
ics) is coherently transferred to another parametric process
that follows a Hermitian dynamics [33]. A plausible transla-
tion of such an idea in the nonabsorptive linear systems would
be to introduce a virtual loss in an intermodal interaction pro-
cess thereby generating multiple EPs in the parameter space.
One of the simplest configurations imitating such a process is
a multimodal interaction in an all-dielectric one-dimensional
(1D) photonic-crystal (PC) with a gradually varying duty
cycle (for each unit cell). In such an apodized 1D-PC, the
forward (source) to backward (sink) mode-coupling dynamics
is essentially governed by a pseudo-Hermitian Hamiltonian
whose Hermiticity is determined by the apodization along
the propagation direction. In the present work, we show the
existence of multiple EPs in an apodized 1D-PC and develop
an analytical framework for ascertaining the possibility of
exciting topologically protected optical edge modes in such
aperiodically stratified configurations.
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II. THEORETICAL FRAMEWORK AND COUPLED-MODE
FORMALISM

We consider a 1D-PC comprised of periodic bilayers
with refractive indices n1 and n2 with thicknesses d1 and
d2. Such conventional 1D-PCs or alternatively, distributed
Bragg reflectors (DBRs) are usually characterized by photonic
bandgaps (PBGs) which are separated from each other by
high transmission (or pass) bands. In order to appreciate the
EM wave propagation dynamics, we consider the coupling
between pth mode (|p〉) with qth mode (|q〉), which could be
represented employing the coupled-amplitude equations given
by [34]

dAq

dz
= −i

βq

|βq|
∑

p

∑
m

κ̃ (m)
qp Ape−i(βq−βp−m 2π

�
)z (1)

where βp and βq are the longitudinal (z) components of wave
vector kp and kq respectively. κ̃ (m)

qp defines the strength of
coupling (or coupling coefficient) between the pth and qth
mode that is coupled through the mth Fourier component of
the periodic dielectric distribution (� = d1 + d2). The factor
�β = βq − βp − m 2π

�
(known as the phase mismatch) is one

of the dynamical variables (along with κ̃qp) which govern the
measure of optical power transferred from one mode to the
other. For the present work, we consider a contra-directional
coupling setup where a forward (along +z) propagating mode
(|p〉 ≡ | f 〉) is coupled to a backward (along −z) propagating
mode (|q〉 ≡ |b〉). Accordingly, it could asserted that βb =
−β f or alternatively �β = 2β f − 2π

�
and therefore, Eq. (1)

could be simplified to [34]

dAb

dz
= iκ̃A f e−i�βz, (2)

dA f

dz
= −iκ̃∗Abei�βz, (3)

where κ̃ = i(1−cos 2πζ )
2λ

(n1
2−n2

2 )
n̄ = iκ and ζ is the dielectric

filling fraction of layer with refractive index n1 in the unit
cell, i.e., ζ = d1

�
. The mean refractive index for an unit cell

of thickness � is n̄ =
√

d1n1
2+d2n2

2

�
and λ is the wavelength

of operation. By using a gauge transformation given by A f →
Ã f ei/2[�β0z−∫

0
zq(z′ )dz′] and Ab → Ãbe−i/2[�β0z−∫

0
zq(z′ )dz′], we

obtain [35]

i
d

dz

(
Ãb

Ã f

)
=

(
−�k −κ̃

κ̃∗ �k

)(
Ãb

Ã f

)
. (4)

Equation (4) is analogous to time-dependent Schrödinger’s
equation with time coordinate being replaced by space coor-
dinate (z). Here, �k (= �β

2 ) and q(z) = 0 remains constant
(for a given frequency) across the 1D PC which has a
fixed duty cycle. The autonomous Hamiltonian Ĥ = −�σ ·
�B with �σ ≡ [σx, σy, σz] are the Pauli’s spin matrices and
�B ≡ [0, κ,�k] (magnetic field analog) represents a pseudo-
Hermitian evolution dynamics. Alternatively, it is apparent
that Ĥ† = σ−1

z Ĥσz, which renders the Hamiltonian to be
pseudo-Hermitian, and therefore it could host purely real
eigenvalues as governed by the parameters. In order to ap-
preciate this point, we note that the eigenvalues of Ĥ are

given by e1,2 = ±
√

�k2 − κ2 whereas the eigenfunctions

FIG. 1. (a) Reflection spectrum of a conventional (periodic) 1D
PC. (b) Variation in Re(e1) (dotted black curve), Im(e1) (dotted
maroon curve), Re(e2) (solid black curve), and Im(e2) (solid maroon
curve) as a function of frequency (ν). [(c), (d)] Mode-field intensity
for frequencies within the PBG 240 THz and that outside the PBG
310 THz respectively. The solid red arrow represents the direction of
incidence of light.

corresponding to e1 is expressed as |ψ1〉 = (−i (�k+
√

�k2−κ2 )
κ1

)

and that for e2 is |ψ2〉 = (+i (−�k+
√

�k2−κ2 )
κ1

). It is apparent

that �k > κ (modes in the pass bands) have real eigenval-
ues and hence the forward-to-backscattered mode coupling
is cyclic (with respect to z). On the other hand, �k < κ

depicts a spectrum where the forward-to-backscattered mode
coupling is unidirectional. In other words, the Hamiltonian
Ĥ commutes with the parity-time (PT ) operator for �k > κ

and therefore it is termed as PT symmetric with respect to
forward-to-backscattered mode-coupling process. Here, the
parity operator is defined as P ≡ (0 1

1 0) and T is an antilinear
operator that performs the complex conjugation operation.
For �k < κ , the Hamiltonian Ĥ does not commute with PT
operator and consequently the propagation characteristics per-
tain to PT -symmetry broken phase. A closer look into the
eigenvectors reveals that the equality κ = ± �k manifests
through coalescing of eigenvectors accompanied by vanishing
eigenvalues. Such points in parameter space where κ equals
±�k are termed as EPs and they distinctly demarcate the
regions exhibiting Hermitian (PT -symmetric phase) and non-
Hermitian (PT -symmetry broken phase) dynamical evolution
of states (or modes).

In order to illustrate the aforementioned idea, we consider a
practical 1D-PC with n1 ≡ TiO2 layer and n2 ≡ SiO2 layer.
The layer thicknesses are d1 = d2 = 150 nm. The reflection
spectrum for N = 20 unit cells is plotted in Fig. 1(a) which
exhibits a high reflection band (or PBG) spreading over a
75 THz bandwidth. Here, R refers to the reflectivity from the
1D PC and ν (= c

λ
) defines the frequency of the incident

beam. In order to obtain the reflection spectrum, finite element
method (FEM)–based simulations were carried out using the
commercially available computational tool (COMSOL Multi-
physics). In the simulations, the periodic boundary condition
is imposed along the transverse direction and a mesh size
of 5 nm is considered. We ignore the material dispersion for
the simulations and assume n1 = 2.5 (≡ TiO2) and n2 = 1.5
(≡ SiO2) across the entire spectrum. For this 1D-PC, we
also plotted the eigenvalues e1 and e2 [see Fig. 1(b)] as a
function of frequency of the incident electromagnetic wave.
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It is apparent that the eigenvalues vanish at ν0 ≈ 210 THz
and ν ′

0 ≈ 285 THz. These two frequencies (ν0 and ν ′
0) define

the EPs (κ = + �k and κ = − �k) for the periodic 1D
PC. A closer look would also reveal that the eigenvalues are
purely imaginary within the PBG and at the band edges [see
Fig. 1(a)] coincide with ν0 and ν ′

0. The mode-field spatial
distribution for frequencies present within the PBG (240 THz)
and outside the PBG (310 THz) are presented in Figs. 1(c)
and 1(d) respectively. Figure 1(c) represents strong reflec-
tion from unit cells close to the entry face (z = 0) of the
unit cell whereas Fig. 1(d) represents high delocalization of
mode-field in the 1D-PC. In order to provide an analytical
insight, we note that the extent of decay of mode-field for
frequencies (ν) within the PBG is governed by the Bloch
wave vector (K) [34]. The couple-mode formalism connects
to the Bloch wave vector through the relation K = 2π

�
+ e1,2

which is complex within the PBG and purely real in the
transmission bands [34,35]. In other words, �k is much
smaller than κ within the PBG and for ν = 240 THz, �k ≈
0. Therefore, predominantly κ determines the value of e1,2

and in that case, the imaginary component of K maximizes.
This essentially manifests through a rapid decay of mode
field for ν = 240 THz along z (propagation direction). It
is worth noting that the investigations on systems exhibit-
ing PT symmetry (or PT broken symmetry) led dynamics
in photonics essentially involve optimally balanced gain-loss
architectures such as segmented waveguides and photonic
crystals. In such systems, a complex relative permittivity in
different sections depicting actual gain or loss for the prop-
agating light beam gives rise to the PT symmetry (or PT
broken symmetry). The present configuration involving 1D
PC does not include an actual dissipative component for
achieving the PT -symmetric to PT -symmetry broken phase
transition. Alternatively, the coupling of optical power to the
backscattered mode |b〉 is analogous to a virtual loss for a
forward propagating | f 〉 mode. When this coupling is rela-
tively weak i.e. �k > κ̃ , | f 〉 and |b〉 exhibit cyclic exchange of
optical power (as a function of z) which is an obvious outcome
for a PT -symmetric dynamics. On the other hand, a strong
coupling regime where �k < κ̃ manifests through a mono-
tonic growth of modal power in the backscattered mode (|b〉).
This is a distinct signature of PT -symmetry broken phase.
It is worthwhile to reiterate the point that the two regimes
depicted by the inequality of �k and κ̃ (in the parameter
space) could be mapped onto the PBG and the transmission
band(s) of the reflection spectrum. Subsequently, each PBG
is necessarily bounded by two EPs in this framework. Addi-
tionally, these two EPs are fixed and cannot be tailored for a
given 1D-PC with a fixed duty cycle and fixed period. Also,
the conventional 1D-PC geometry excludes the possibility of
realizing higher order exceptional points [36]. Taking a cue
from this critical observation, we note that a small apodiza-
tion or gradual change in dielectric filling fraction (ζ ) of
each unit cell of the 1D PC would allow us to realize dis-
cretely spaced (multiple) EPs at different optical frequencies
(or wavelengths). In order to elucidate this point, we recall
that �k as well as κ̃ is a function of ζ . An optimum spatial
variation in ζ could essentially give rise to the possibility of
EPs at different physical locations (along z) in a 1D PC. As an
example, we show below that an optimally apodized 1D PC

FIG. 2. (a) Reflection spectrum for designed 1D-APC. [(b), (c)]
Mode-field intensities for two different frequencies, νa = 250 THz
and νb = 300 THz, which are within the PBG of 1D-APC. [(d),
(e)] Variation in Re(e1) (dotted black curve), Im(e1) (dotted maroon
curve), Re(e2) (solid black curve), and Re(e2) (solid maroon curve)
as a function of TiO2 layer thickness for each unit cell (i.e., d1M ) at
frequencies νa = 250 THz and νb = 300 THz respectively.

(1D APC) which satisfies the adiabatic constraints enables us
to observe EPs at discreetly separated points along z.

A. Design of an 1D apodized PC and intermodal coupling

We consider a 1D APC configuration that exhibits vary-
ing dielectric filling fractions (ζ ) in each unit cell. This
variation is essentially dictated through the relation d1M =
d1 − Mδ and d2M = � − d1M . Here, d1M and d2M are the
thickness of TiO2 and SiO2 layers respectively in the Mth
unit cell (M = 0, 1, 2, 3, ..., (N − 1) for N number of unit
cells). The unit cell period, however, remains unchanged i.e.
� = d1M + d2M = d1 + d2. This apodization in 1D PC could
be visualized through a longitudinal variation in �k as well
as κ̃ by virtue of a monotonic change in average refrac-
tive index (n̄) for an unit cell. This variation in �k and κ̃

in a 1D-APC geometry leads to an adiabatic evolution of
modes along the propagation direction and manifests through
a broader PBG (≈140 THz) in comparison with a conven-
tional (periodic) 1D-PC [35]. This is presented in Fig. 2(a)
which shows a broader reflection spectrum for the 1D-APC
in comparison with the conventional 1D-PC [Fig. 1(a)]. In
addition, a flat transmission band and the absence of sharp
transmission resonances is a distinct feature of 1D APC re-
flection spectrum. The mode-propagation characteristics for
the frequencies within the PBG (of 1D APC) is explored by
drawing a comparison with the mode-field distributions for
the equivalent modes within the PBG of a conventional 1D
PC. Figures 2(b) and 2(c) shows the mode-field distribution
for two frequencies νa = 250 THz and νb = 300 THz which
are within the PBG of 1D APC. In comparison with the mode-
field distribution shown in Fig. 1(c), it could be observed that
different modes are reflected from spatially separated z val-
ues. The smaller frequency (νa = 250 THz) is reflected from
the regions which are closer to z = 0 edge of the 1D APC
in comparison to that for νb = 300 THz. From an analytical
viewpoint, it is worthwhile to recall that the Bloch wave vector
is expressed as K = 2π

�
+ e1,2. It is complex when �k < κ
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FIG. 3. (a) Variation of �B in parameter space (spanned by κ

and �k) at different operating frequencies (ν1 = 400 THz, ν2 =
250 THz, ν3 = 160 THz) for the designed 1D APC. The blue and
green solid lines represent the �k = κ and �k = −κ curves. (b) Lo-
cation of EPs in different unit cells (with different filling fraction ζ )
as a function of frequency (ν).

that happens for all the frequencies within the PBG for a
conventional 1D PC. The imaginary component of K maxi-
mizes when �k = 0 and accordingly, the mode-field decays
sharply within one or two unit cells which could be seen in
Fig. 1(c). Since, �k ≡ �k(z) for 1D APC, �k vanishes in dif-
ferent unit cells (d1M) for different frequencies (ν). Therefore,
in case of 1D-APC, the mode-field at different frequencies
(within the PBG) strongly decays in different unit cells, which
is apparent in Figs. 2(b) and 2(c).

From a different perspective, it is apparent that the varia-
tion in dielectric filling fraction (ζ ) would result in different
eigenvalues (and corresponding eigenvectors) for each unit
cell. Accordingly, we plot the eigenvalues e1 and e2 as a
function of d1M for two frequencies νa = 250 THz [Fig. 2(d)]
and νb = 300 THz [Fig. 2(e)] which are within the PBG of
1D APC. Each one of the figures show that the eigenvalues
(e1 and e2) vanish at two different values of d1M i.e. at the
location of two different unit cells. Therefore, the 1D-APC
geometry hosts two EPs for every d1M . Consequently, for a
multitude of ζ , there would be multiple EPs in the 1D APC
for a forward-propagating mode to a backscattered mode-
coupling process. As discussed before, the regions where
Re(e1) and Re(e2) are nonzero in Figs. 2(d) and 2(e) exhibit
a PT -symmetric coupling dynamics between the forward-
propagating and backscattered modes. On the other hand, in
the regions where e1 and e2 are purely imaginary, the mode-
coupling process exhibits PT -symmetry-broken manifolds.
The illustrations presented in Figs. 2(d) and 2(e) show that
for each frequency within the PBG, the 1D APC hosts two
EPs at two different d1M (or ζ ). This essentially implies that
there exists one or more than one EPs hosted by each unit
cell of the 1D APC. Therefore, an 1D APC is expected to
host multiple EPs which are spectrally as well as spatially
separated from each other. In order to ascertain the spectral
location of EPs in the 1D APC, we plot the evolution of �B
in the parameter space for three different frequencies ν1 =
400 THz, ν2 = 250 THz, and ν3 = 160 THz, as shown in
Fig. 3(a). It could be noted at ν1 and ν3 are situated outside
PBG of 1D APC [see Fig. 2(a)]. Since the EPs are depicted
by the condition �k = |κ|, Fig. 3(a) also contains the curve
�k = ±κ (solid blue and green curves). It is apparent that
�k = ±κ curve intersects �Bν2 at two points and it does not
intersect the �Bν1 curve as well as the �Bν3 curve in the parameter
space. For frequencies close to the band edge of 1D APC (say

200 THz or 350 THz), it could be ascertained that there exists
only one EP in the eigenvalue spectrum. This is primarily
due to the adiabatic constraints followed by the 1D-APC
design. In other words, for the band-edge frequencies, the
forward-propagating and backscattered modes are decoupled
(κ̃ = 0) at entry (z = 0) and exit (z = L) face of the crystal.
Additionally, d1M = � for m = 0 (or d2M = � for m = N) in
case of band-edge frequencies that leads to �k = 0 for ζ = 1.
Therefore, κ̃ = �k = 0 depicts the only EP for the band-edge
frequencies.

In order to elucidate the aforementioned point, we present
the spectral location of EPs as a function of dielectric fill-
ing fraction (ζ ) or propagation direction (z) in Fig. 3(b). It
could be observed that there exist two EPs (at different ζ or
z) for all the frequencies well within the PBG of 1D APC.
However, for the band-edge frequencies (νl = 200 THz and
νh = 330 THz), the 1D APC hosts one EP only. Nevertheless,
the area enclosed by the EPs in Fig. 3(b) represents the re-
gion of PT -symmetry-broken phase for the 1D APC. It is
interesting to note that the separation between the two EPs
for frequencies closer to the band edges (say ν � 210 THz or
ν � 310 THz) is diminished and they tend to overlap at the
same filling fraction. For appreciating this point, we note that
such EPs are physically positioned close to the entry (z = 0)
and exit (z = L) face of the 1D APC where κ̃ is very small
[35]. By virtue of this, the PBG corresponding to those unit
cells of 1D APC is relatively smaller in comparison with the
PBG for a unit cell close to the center (z ≈ L

2 ) of 1D APC.
Due to the fact that the EPs exist at the band edges of PBG, a
smaller PBG would essentially imply closely spaced EPs near
the band edges [see Fig. 3(b)].

B. Geometric phase acquired by the backscattered modes

It is well known that the geometric phase of a pass band
(or transmission band) for a one-dimensional conventional
photonic crystal is quantized (0 or π ) and it is known as the
“Zak” phase. In this context, a geometric interpretation of
backscattered (or reflection) phase from a 1D PC is trivial.
In the case of 1D APC, the reflection of different spectral
components (within the PBG) takes place from different unit
cells (or z) along the propagation direction [35]. For example,
the adiabatic following constraint leads to the conversion of
optical power from the forward-propagating to the backscat-
tered mode predominantly toward the exit face of 1D APC
for frequency ν2 = 250 THz which could be seen in Fig. 4(a).
Through a similar route, it could be shown that different
spectral components within the PBG are reflected strongly
from different unit cells of 1D APC [35]. For each spectral
component (ν) in the PBG, the variation of κ̃ and �k along
z is nonidentical. Consequently, the estimation of geometric
phase acquired by different backscattered modes is expected
to be different and must play a crucial role in establishing
the bulk-boundary correspondence in the case of 1D APC. In
order to obtain the geometric phase (γ ), we consider a triad
defining the state vector �S (≡ [u, v,w]) where u = ÃiÃ∗

r +
ÃrÃ∗

i , v = −i[ÃiÃ∗
r − ÃrÃ∗

i ] and w = |Ãr |2 − |Ãi|2 [35]. The
z component of the state vector (w) represents the conversion
efficiency of optical power from a forward-propagating mode
to a backscattered mode [35]. Alternately, this is equivalent
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FIG. 4. (a) Variation in conversion efficiency ( w+1
2 ) for optical

power transfer between a forward-propagating mode to a backscat-
tered mode as a function of 1D-APC length (z) for a frequency ν2 =
250 THz which is within the PBG. (b) State-vector (�S = [u, v, w])
trajectory on the Bloch sphere for ν2 = 250 THz.

to reflectivity from 1D APC. It is also worth noting that the
trajectory of the state vector (�S) corresponding to the fre-
quencies within the PBG (PT -symmetry-broken region) is
nonclosed. Consequently, the geometric phase is not a con-
served quantity during the dynamical evolution of �S. In
general, the solid angle subtended by the state-vector trajec-
tory at the center of the Bloch sphere is used for computing
the geometric phase. However, in the case of an adiabatic
evolution, the state-vector trajectory could be very com-
plicated. In Fig. 4(b), we have plotted such a state-vector
trajectory (on the Bloch sphere) corresponding to a frequency
ν = 250 THz (which is within the PBG of 1D APC). It is
important to note that �S = [0, 0,−1] and �S = [0, 0, 1] rep-
resent states in which all the optical power (∝ |Ã f ,b|2) is
present in the forward-propagating mode and backscattered
mode respectively. Although the adiabatic evolution of state-
vector results in complete optical power transfer from the
forward to backward-propagating mode i.e. w = −1 to w =
1, the estimation of acquired geometric phase is unavoidably
complicated owing to the spiralling trajectory of �S on the
Bloch-sphere. However, it is interesting to note that �S goes
from [0, 0,−1] to [0,0,1] for all the frequencies (ν) within the
PBG of 1D APC by virtue of satisfying the adiabatic following
constraints. An important point is to note that the conver-
sion efficiency (or reflectivity) is unity for all the frequencies
within the PBG of 1D APC [35]. In other words, �B goes from
[0, 0,−�k] to [0, 0,�k] in the parameter space for all the
PBG frequencies when the adiabatic following constraints are
satisfied [35]. By virtue of the fact that the state vector �S
adiabatically follows �B (as per the Bloch equation), the initial
and the final values of �B could also yield the geometric phase
(γ ). It is known that γ is estimated from angle φ (subtended
by �B at the origin �k = κ̃ = 0) through the relation γ = φ

2 .
In that case, the geometric phase for each spectral component
within the PBG is π

2 . In order to elucidate this point, we
plot �B at different z (of 1D APC) in the parameter space for
ν2 = 250 THz. This is shown in Fig. 5(a). At the entry face
of 1D APC, �B(z = 0) = [0, 0,−2.7 μm−1] (black arrow) and
gradually goes to �B(z = L) = [0, 0,+2.7 μm−1] (red arrow)
at the exit face. At z = L

2 , �k = 0 and κ̃ is maximum [green
arrow in Fig. 5(a)]. The evolution of �B in Fig. 5(a) yields
φ = π and consequently, γ = π

2 . In a similar manner, γ for
all the frequencies within the PBG would be π

2 by virtue of

FIG. 5. Represents the evolution of �B as a function of length (L)
of 1D-APC in parameter (�k − κ) space for (a) ν2 = 250 THz and
(b) ν4 = 180 THz. φ represents the angle subtended by curve �B at
the origin.

adhering to the constraints imposed by adiabatic following.
Hence, it could be asserted that a geometric phase of π

2 is
acquired by a reflected beam in a 1D APC for the values of
parameters which results in PT -symmetry-broken phase. On
the contrary, the variation in �B is plotted as a function of z
for ν = 180 THz which is outside the PBG of 1D-APC [see
Fig. 5(b)]. �B(z = 0) (black arrow) and �B(z = L) (red dashed
arrow) are both negative as well as coparallel in this case. Con-
sequently, the geometric phase γ = φ

2 = 0 for ν = 180 THz.
In addition, it is apparent that �k �= 0 at any point (or any z)
in the 1D APC.

C. Tamm-plasmon excitations in 1D APC and the role
of geometric phase

The presence of a plasmon-active layer adjacent to the
all-dielectric 1D APC results in excitation of multiple Tamm-
plasmon modes which are nondegenerate in the frequency
spectrum. As an example, we consider a thin (dAu = 30 nm)
layer of gold placed in contact with high index layer (TiO2) of
1D APC [see Fig. 6(a)]. The simulated reflection spectrum ex-
hibits a sharp resonance within the PBG as shown in Fig. 6(b).
These resonances are essentially due to Tamm-plasmon mode
excitations which are highly localized electromagnetic states.
Figure 6(b) depicts the existence of 10 Tamm-plasmon modes
within the PBG of 1D APC. Although there are a few sharp
resonances outside the PBG, their mode-field signatures do
not resemble those for a Tamm-plasmon mode [37]. In gen-
eral, the existence of Tamm-plasmon modes is governed by
the condition φAPC + φAu = 2sπ where s = 0, 1, 2, 3, ....

is a positive integer [38–40]. Here, φAPC is the total phase ac-
quired by the reflected beam from the 1D APC (light incident

FIG. 6. (a) Schematic of the Au-1D-APC heterostructure. The
Au layer is placed adjacent to the high-index TiO2 layer. The thick
brown arrow depicts the direction of light incidence on the Au-
1D-APC. (b) Simulated reflection spectrum of 1D APC without Au
(black solid curve) and that of Au-1D-APC (maroon solid curve).
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from Au side), and φAu is the phase acquired by the reflected
beam at the Au-TiO2 interface. It is worthwhile to reiterate
that the dielectric layer (of 1D APC) adjacent to the Au film
is TiO2 which is the high index layer. In the present context
φAPC = γ + α, where α is the dynamic phase acquired by the
reflected beam [35]. This could be estimated by noting the fact
that the EPs (for a given frequency) are situated in different
unit cells (or ζ ) of the 1D APC. For a frequency ν, if the
nearest EP (with respect to z = 0) is present in the T th-unit
cell of 1D APC, then α could be determined using

α = 2πν

c

T∑
M=0

[n1d1M + n2d2M]. (5)

The knowledge of location for EPs in the 1D APC (ob-
tained from the eigenvalue spectrum of Ĥ ) would accurately
yield the dynamic phase (α) for any frequency of operation
(ν). In conjunction with the estimate of γ , this information
would allow us to determine the Tamm-plasmon mode res-
onance frequencies (νr). This recipe provides a flexibility
in terms of designing an 1D APC which would facilitate
excitation of Tamm-plasmon mode at a target (desirable) fre-
quency (or wavelength) of operation. One such application
could be the generation of higher harmonics or frequency
downconversion using optical surface states [41]. In this
case, the 1D APC could be designed such that the Tamm-
plasmon modes (localized modes) have resonance frequencies
that are governed by the energy conservation and phase-
matching constraints associate with the frequency conversion
process.

III. CONCLUSIONS

In conclusion, we presented an all-dielectric 1D-APC
design which hosts multiple exceptional points in its eigen-
value spectrum by virtue of exhibiting a pseudo-Hermitian
dynamics for a mode-coupling process between a forward-
propagating mode to its backscattered counterpart. Although,
the 1D-APC does not include any dissipative component, the
intermodal coupling mechanism could be classified in terms
of PT -symmetric and PT -symmetry-broken phases which
are connected through a quantum phase transition. We also
showed that the reflected beam (within the PBG) acquires a
geometric phase of π

2 in the PT -symmetry-broken phase. As
a consequence of this outcome, the 1D APC could be designed
for exciting the optical Tamm-plasmon modes at any desirable
frequency within the PBG. This design flexibility allows us to
employ such architectures for applications such as efficiently
carrying out optical frequency conversion using surface states
[41].

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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