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We propose a scheme to realize an optical Bessel potential with parity-time (PT ) symmetry and investi-
gate the existence, propagation, and manipulation of multidimensional optical solitons through the interplay
among diffraction, Kerr nonlinearity, and potential confinement in a cold atomic gas under the condition of
electromagnetically induced transparency (EIT). We show that the system supports not only two-dimensional
stationary optical solitons but also rotary ones; the stability of such solitons can be actively controlled by the
gain-loss component (imaginary part), while the rotary motions can be tuned by the refractive-index component
(real part) of the PT -symmetric potential. Moreover, we demonstrate that the system allows the existence of
stable three-dimensional spatiotemporal optical solitons, i.e., optical bullets, which have ultraslow propagation
velocity and display helicoidal motions with controllable propagation trajectories. Due to the Kerr nonlinearity
enhanced by the EIT effect, extremely low power is needed to create these multidimensional optical solitons. The
results reported here are useful not only for the generation and manipulation of high-dimensional solitons via
PT -symmetric potentials, but also for promising applications in optical information processing and transmission.
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I. INTRODUCTION

In the past decades, controls over nonlinear optical pulses
and beams have attracted intense research interest due to
their great importance not only in exploring the fundamental
physics of nonlinear optical processes, but also in seeking
practical applications of various nonlinear optical techniques
[1,2]. Among various schemes suggested for manipulating
optical solitons, the most important one is perhaps the use
of spatial variations of optical medium properties (such as
refractive index, gain, and loss) induced by modulated control
laser fields. Based on such ideas, many types of optical soli-
tons that do not exist in uniform nonlinear media have been
discovered [3–5]. For example, in the presence of a radially
modulated refractive index, fundamental, multipole, vortex,
and annular solitons have been predicted theoretically [6–16]
and observed experimentally [17,18]. In addition, a rich vari-
ety of stable two- and three-dimensional dissipative solitons
(soliton complexes) and their motion have been studied in
a spatially homogeneous medium with nonlinear gain and
absorption [19,20].

On the other hand, to realize optical solitons without using
intense laser field or long propagation distance, the resonant
atomic gas working under the condition of electromagneti-
cally induced transparency (EIT) [21] was proposed [22,23].
In such an optical medium, due to the quantum interference
effect induced by a control laser field, the absorption of a
probe laser field tuned to a strong one-photon resonance can

*Corresponding author: chang@phy.ecnu.edu.cn

be largely suppressed and hence the optical medium that is
initially opaque becomes transparent; in particular, the Kerr
nonlinearity of the system can be enhanced greatly. The
optical solitons produced in such a system possesses many
intriguing properties that are absent in conventional optical
media. In particular, they generate very low power (order of
1 mW) and can form at very short propagation distance (order
of 1 cm).

Another advantage of EIT-based atomic media lies in their
efficiency in the a priori design of optical potentials by intro-
ducing modulations in the control laser field [24,25]. Since the
optical potential in an EIT medium is usually complex, it can
be designed in its real part and/or imaginary part, which stand
for the refractive index and absorption (or gain) of the system,
respectively. Based on such considerations, the construction
of complex optical potentials with parity-time (PT ) symmetry
[26,27] in atomic gases was proposed and realized in recent
studies [28–33].

The system with aPT -symmetric Hamiltonian has remark-
able features. It can support all-real eigenvalues and allow
a transition from a purely real spectrum to a complex one,
referred to as PT -symmetry breaking, which occurs at a
critical depth of the imaginary part of the PT -symmetric po-
tential [5,34]. In optics,PT -symmetry breaking manifests in a
qualitative modification of light propagation and has many im-
portant applications [35–37]. Optical solitons were predicted
in nonlinear optical media with various PT -symmetric po-
tentials [38–48]. Fundamental, dipole, and multipeak solitons
were found to exist in nonlinear media with PT -symmetric
Bessel potentials [49–51]. However, most of these stud-
ies were limited to the case of one spatial dimension; the
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investigation of multidimensional solitons and their active
manipulation in the system with a two-dimensional (2D)
PT -symmetric Bessel potential is still absent; a practical sys-
tem to realize the PT -symmetric Bessel potential and soliton
control is also needed.

In this work we propose a scheme to realize an op-
tical Bessel potential with PT symmetry and explore the
possibility of the existence, stable propagation, and active
manipulation of multidimensional optical solitons in such a
PT -symmetric system. We consider a cold atomic gas work-
ing under the condition of EIT and show that the Bessel
potential can be created through the transverse spatial mod-
ulation of the control field and an assistant field with an
incoherent pumping. Due to the EIT effect, the system can
possess giant Kerr nonlinearity and hence supports not only
2D [52] stationary optical solitons but also rotary ones. We
also show that the stability of such solitons can be actively
controlled by the gain-loss component (imaginary part), while
the rotary motions can be tuned by the refractive-index com-
ponent (real part) of the PT -symmetric potential. Moreover,
the existence of stable 2D spatial vortices is also predicted.

Furthermore, we demonstrate that the system allows stable
3D [52] spatiotemporal optical solitons (alias optical bullets),
which have an ultraslow propagation velocity. Such multi-
dimensional optical solitons can display helicoidal motions
and their propagation trajectories can be controlled actively.
Due to the giant Kerr nonlinearity in the system, to create
these multidimensional optical solitons, only an extremely
low power is required. The results reported in the present
study are useful not only for the generation and manipulation
of high-dimensional solitons viaPT -symmetric potentials but
also for promising applications in optical information process-
ing and transmission.

The remainder of the article is organized as follows. In
Sec. II we describe the model under study and derive the
nonlinear envelope equation. Section III discusses the phys-
ical realization of the PT -symmetric Bessel potential and
PT -symmetry breaking in the system. Sections IV and V
are devoted to our investigation of the existence, propagation,
stability, and manipulation of 2D and 3D optical solitons,
respectively. Section VI discusses the Doppler effect of the
system. Section VII gives a summary of the main results
obtained in this work.

II. MODEL AND NONLINEAR ENVELOPE EQUATION

A. Physical model

We start by considering a cold four-level atomic gas with
an inverted-Y-type configuration, as shown in Fig. 1(a). A
weak, spatially focused probe laser field Ep (with wave num-
ber kp = ωp/c and angular frequency ωp) couples the atomic
ground state |1〉 to the intermediate (excited) state |3〉, a
strong control laser field Ec (with wave number kc = ωc/c
and angular frequency ωc) couples the low-lying state |2〉
to the state |3〉, and a strong assistant laser field Ea (with
wave number ka = ωa/c and angular frequency ωa) couples
the state |3〉 to a high-lying state |4〉. Note that this excitation
scheme combines a standard �-type EIT configuration (ex-
citation channel |1〉 ↔ |3〉 ↔ |2〉) and a standard �-type EIT
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FIG. 1. (a) Level diagram and excitation scheme. A weak probe
field Ep, a strong control field Ec, and a strong assistant field Ea

couple the ground state |1〉 to the intermediate state |3〉, the low-
lying state |2〉 to the state |3〉, and the intermediate state |3〉 to the
high-lying state |4〉, respectively. Here � j are detunings and � jl are
the spontaneous-emission decay rate from |l〉 to | j〉. An incoherent
pumping (with pumping rate �21) is used to pump atoms from |1〉
to |2〉, providing a gain to the probe field. The control and the
assistant fields are assumed to be spatially modulated. (b) Possible
geometric arrangement for the diffraction of the probe field when it
is normally incident on the PT -symmetric EIG. For details, see the
text. (c) Populations ρ (0)

αα for the atoms at states |α〉 (α = 1, 2, 3, 4),
as functions of the incoherent population pumping rate �21.

configuration (excitation channel |1〉 ↔ |3〉 ↔ |4〉), providing
abundant control parameters. The total electric field applied
to the atomic gas is given by E = Ep + Ec + Ea, where Eα =
eαEα exp[i(kα · r − ωαt )] + c.c., with eα the unit polarization
vector and Eα (α = p, c, a) the field amplitude. The propa-
gation direction of the probe field is assumed to be in the
z direction, i.e., kp = (0, 0, kp). To eliminate the first-order
Doppler effect, we set kc = (0, 0, kc) and ka = (0, 0,−ka),
as shown in Fig. 1(b), in which the cylindrical domain is
the atomic cell containing a gas of laser-cooled 87Rb atoms
(denoted by magenta circles).

In order to realize an optical PT symmetry in the present
system, a gain mechanism of the probe field must be provided.
To this end, we assume that an incoherent population pumping
(with the pumping rate �21) couples the ground state |1〉 and
the low-lying state |2〉. Note that the incoherent population
pumping can be implemented by using a couple of differ-
ent techniques, such as intense atomic resonance spectrum
lines emitted from hollow-cathode lamps or from microwave
discharge lamps [53]. In addition, to create the required spa-
tial distribution of the optical potential that satisfies the PT
symmetry, the control and the assistant fields are assumed
to have weak spatial modulations, which are easy to realize
experimentally.

The dynamics of the system is described by the
Hamiltonian Ĥ = Na

∫
d3r Ĥ (r, t ), with Ĥ (r, t ) the Hamil-

tonian density and Na the atom density. Under electric dipole
and rotating-wave approximations, the Hamiltonian density in
the interaction picture reads Ĥ (r, t ) = ∑4

j=1 h̄� j Ŝ j j (r, t ) −
h̄[	pŜ13(r, t ) + 	aŜ34(r, t ) + 	cŜ23(r, t ) + H.c.], where
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Ŝ jl = |l〉〈 j| ei[(kl −k j )·r−(ωl −ω j+�l −� j )t] is the transition
operator related to the states | j〉 and |l〉, satisfying the
commutation relation [Ŝ jl (r, t ), Ŝμν (r′, t )] = (1/Na)δ
(r − r′)[δ jν Ŝμl (r′, t ) − δμl Ŝ jν (r′, t )]. Here h̄ω j is the
eigenenergy of the level | j〉; �3 = ωp − (ω3 − ω1),
�2 = ωp − ωc − (ω2 − ω1), and �4 = ωp + ωa − (ω4 − ω1)
are frequency detunings; and 	p = (ep · p31)Ep/h̄,
	c = (ec · p32)Ec/h̄, and 	a = (ea · p43)Ea/h̄ are Rabi
frequencies of the probe, control, and assistant fields,
respectively, with pi j the electric dipole matrix elements
associated with the transition |i〉 ↔ | j〉. We assume that
the high-lying state |4〉 is far-off-resonantly coupled to the
intermediate state |3〉 through the assistant laser field Ea, i.e.,
|�3 − �4| � 	a, and hence the atomic population in the
state |4〉 remains small during the evolution of the probe field.

The dynamics of the atomic motion is governed by the
optical Bloch equation [54]

∂ρ̂

∂t
= − i

h̄
[Ĥ , ρ̂] − �[ρ̂], (1)

where ρ is density matrix and � is relaxation matrix, con-
tributed from the spontaneous emission and dephasing of the
atoms. Atomic density-matrix elements are defined by ραβ ≡
〈Ŝαβ〉 (α, β = 1–4), which describes the atomic population
(α = β) and atomic coherence (α �= β). The explicit form of
Eq. (1) is presented in Appendix A. Under the slowly varying
envelope approximation, the Maxwell equation for the probe
field is reduced to

i

(
∂

∂z
+ 1

c

∂

∂t

)
	p + 1

2kp
∇2

⊥	p + kp

2
χp 	p = 0, (2)

where ∇2
⊥ = ∂2

x + ∂2
y and χp = Nα (ep · p13)2ρ31/ε0 h̄	p is the

optical susceptibility of the probe field.

B. Two-dimensional nonlinear envelope equation
and giant Kerr nonlinearity

Our main aim is to study the case where the probe field
can be taken as a stationary nonlinear optical beam when it
propagates in the system. The stationary state approximation
is valid if the temporal duration τ0 of the probe pulse is
large enough so that τ0 � max(1/�3, 1/�4) (where �α is the
decay rate of the state |α〉). Thus the evolution of the atomic
population and coherence can adiabatically follow that of the
probe field. Under such an assumption, the time-derivative
terms in the Maxwell-Bloch (MB) equations (1) and (2) can
be neglected, i.e., ∂/∂t = 0, and thus the probe field behaves
as a stationary optical beam.

Since the probe field is weak, the population in atomic
levels changes little when the probe field is applied to the
system and hence a perturbation expansion can be employed
to solve the Bloch equation (1). Hence, we can employ
the asymptotic expansions 	p = ε	(1)

p + ε2	(2)
p + · · · and

ραβ = ρ
(0)
αβ + ερ

(1)
αβ + · · · , where ε is the small parameter

characterizing the typical amplitude of the probe field. By
substituting the expansions into Eq. (1) and comparing the co-
efficients of ε j ( j = 0, 1, . . .), we obtain a set of equations for
ρ

( j)
αβ , which can be solved order by order.

The zeroth-order ( j = 0) equations and their solutions
describe the case when the probe field is not applied, i.e.,

	p = 0 (the details of these equations and their solutions are
provided in Appendix B). A key parameter in the solution
is the incoherent population pumping rate �21. If �21 = 0,
one has ρ

(0)
11 = 1 with all other matrix elements being zero.

In this case, all atoms are populated in the ground state |1〉
and hence the probe field will not acquire any gain when it
is applied. However, if �21 > 0, one has ρ

(0)
33 > 0, i.e., there

are some atoms populated in the intermediate state |3〉, and
hence the probe field will acquire gain due to the stimulated
radiation effect, which is necessary for the realization of PT
symmetry of the potential in the system. Since the condition
|�3 − �4|/	a � 1 is satisfied in the system, the popula-
tion in the high-lying state |4〉 is very small, i.e., ρ

(0)
44 ≈ 0.

Figure 1(c) shows the population in each state ρ (0)
αα (α = 1–4)

as a function of �21, where we have used the parameters of
87Rb atoms given below. It can be seen that both ρ

(0)
22 and

ρ
(0)
33 increase with the growth of �21; however, ρ

(0)
44 remains

nearly zero.
The linear evolution of the system is described by the

solution of the first-order ( j = 1) approximation. The solution
of the probe field at this order reads 	(1)

p = F exp{i[K (ω)z −
ωt]}, where F is an undetermined envelope function and K (ω)
describes the linear dispersion relation

K (ω) = ω

c
− κ13

(ω + d21)(ω + d41)

D(ω)
, (3)

with D(ω) = (ω + d21)(ω + d31)(ω + d41) − |	a|2(ω +
d21) − |	c|2(ω + d41) and κ13 = Naωp|p13|2/2ε0ch̄. Here
dαβ = �α − �β + iγαβ , with γαβ the decay rate from
|β〉 to |α〉.

At the third-order ( j = 3) approximation, we obtain a 2D
[52] nonlinear Schrödinger (NLS) equation for 	p, given by

i
∂	p

∂z
+ 1

2kp
∇2

⊥	p + kp

2

(
χ (1)

p + χ (3)
p |	p|2

)
	p = 0, (4)

where

χ (1)
p =Nα (ep · p13)2

ε0 h̄
α

(1)
31 , (5)

χ (3)
p = Nα (ep · p13)2

ε0 h̄D

[
d21d41

(
α

(2)
33 − α

(2)
11

)
− d41	cα

(2)
23 − d21	

∗
aα

(2)
43

]
(6)

are the linear and third-order nonlinear optical susceptibilities,
respectively. Explicit expressions of α

(1)
31 , α

(2)
11 , α

(2)
33 , α

(2)
23 , and

α
(2)
43 are given in Appendix B.

The physical model we considered above is rather general.
One realistic system is a laser-cooled 87Rb atomic gas, for
which the atomic levels can be chosen as |1〉 = |5S1/2, F =
1〉, |2〉 = |5S1/2, F = 2〉, |3〉 = |5P3/2〉, and |4〉 = |6S1/2〉,
with the decay rates �13 ≈ �23 ≈ 2π × 3 MHz and �34 ≈
2π × 4 kHz [55]. In addition, the incoherent population
pumping rate �21 ≈ 2π × 0.1 MHz; the frequency detunings
�2 = 4.78 × 106 s−1, �3 = 1.2 × 108 s−1, and �4 = −1.5 ×
107 s−1 (which give |�3 − �4| ≈ 1.35 × 108 s−1); the atomic
density Na = 1.0 × 1013 cm−3; and the Rabi frequencies of
the control and assistant fields are 	c = 3.0 × 107 s−1 and
	a = 4.5 × 107 s−1. With these system parameters, we can
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estimate the nonlinear optical susceptibility, given by

χ (3)
p ≈ 5 × 10−8 m2 V−2, (7)

which is more than 1015 orders of magnitude larger than that
obtained in conventional far-off-resonance nonlinear optical
media (such as optical fibers) [54]. The reason is that the opti-
cal Kerr nonlinearity in the present system is greatly enhanced
by the EIT effect.

In the above analysis, we have obtained the EIT-enhanced
Kerr nonlinearity of the system by solving the MB equa-
tions adiabatically. However, the transient property of the Kerr
nonlinearity is also important and relevant to most applica-
tions. In particular, the enhancement of the Kerr nonlinearity
leads simultaneously to an increase in the settling time of
the Kerr nonlinearity. In the present system, when the probe
field is not applied (at the zeroth-order approximation), the
coherence ρ31 ≈ 0; when the probe field is applied (for the
first-order approximation), ρ31 undergoes a damped oscilla-
tion and approaches its steady-state value ρ

(1)
31 (∞) = α

(1)
31 	p

(the expression of α
(1)
31 is given in Appendix B). Since the

probe susceptibility χp is proportional to ρ31, the settling time
of the Kerr nonlinearity (characterized by χ (3)

p ) is determined
by the transient behavior of ρ31, which has the time-dependent
solution [56]

ρ
(1)
31 =

3∑
m=1

fmeiλmt + ρ
(1)
31 (∞), (8)

where λm is the three eigenvalues of the matrix

M =
⎛
⎝d21 	∗

c 0
	c d31 	∗

a
0 	a d41

⎞
⎠ (9)

and fm (m = 1, 2, 3) are slowly varying envelopes. Conse-
quently, the settling time of the Kerr nonlinearity can be
estimated by the reciprocal of the minimum of Im(λm), i.e.,
1/min[Im(λm)], which is about 1.2 μs using the parameters
given above Eq. (7).

For convenience in the following discussion, we write
Eq. (4) in the dimensionless form

i
∂U

∂ζ
+

(
∂2

∂ξ 2
+ ∂2

∂η2

)
U + V (ξ, η)U + W |U |2U = 0 (10)

by defining the nondimensional variables U = 	p/U0, ζ =
z/Ldiff , and (ξ, η) = (x, y)/R⊥. Here U0 and R⊥ are the typ-
ical Rabi frequency and beam radius, respectively; Ldiff =
2kpR2

⊥ = 4πR2
⊥/λp is the characteristic diffraction length of

the probe field; and V = k2
pR2

⊥χ (1)
p and W = k2

pR2
⊥U 2

0 χ (3)
p are

the dimensionless linear optical potential and nonlinearity co-
efficient, respectively. With the parameters of the 87Rb atoms
given above, we have Ldiff ≈ 0.13 cm and W ≈ 1 if taking
U0 ≈ 1.5 × 107 s−1.

III. PT -SYMMETRIC BESSEL POTENTIAL AND
PT -SYMMETRY BREAKING

A. Realization of PT -symmetric optical Bessel potential

Since the present system is highly configurable and manip-
ulable, it is possible to create optical potentials with specific
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FIG. 2. Spatial distribution of the PT -symmetric Bessel poten-
tial V (ξ, η) (11) with (V0,V1,V2) = (0, 1, 1). (a) Surface plot of the
real part Re(V ) of V (ξ, η) as a function of ξ and η. (c) Profile of
Re(V ) (as a function of ξ or η). (b) and (d) Same as (a) and (c),
respectively, but for the imaginary part Im(V ). The profile of Im(V )
is an even function in the cross section ξ = 0 (yellow solid line) and
an odd function in the cross section η = 0 (purple dashed line).

space distributions by modulating the control and assistant
laser fields in space. As an example, the target potential can
be designed to be in the form

V (ξ, η) = V0 + V1J0(ρ) + iV2J1(ρ) sin θ, (11)

where V0 is a constant; V1 and V2 (|V1|, |V2| � V0) charac-
terize the amplitudes of the real part and the imaginary part,
respectively; Jj is the jth-order Bessel function ( j = 0, 1);
and ρ ≡

√
ξ 2 + η2 and θ ≡ arcsin(η/ρ) are the radial and

angular coordinates, respectively. Figures 2(a) and 2(b) show
surface plots of the real part Re(V ) and the imaginary part
Im(V ) of V (ξ, η), respectively, as functions of ξ and η with
(V0,V1,V2) = (0, 1, 1); Figs. 2(c) and 2(d) show profiles of
Re(V ) and Im(V ), respectively, as functions of ξ or η. We
see that the imaginary part of the potential V (ξ, η) is an
even function in the ξ direction and an odd function in the
η direction, i.e., ImV (ξ, η) = ImV (−ξ, η) and ImV (ξ, η) =
−ImV (ξ,−η), which means that the target potential given by
(11) satisfies the PT symmetry condition in two dimensions,
i.e., V (ξ, η)∗ = V (−ξ,−η)∗.

With the systemic parameters of 87Rb atoms given above,
the target potential (11) can be created using the method pro-
posed in [28,31,33] by using the spatially modulated control
and assistant fields of the form

	c(ξ, η)/	c0 ≈ 1 + 10−2 × [0.56V1J0(r)

+ 2.13V2J1(r) sin(θ )], (12a)

	a(ξ, η)/	a0 ≈ 1 + 10−2 × [0.82V1J0(r)

+ 4.38V2J1(r) sin(θ )], (12b)

with 	c0 = 3.0 × 107 s−1 and 	a0 = 4.5 × 107 s−1. From
Eq. (12) we see that the PT -symmetric Bessel potential can
be achieved by superposing zeroth- and first-order Bessel
beams on the spatially uniform background of the control and
assistant fields. Note that Bessel beams of different orders can
be easily generated experimentally by illuminating a narrow
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FIG. 3. Domains of unbroken (lower part) and broken (upper
part) PT -symmetry phases in the parameter plane of V1 and V2. The
purple solid line gives the value of (V1,V2) where the PT -symmetry
breaking (phase transition) occurs.

annular split placed in the focal plane of a lens or axicon
[57] or by using holographic techniques [58]; moreover, the
diffraction-free property [59] of the Bessel beams can make
the spatial modulations of the control and assistant fields very
robust.

In fact, the control and assistant fields are not extended
infinitely in space and both of them decay rapidly at their
boundaries. Thereby, the uniform background and the Bessel
beams will not lead to an infinitely high power. However, the
waist of the probe beam is much smaller than that of the con-
trol and assistant beams and is highly focused in their center
regions. Consequently, the intensity decay at boundaries of the
control and assistant beams has only a marginal effect on the
probe beam propagation and it is still subjected to the Bessel
potential.

B. Linear-wave propagation and the breaking of PT symmetry

The stationary-state solutions of Eq. (10) with the
PT -symmetric optical Bessel potential (11) can be sought by
assuming U (ξ, η, ζ ) = u(ξ, η)eiμζ , where u(ξ, η) is a mode
function satisfying the equation

μu =
(

∂2

∂ξ 2
+ ∂2

∂η2

)
u + V (ξ, η)u + W |u|2u, (13)

with μ a propagation constant. If the probe field is very weak
so that the nonlinear term W |u|2u can be neglected, Eq. (13) is
reduced to the linear eigenvalue problem μu = (∂2

ξ + ∂2
η )u +

V (ξ, η)u, which describes the linear propagation of the probe
field. When all eigenvalues μ are all real, the probe-field prop-
agation is stable; however, if at least there is one eigenvalue
that becomes complex, the probe-field propagation will be
unstable. In fact, by tuning the amplitudes of the real and
imaginary parts of V , i.e., V1 and V2, the eigenvalue μ can
undergo a change from all real to partially complex and hence
a phase transition from unbroken to broken PT symmetries
occurs in the system.
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FIG. 4. A 2D stationary soliton in the presence of the
PT -symmetric Bessel potential (11) with (V1,V2) = (4, 0.4). (a) Sur-
face plot of the soliton intensity distribution |U |2 = |	p/U0|2 as a
function of ξ = x/R⊥ and η = y/R⊥ at ζ = z/Ldiff = 10 (i.e., z =
10Ldiff ≈ 1.3 cm). (b) Same as in (a) but shown as a function of
ξ = x/R⊥ and ζ = z/Ldiff at η = 0. The insets in (a) and (b) show
the corresponding top views of the soliton intensity distribution.

Figure 3 shows domains of the unbroken (lower part) and
broken (upper part) PT -symmetry phases in the parameter
plane of V1 and V2. Remarkably, the boundary between the
two domains is a straight line, denoted by the purple solid line
in the figure, which can be fitted by the relation

V2 ≈ 1.05V1 + 0.4. (14)

Each point on this line gives a set of values of (V1,V2), at
which the PT -symmetry breaking (phase transition) occurs.
If V2 < 1.05V1 + 0.4, the system works in the phase of un-
broken PT symmetry where the eigenvalue μ is real and
thus the probe-field propagation is stable; however, if V2 >

1.05V1 + 0.4, the system works in the phase of broken PT
symmetry where μ becomes complex and hence the probe-
field propagation is unstable. From these results, we see that,
by changing the control and assistant fields (12), it is possible
to control the exceptional line (14) and the linear propagation
of the probe field in the system.

IV. TWO-DIMENSIONAL SPATIAL SOLITONS UNDER
THE PT -SYMMETRIC BESSEL POTENTIAL

A. Stationary 2D optical solitons and vortices under the
PT -symmetric Bessel potential

Now we investigate the nonlinear propagation of the probe
field based on the 2D NLS equation (10). By using numerical
simulations, we find that Eq. (10) indeed supports stable 2D
soliton solutions when the PT -symmetric Bessel potential
(11) is present. Figure 4(a) shows the intensity distribution
|U |2 = |	p/U0|2 for a 2D soliton as a function of ξ = x/R⊥
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FIG. 5. Linear beam in the presence of thePT -symmetric Bessel
potential (11) with (V1,V2) = (4, 0.4) without including Kerr non-
linearity. (a) Surface plot of the beam intensity distribution |U |2 =
|	p/U0|2 as a function of ξ = x/R⊥ and η = y/R⊥ at ζ = z/Ldiff =
10 (i.e., z = 10Ldiff ≈ 1.3 cm). (b) Same as in (a) but shown as
a function of ξ = x/R⊥ and ζ = z/Ldiff at η = 0. The insets in
(a) and (b) show the corresponding top views of the beam intensity
distribution.

and η = y/R⊥ at ζ = z/Ldiff = 10, i.e., z = 10Ldiff ≈ 1.3 cm.
Amplitudes of the real and imaginary parts of the Bessel
potential are taken to be V1 = 4 and V2 = 0.4, respectively.
The initial condition used is a 2D Gaussian beam, i.e.,

U (ξ, η, ζ = 0) = Ae−(ξ 2+η2 )/w2
, (15)

where A and w are the beam amplitude and radius, respec-
tively. In Fig. 4(c) we show |U |2 as a function of ξ = x/R⊥
and ζ = z/Ldiff at η = 0 for A = 1.2 and w = 1. It can be
seen that the intensity and width of the soliton remain nearly
invariant, which indicates that the soliton is rather stable dur-
ing propagation. Figures 4(b) and 4(d) are top views of the
results given in Figs. 4(a) and 4(c), respectively.

The formation of the 2D soliton shown in Fig. 4 is
due to the combined contribution from the diffraction, the
PT -symmetric Bessel potential (11), and the Kerr nonlin-
earity in the system. To demonstrate this, as a comparison
in Fig. 5 we present a numerical result of the probe beam
propagation in the linear case. In particular, when the typi-
cal Rabi frequency U0 is decreased by one order, i.e., U0 =
1.5 × 105 s−1, the nonlinear term of Eq. (10) is estimated
as W |U |2 ∼ 0.01 with W = 1 and hence it can be safely
neglected. Shown in Fig. 5(a) is the intensity distribution
|U |2 = |	p/U0|2 for a 2D optical beam in the linear case as
a function of ξ = x/R⊥ and η = y/R⊥ at ζ = z/Ldiff = 10.
The Bessel potential and initial condition adopted here are the
same as those used in Fig. 4. It can be seen that in the absence
of nonlinearity the maximum intensity of the probe beam is
much smaller than that of the soliton (decreased by nearly
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FIG. 6. Stability analysis of the 2D soliton. (a) Probe-field power
P = ∫∫ |U |2dξ dη as a function of the propagation constant μ for
the PT -symmetric Bessel potential (11) with (V1,V2) = (4, 2). The
solid part (where point A is located) and dashed part (where point
B is located) of the curve represent stable and unstable regions of
the soliton, respectively. The inserts show the stability spectra Re(λ)
and Im(λ) (λ is the eigenvalue of the perturbations to the soliton) for
small perturbations around the soliton for P ≈ 6.5 (top panel) and
P ≈ 1 (bottom panel). Also shown are the top views of the soliton
intensity distribution |U |2 as a function of ξ = x/R⊥ and η = y/R⊥
for (b) P ≈ 6.5 (corresponding to point A, where the soliton is sta-
ble) and (c) P ≈ 1 (corresponding to point B, where the soliton is
unstable).

50%). Moreover, an obvious oscillation of the beam intensity
occurs during the propagation.

In order to have a strict analysis of the stability of the
soliton, a linear stability analysis is performed, which is done
by taking

U (ζ , ξ , η) = eiμζ [us(ξ, η) + p(ξ, η)eλζ + q∗(ξ, η)eλ∗ζ ].

(16)

Here us(ξ, η) represents the soliton solution obtained nu-
merically, μ is a propagation constant, p and q are small
perturbations to the soliton, and λ is the eigenvalue of the
perturbations. Based on Eq. (10), the eigenvalue problem for
the perturbations is given by

−iλp = [
μ + ∂2

ξ + ∂2
η + V (ξ, η) + 2W |us|2

]
p + Wu2

s q,

(17a)

iλq = [
μ + ∂2

ξ + ∂2
η + V ∗(ξ, η) + 2W |us|2

]
q + Wu∗2

s p.

(17b)

If at least one eigenvalue is found to have a positive real
part, the soliton solution is unstable; otherwise they are stable.

The eigenvalue problem (17) is solved numerically by us-
ing the plane-wave expansion method [60]. Figure 6(a) shows
the result of the probe-field power P = ∫∫ |U |2dξ dη as a
function of the propagation constant μ for the PT -symmetric
Bessel potential (11) with (V1,V2) = (4, 2). The solid part
(where point A is located) and the dashed part (where point
B is located) of the curve of the figure represent stable
and unstable regions of the soliton, respectively. Insets give
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FIG. 7. The 2D vortex soliton solutions in the presence of the
PT -symmetric Bessel potential (11). (a) Top view of the intensity
distribution |U |2 = |	p/U0|2 of the stable vortex soliton as a func-
tion of ξ = x/R⊥ and η = y/R⊥ for (V1,V2) = (4, 0.4). (b) Same
as in (a) but for the unstable vortex soliton, obtained by taking
(V1,V2) = (4, 4).

stability spectra, i.e., the real part Re(λ) and imaginary part
Im(λ) of the eigenvalue λ, for the perturbations around the
soliton for P ≈ 6.5 (top panel) and P ≈ 1 (bottom panel).
We find the following. (i) The soliton solution is stable in
the interval −3.2 � μ � 0 (denoted by the solid line), where
∂P/∂μ < 0. This agrees with the Vakhitov-Kolokolov (VK)
criterion, which states that a fundamental soliton solution is
stable if ∂P/∂μ < 0. (ii) The soliton becomes unstable when
μ � −3.2 and μ � 0 (denoted by the dashed line), where
∂P/∂μ < 0; this result is however contradicted by the VK
criterion, which states that a fundamental soliton solution is
unstable when ∂P/∂μ > 0. The reason that the VK criterion
is not completely applicable in the present system is due to the
existence of the gain and loss in the Bessel potential, which
makes the VK criterion invalid. Figures 6(b) and 6(c) are top
views of the soliton intensity distribution |U |2 as a function of
ξ = x/R⊥ and η = y/R⊥ for P ≈ 6.5 (corresponding to point
A, where the soliton is stable) and P ≈ 1 (corresponding to
point B, where the soliton is unstable).

Besides the fundamental soliton solution found above, the
system supports also stable vortex solitons, which carry or-
bital angular momenta. To demonstrate this, we take the initial
condition to be a 2D vortex beam

U (ξ, η, ζ = 0) = A

(√
2ρ

w

)|l|
e−ρ2/w2

L|l|
p

(
2ρ2

w2

)
eilϕ, (18)

where A and w are the amplitude and radius of the
beam, respectively; ρ =

√
ξ 2 + η2; L|l|

p is the generalized
Laguerre-Gaussian (LG) polynomial, with l (p) the radial
(azimuthal) index; and ϕ is the azimuthal angle. The orbital
angular momentum of a vortex soliton is proportional to the
topological charge or vorticity, determined by l .

Figure 7(a) shows the top view of the intensity distribu-
tion |U |2 = |	p/U0|2 of a stable vortex soliton for A = 0.77
and w = 2 as a function of ξ = x/R⊥ and η = y/R⊥ in the
presence of the PT -symmetric Bessel potential (11) with
(V1,V2) = (4, 0.4). The LG polynomial of the initial condi-
tion (18) is taken as the lowest-order one, i.e., L1

0; hence the
topological charge of the vortex soliton is one. We see that
the vortex soliton has no obvious deformation after propagat-
ing to ζ = z/Ldiff = 10, i.e., z = 10Ldiff ≈ 1.3 cm. However,
such a vortex soliton loses its stability when decreasing

(increasing) the real-part (imaginary-part) amplitude of the
potential V1 (V2). Figure 7(b) shows the result of an unstable
vortex soliton, which is obtained by taking (V1,V2) = (4, 4),
i.e., V2 is enlarged. Because (V1,V2) = (4, 4) is located in
the unbroken-PT -symmetry phase (see Fig. 3), the instability
of the vortex soliton is not stemmed from the PT -symmetry
breaking.

The imaginary part of the Bessel potential (11) can have
a significant effect on the stability of the fundamental and
vortex solitons. Specifically, when the system works in the
broken-PT -symmetry region, the solitons are unstable. How-
ever, when the system works in the unbroken-PT -symmetry
region but close to the phase transition points, i.e., the points
on the purple line in Fig. 3, the solitons may still be unstable.
The is because the Kerr nonlinearity can modify the linear po-
tential and induce the symmetry breaking for a linear system
with unbroken PT symmetry [61]. Thus, the solitons obtained
here are stable only when the system works in the unbroken-
PT -symmetry region and far from the phase transition points.

B. Rotary 2D solitons

The fundamental solitons found above are confined nearly
to the center of the Bessel potential (11), where the potential
energy reaches its smallest value. We now demonstrate that
solitons can also be initially set at and then rotate stably
around an outer ring of the Bessel potential. The possibility
of such a rotary soliton lies in the fact that the Bessel potential
is minimum and degenerate in each outer ring. Hence, the
soliton can move along the ring with the minimum potential
energy if it is created initially at the ring with the transverse
velocity being tangent to the ring.

In order to have deeper rings (thus stronger potential con-
finement), we can change the real part of the PT -symmetric
Bessel potential (11) from the zeroth-order Bessel function J0

to the first-order Bessel function J1, i.e.,

V (ξ, η) = V0 + V1J1(ρ) + iV2J1(ρ) sin θ. (19)

Figure 8 shows the result of numerical simulation on a rotary
soliton located at the first ring of the PT -symmetric Bessel
potential (19) for (V1,V2) = (12, 2). Figures 8(a), 8(b), 8(c),
and 8(d) show the intensity distribution |U |2 = |	p/U0|2 of
the soliton as a function of ξ = x/R⊥ and η = y/R⊥ when
ζ = z/Ldiff = 0, 2, 4, and 5, respectively. The initial condition
used is a 2D Gaussian beam, i.e.,

U (ξ, η, ζ = 0) = A e−[ξ 2+(η−r0 )2]/w2+iV⊥ξ , (20)

where r0 is the radius of the first ring and V⊥ denotes the initial
transverse velocity tangential to the ring. In the simulation, we
have chosen r0 ≈ 2, V⊥ ≈ 0.8, A = 0.4, and w = 1. We see
that the soliton keeps its waveform nearly invariant during its
rotation around the ring. However, when the initial transverse
velocity exceeds a threshold value, i.e., V⊥ > V th

⊥ ≈ 2.4, the
soliton cannot be trapped in the first ring anymore and it will
escape from the ring tangentially due to the high centrifugal
force. Nevertheless, such escape behavior can be suppressed
by increasing the amplitude of the real part of the Bessel
potential, i.e., by enlarging V1.

The maximum average power Pmax to generate the station-
ary and rotary 2D solitons described above can be obtained by
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FIG. 8. The 2D rotary soliton located at the first ring of the
PT -symmetric Bessel potential (19) with (V1,V2) = (12, 2). The
radius of the first Bessel ring is r0 ≈ 2; the initial tangent velocity
of the soliton is V⊥ ≈ 0.8. The top views of the soliton intensity
distribution |U |2 = |	p/U0|2 are shown as functions of ξ = x/R⊥
and η = y/R⊥ for ζ = z/Ldiff equal to (a) 0, (b) 2, (c) 4, and (d) 5.

using the Poynting vector [23], which is estimated to be

Pmax = 2ε0cnpS0|Ep|2max ≈ 2.07 nW. (21)

Thus, a very low generation power is needed to produce the
stable 2D solitons in the present system as the optical Kerr
nonlinearity is greatly enhanced by the EIT effect.

V. THREE-DIMENSIONAL SPATIOTEMPORAL SOLITONS
UNDER THE PT -SYMMETRIC BESSEL POTENTIAL

Finally, we turn to investigate the case where the
stationary-state approximation of the probe field used above
cannot be applied. If the temporal duration of the probe field is
shortened, e.g., order of hundreds of nanoseconds, the disper-
sion effect will play a significant role and it must be taken into
account for the evolution of the probe field. In this situation,
the 2D NLS equation (4) is modified into the 3D one [52]

i

(
∂

∂z
+ 1

Vg

∂

∂t

)
	p − 1

2
K2

∂2	p

∂t2
+ 1

2kp
∇2

⊥	p

+ kp

2

(
χ (1)

p + χ (3)
p |	p|2

)
	p = 0, (22)

where Vg = (∂K/∂ω)−1 is the group velocity of the probe field
and K2 = ∂2K/∂ω2 is the parameter denoting group-velocity
dispersion. Here K (ω) is the linear dispersion relation of the
system, given by the expression (3).

The dimensionless form of Eq. (22) reads

i
∂U

∂ζ
+

(
∂2

∂T 2
+ ∂2

∂ξ 2
+ ∂2

∂η2

)
U + V (ξ, η)U

+W |U |2U = 0. (23)

Here T = (t − z/Vg)/τ0 is a nondimensional (propagation)
variable (τ0 ≡ R⊥

√
kp|K2| is the probe-pulse duration); the

definitions of the other quantities in the equation are the same
as those used in Eq. (10). Moreover, to obtain Eq. (23) we

x

t
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FIG. 9. Propagation of the optical bullet located at the cen-
ter of the PT -symmetric Bessel potential (11) for (V1,V2) =
(4, 0.2). Shown are isosurface plots of the optical bullet when
propagating to distances ζ = z/Ldiff = 0, 5, 10, 15, 20 (i.e., z =
0, 0.65, 1.3, 1.95, 2.6 cm), respectively.

have also defined the characteristic dispersion length Ldisp =
2τ 2

0 /|K2|, which is set to equal to the characteristic diffraction
length Ldiff , i.e., Ldisp = Ldiff . Additionally, we have assumed
that the (dispersion) coefficient of the term ∂2U/∂T 2 is posi-
tive, which means that the group-velocity dispersion has been
chosen to be negative, i.e., sgn(K2) = −1.

Equation (23) supports the existence of 3D spatiotem-
poral solitons (also called optical bullets [1,2,62]), which
are localized in three spatial dimensions and also in time.
Figure 9 shows the result of numerical simulations on a typ-
ical optical bullet by assuming τ0 = 0.13 μs. It is located
at the center of the PT -symmetric Bessel potential (11) for
(V1,V2) = (4, 0.2). Illustrated in the figure is an isosurface
plot of the intensity distribution |U |2 of the optical bullet as
a function of ξ = x/R⊥, η = y/R⊥, and T = (t − z/Vg)/τ0,
when propagating to distances ζ = z/Ldiff = 0, 5, 10, 15, and
20, i.e., z = 0, 0.65, 1.3, 1.95, and 2.6 cm, respectively. The
initial condition used in the simulation is a 3D Gaussian wave
packet, i.e.,

U (ξ, η, T, ζ = 0) = A e−(ξ 2+η2 )/w2−T 2/τ 2
0 , (24)

with A = 1.2 and w = 1. One sees that, after propagating to
the distance ζ = z/Ldiff = 5, i.e., z = 5Ldiff ≈ 0.65 cm, the
initial Gaussian wave packet is transformed to a waveform of
a smooth optical bullet.

To test the stability of the optical bullet, we take U =
(1 + ε fR) uOB and let it propagate in the system. Here uOB

is the optical bullet solution, ε is a parameter representing the
typical amplitude of the perturbation to the bullet, and fR is
a random variable uniformly distributed in the interval [0, 1].
We observe that the optical bullet relaxes to the self-cleaned
form close to the unperturbed one. This point can be seen
clearly from the figure where the optical bullet undergoes no
apparent change when it propagates to ζ = z/Ldiff = 20, i.e.,
z = 20Ldiff ≈ 2.6 cm. Therefore, the optical bullet obtained is
quite stable during propagation.

If the optical bullet is initially created not at the center but
at an outer ring of the potential (19), it will rotate helically
around the ring. Figure 10 shows the helical motion of the
optical bullet that is generated in the first ring of the potential
(19) with (V1,V2) = (12, 2). The solid (dashed) line in the
figure denotes the propagation trajectory of the optical bullet
for the initial transverse velocity taken to be V⊥ = 0.46 (V⊥ =
0.23). The isosurface plots of the optical bullet at τ = 0, 3,
and 6 (corresponding to t ≈ 0, 0.4, and 0.8 μs, respectively)
are illustrated by purple domains. The reason for the helical
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FIG. 10. Helical motion of the optical bullet created in the first
ring of the potential (19) with (V1,V2) = (12, 2). The solid (dashed)
line denotes the propagation trajectory of the optical bullet for initial
transverse velocity V⊥ = 0.46 (V⊥ = 0.23). Domains illustrated in
purple are isosurface plots of the optical bullet at τ = 0, 3, and 6,
respectively.

motion of the optical bullet is that the velocity of the optical
bullet has two orthogonal components, i.e., the group velocity
Vg (in the z direction) and the transverse velocity V⊥ (in the
x direction).

The group velocity of the probe pulse can be estimated
using the system parameters given above, which reads

Vg ≈ 1.7 × 10−4c, (25)

which is much slower than c (the light speed in vacuum). For
the optical bullet located at the center of the PT -symmetric
Bessel potential (Fig. 9), its propagating velocity is equal to
Vg, which means that the optical bullet obtained in the present
system has an ultraslow propagation velocity in comparison
with the light speed in vacuum. For the optical bullet that
displays the helical motion (Fig. 10), its propagation velocity
is also ultraslow because the transverse velocity component
V⊥ is at the same order of Vg. Note that, due to the control-
lability of the system, we can actively manipulate the helical
trajectory and hence the output position of the optical bullet
by changing either Vg or V⊥. For instance, by reducing V⊥ to
half its value, the rotation number of the optical bullet will
be decreased by half for the same propagation distance. By
using the Poynting vector, the maximum average power Pmax

to generate the optical bullet described above can be estimated
to be

Pmax ≈ 5.18 nW, (26)

which is very low due to the EIT-enhanced optical Kerr non-
linearity.

VI. DISCUSSION

Here we briefly discuss the Doppler effect due to the
thermal motion of the atoms. With the given propagation
directions of the probe, control, and assistant laser fields (see
the first paragraph of Sec. II A), our results can be readily
generalized when an atom moves with a velocity V by the re-
placement �3 → ωp − (ω3 − ω1) + kpVz, �2 → ωp − ωc −
(ω2 − ω1) + (kp − kc)Vz, and �4 → ωp + ωa − (ω4 − ω1) +

(kp + ka)Vz, with Vz the projection of V in the z direction.
For a thermal atomic gas, the Vz-dependent terms should
be averaged over the Maxwell velocity distribution f (Vz ) =
1/(

√
πVT )e−(Vz/VT )2

, where VT = (2kBT/M )1/2 is the most
probable speed, with kB the Boltzmann constant, T the atomic
temperature, and M the atomic mass. With these expressions
we see that the velocity-dependent effect in the two-photon
detunings, i.e., �2 and �4, can be largely eliminated when
the probe and control fields copropagate and the probe and as-
sistant fields counterpropagate in the z direction, respectively.
Consequently, the Doppler effect in the two-photon detunings,
i.e., the first-order Doppler effect, can usually be neglected
compared with that in the one-photon detuning, �3.

In order to find applications of our system in optical infor-
mation processing, it is crucial to have a high-accuracy PT
symmetry of the Bessel potential, which can be realized by
lowing the temperature of the atomic gas so that the Doppler
effect in the one-photon detuning �3 can be neglected. The
latter condition is satisfied when ωp − (ω3 − ω1) � kpVz ∼
kpVT , which results in T � 1.2 K with the given parameters.
Thus, the temperature of the atomic gas should be lowered
to 0.1 K at least to obtain a high-accuracy PT symmetry.
Moreover, since the length of the atomic medium reads L =
1.3 cm, the processing time of optical information is about
L/c ≈ 43 ps.

VII. CONCLUSION

To sum up, we have proposed a physical scheme to realize
a Bessel potential with PT symmetry in a laser-driven cold
atomic gas under the condition of EIT. The existence, prop-
agation, and manipulation of 2D and 3D optical solitons are
investigated through the interplay among diffraction, potential
confinement, and Kerr nonlinearity of the system. We have
shown that the system supports 2D stationary and rotary spa-
tial solitons; their stability property is significantly dependent
on the gain-loss component (imaginary part) of the Bessel
potential, while their motion can be controlled by the real part
of the potential. Moreover, the system also supports stable 2D
spatial vortices. We have demonstrated that the system allows
stable 3D spatiotemporal solitons (light bullets), which have
ultraslow propagation velocity and can perform helicoidal
motion with a controllable trajectory in 3D space. Due to the
EIT-enhanced Kerr nonlinearity in the system, all multidimen-
sional solitons found here require only very low generation
power. The results reported are not only useful for providing a
new route for generating and manipulating multidimensional
optical solitons, but also promising for potential applications
in optical information processing and transmission.
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APPENDIX A: OPTICAL
BLOCH EQUATION

Based on the Hamiltonian Ĥ given in the main text, we can
obtain the explicit expression of the optical Bloch equation

i

(
∂

∂t
+ �21

)
ρ11 − i�13ρ33 − 	pρ13 + 	∗

pρ31 = 0, (A1a)

i
∂

∂t
ρ22 − i�21ρ11 − i�23ρ33 − 	cρ23 + 	∗

cρ32 = 0, (A1b)

i

(
∂

∂t
+ �3

)
ρ33 − i�34ρ44 + 	pρ13 − 	∗

pρ31 + 	cρ23

−	∗
cρ32 − 	aρ34 + 	∗

aρ43 = 0, (A1c)

i
∂

∂t
ρ44 + i�34ρ44 + 	aρ34 − 	∗

aρ43 = 0 (A1d)

for the diagonal elements and(
i
∂

∂t
+ d21

)
ρ21 + 	∗

cρ31 − 	pρ23 = 0, (A2a)

(
i
∂

∂t
+ d31

)
ρ31 + 	p(ρ11 − ρ33) + 	cρ21 + 	∗

aρ41 = 0,

(A2b)(
i
∂

∂t
+ d41

)
ρ41 + 	aρ31 − 	pρ43 = 0, (A2c)

(
i
∂

∂t
+ d32

)
ρ32 + 	pρ12 + 	c(ρ22 − ρ33) + 	∗

aρ42 = 0,

(A2d)(
i
∂

∂t
+ d42

)
ρ41 + 	aρ32 − 	cρ43 = 0, (A2e)

(
i
∂

∂t
+ d43

)
ρ43 + 	a(ρ33 − ρ44) − 	∗

pρ41 − 	∗
cρ42 = 0

(A2f)

for the nondiagonal elements. Here ραβ ≡ 〈Ŝαβ〉 =
〈�0|Ŝαβ |�0〉 (|�0〉 is the initial state vector of the system),
di j = �i − � j + iγi j , γi j = (�i + � j )/2 + γ col

i j (i �= j), and
� j = ∑

i< j �i j , with �i j the spontaneous emission decay rate
and γ col

i j the dephasing rate from | j〉 to |i〉.

APPENDIX B: SOLUTIONS OF THE OPTICAL BLOCH
EQUATION

By substituting the asymptotic expansions 	p = ε	(1)
p +

ε2	(2)
p + · · · and ρ jl = ρ

(0)
jl + ερ

(1)
jl + · · · (ε is a small pa-

rameter characterizing the typical amplitude of the probe
field) into Eq. (1) and comparing the coefficients of εm (m =
0, 1, . . .), we obtain a set of equations for ρ

(m)
jl , which can

be solved order by order. The zeroth-order equations are
given by

⎛
⎝−�21 0 �13

�21 0 �23

1 1 1

⎞
⎠

⎛
⎜⎜⎝

ρ
(0)
11

ρ
(0)
22

ρ
(0)
33

⎞
⎟⎟⎠ =

⎛
⎝ 0

2 Im(	∗
cρ

(0)
32 )

1

⎞
⎠. (B1)

In order to solve ρ
(0)
32 , we also need equations for ρ

(0)
32 , ρ

(0)
42 ,

and ρ
(0)
43 , which are given by

⎛
⎝d32 	∗

a 0
	a d42 −	c

0 −	∗
c d43

⎞
⎠

⎛
⎜⎜⎝

ρ
(0)
32

ρ
(0)
42

ρ
(0)
43

⎞
⎟⎟⎠ =

⎛
⎝	c(ρ (0)

33 − ρ
(0)
22 )

0
−	aρ

(0)
33

⎞
⎠. (B2)

The solutions of Eqs. (B1) and (B2) read

ρ
(0)
11 = −�13X/[�21�13 − (�21 + �13)X + �21(�23 + Y )], (B3a)

ρ
(0)
22 = �21(�13 + �23 + Y )/[�21�13 − (�21 + �13)X + �21(�23 + Y )], (B3b)

ρ
(0)
33 = −�21X/[�21�13 − (�21 + �13)X + �21(�23 + Y )], (B3c)

ρ
(0)
32 = [−(d42d43 − |	c|2)ρ (0)

22 + (d42d43 − |	c|2 + |	a|2)ρ (0)
33 ]	c/Z, (B3d)

ρ
(0)
42 = [d43ρ

(0)
22 − (d32 + d43)ρ (0)

33 ]	c	a/Z, (B3e)

ρ
(0)
43 = [|	c|2ρ (0)

22 − (d32d42 + |	c|2 − |	a|2)ρ (0)
33 ]	a/Z, (B3f)

ρ
(0)
21 = ρ

(0)
31 = ρ

(0)
41 = ρ

(0)
44 = 0, (B3g)

where X = 2 Im[(d42d43 − |	c|2)|	c|2/Z], Y =
−2 Im[(d42d43 − |	c|2 + |	a|2)|	c|2/Z], and Z =
d32d42d43 − |	c|2d32 − |	a|2d43.

For the first-order (m = 1) approximation, the solution for
nonzero matrix elements reads ρ

(1)
21 = α

(1)
21 	p, ρ

(1)
31 = α

(1)
31 	p,

and ρ
(1)
41 = α

(1)
41 	p, where α

(1)
21 , α

(1)
31 , and α

(1)
41 are determined

by the equation

⎛
⎝d21 	∗

c 0
	c d31 	∗

a
0 	a d41

⎞
⎠

⎛
⎜⎝α

(1)
21

α
(1)
31

α
(1)
41

⎞
⎟⎠ =

⎛
⎜⎝ ρ

(0)
23

ρ
(0)
33 − ρ

(0)
11

ρ
(0)
43

⎞
⎟⎠. (B4)

The expressions of α
(1)
21 , α

(1)
31 , and α

(1)
41 are given by

α
(1)
21 = [

(d31d41 − |	a|2)ρ (0)
23 + 	∗

c	
∗
aρ

(0)
43

− d41	
∗
c

(
ρ

(0)
33 − ρ

(0)
11

)]/
D, (B5a)

α
(1)
31 = [

d21d41
(
ρ

(0)
33 − ρ

(0)
11

) − d41	cρ
(0)
23

− d21	
∗
aρ

(0)
43

]/
D, (B5b)

α
(1)
41 = [

(d21d31 − |	c|2)ρ (0)
43 + 	c	aρ

(0)
23

− d21	a
(
ρ

(0)
33 − ρ

(0)
11

)]/
D, (B5c)

where D = d21d31d41 − |	c|2d41 − |	a|2d21.
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For the second-order (m = 2) approximation, the solu-
tion for nonzero matrix elements is found to be ρ

(2)
32 =

α
(2)
32 |	p|2, ρ

(2)
42 = α

(2)
42 |	p|2, ρ

(2)
43 = α

(2)
43 |	p|2, and ρ

(2)
j j =

α
(2)
j j |	p|2, where α

(2)
32 , α

(2)
42 , and α

(2)
43 satisfy the equation

⎛
⎝d32 	∗

a 0
	a d42 −	c

0 −	∗
c d43

⎞
⎠

⎛
⎜⎜⎝

α
(2)
32

α
(2)
42

α
(2)
43

⎞
⎟⎟⎠

=
⎛
⎝	c(α(2)

33 − α
(2)
22 ) − α

(1)
12

0
	a(α(2)

44 − α
(2)
33 ) + α

(1)
41

⎞
⎠ (B6)

and α
(2)
j j satisfy the equation

⎛
⎜⎜⎝

−�21 0 �13 0
�21 0 �23 0
0 0 −�3 �34

1 1 1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

α
(2)
11

α
(2)
22

α
(2)
33

α
(2)
44

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

2 Im(α(1)
31 )

2 Im(	∗
cα

(2)
32 )

2 Im(α(1)∗
31 + 	cα

(2)∗
32 + 	∗

aα
(2)
43 )

0

⎞
⎟⎟⎟⎟⎠. (B7)

However, the expressions for α
(2)
32 , α

(2)
42 , α

(2)
43 , and α

(2)
j j are too

lengthy to be presented here and are treated by numerical
means.

The expression of the local Kerr nonlinearity is obtained
for the third-order (m = 3) approximation, reading ρ

(3)
21 =

α
(3)
21 |	p|2	p, ρ

(3)
31 = α

(3)
31 |	p|2	p, and ρ

(3)
41 = α

(3)
41 |	p|2	p.

The solutions of α
(3)
21 , α

(3)
31 , and α

(3)
41 can be obtained from the

equation

⎛
⎝d21 	∗

c 0
	c d31 	∗

a
0 	a d41

⎞
⎠

⎛
⎜⎜⎝

α
(3)
21

α
(3)
31

α
(3)
41

⎞
⎟⎟⎠ =

⎛
⎜⎝ α

(2)
23

α
(2)
33 − α

(2)
11

α
(2)
43

⎞
⎟⎠, (B8)

leading to the expressions

α
(3)
21 = [

(d31d41 − |	a|2)α(2)
23 + 	∗

c	
∗
aα

(2)
43

− d41	
∗
c

(
α

(2)
33 − α

(2)
11

)]/
D, (B9a)

α
(3)
31 = [

d21d41
(
α

(2)
33 − α

(2)
11

) − d41	cα
(2)
23

− d21	
∗
aα

(2)
43

]/
D, (B9b)

α
(3)
41 = [

(d21d31 − |	c|2)α(2)
43 + 	c	aα

(2)
23

− d21	a
(
α

(2)
33 − α

(2)
11

)]/
D. (B9c)

Other density-matrix elements in this order are not needed and
hence are omitted here.
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