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Many-body physics in dimensional crossover systems has attracted much attention, but is yet to explore
intensively. Cold atoms provide an excellent experimental platform to address the questions in this area, but
technical difficulties still exist. When an optical lattice is applied to tune the dimensionality of trapped cold
atoms, it is usually difficult to precisely tune the occupation ratio of the atom in the different lattice bands. In this
paper we report the method to tune the occupation ratio of the energy band when transferring a three-dimensional
Fermi gas into a one-dimensional optical lattice, where we could tune the occupation ratio in the lowest band
from unity to 50% quantitatively by jointly varying the trapping potentials of the optical dipole trap and the
one-dimensional lattice. This method provides a route to study the dependence of the many-body interaction
on the dimensionality by continuously changing the dimensionality of a Fermi gas in the crossover from two
dimensions to three dimensions.
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I. INTRODUCTION

Experiments of two-dimensional (2D) Fermi gases have
attracted significant interest since they provide a highly
controllable tool to explore many-body physics in the flat-
land. The experimental progress includes the preparation and
production of a 2D Fermi gas [1,2], the observation of a
dimension-modified interaction [3] and polaron [4,5], thermo-
dynamic measurements of the equations of the state [6–9], the
radio-frequency spectrum [10–14], observation of paring and
the Berezinskii-Kosterlitz-Thouless phase transition [15–18],
the measurements of transport properties [19–21], the mea-
surements of the collective mode for a quantum anomaly
[22–25], and the realization of the Josephson junction [26].
So far, most of these experiments have focused on the de-
pendence of many-body effects on interaction strength and
temperature. On the other hand, the relation between many-
body effects and the dimensionality crossover is much less
explored [2,12,24,27], partially limited by the lack of a capa-
bility to continuously tune the occupation ratio of the different
lattice bands. With this capability, it is expected that the fas-
cinating physics in this crossover regime could be explored,
such as Tan’s contact with noninteger dimensionality, the di-
mensional evolution of a quantum anomaly, and the higher
temperature superfluidity.

In this paper we report the production of degenerate Fermi
gases of 6Li atoms in the crossover from two dimensions
to three dimensions with the tunable occupation ratio of the
ground and first excited bands in a 1D optical lattice. When
transferring a Fermi gas produced in an optical dipole trap
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(ODT) into the lattice, the ODT and lattice potentials are
jointly varied so that the ratio between the atom temperature
and the lattice depth changes, which determines the final oc-
cupation ratio of the different lattice bands.

II. EXPERIMENTAL SETUP AND METHODS

The experimental setup is shown in Fig. 1. A single-
frequency linearly polarized laser at λ = 1064 nm with a
typical linewidth of 1 kHz (Coherent Prometheus 100NE) is
used to form a 1D optical lattice. After passing through an
acousto-optic modulator (CETC SGT80-1064-1TA), the laser
is coupled into a single-mode polarization-maintaining fiber
with a coreless end cap to ensure that the induced optical
lattice has a good Gaussian distribution under a higher laser
power. To keep the power of the two beams for the lattice
stable, two pairs of the half waveplate and polarizing beam
splitter are placed behind the collimator. Then the beam is split
into two beams of the same power and polarization (z axis).
The two beams travel through roughly the same optical path
and are focused by the lens into the center of the experimental
chamber. Thus the potential for trapping atoms in the center
of the chamber is a combination of an optical lattice in the
x axis (lattice axial direction) and Gaussian-shape confine-
ment in the yz plane (lattice radial direction). At the bottom of
each lattice site, the potential is nearly harmonic. In our exper-
iment, the angle between the two crossed beams is 2θ = 20◦.
The power of each beam is 0.53 W and the Gaussian radius of
the beam is about 123 µm in the center of the chamber. The
lattice constant d = λ/(2 sin θ ) = 3.06 µm. The maximum
trap depth value is 127.3ER, where ER = (2π h̄ sin θ )2/2mλ2

is the recoil energy, with h̄ the Planck constant and m the
mass of the 6Li atom. Atoms are typically trapped at 1/3
of the diameter of a Gaussian beam, as shown in Fig. 1.
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FIG. 1. Schematic diagram of the experimental setup for a 1D
optical lattice, the ODT, and the absorption image beam. The lattice
potential is shown in the inset. Here PBS is the polarizing beam
splitter and λ/2 is the half waveplate.

In our case, the axial length forming the lattice is about 83
µm, forming about 27 lattice sites. The average depth of the
lattice is U0 = 118.6ER = 5.4h̄ωx = 5kB µK, where kB is the
Boltzmann constant. In the following, we ignore the differ-
ence between the lattice sites and treat each lattice site as
the same, using the average lattice depth. Each lattice site is
strongly anisotropic and the ratio of trap frequencies of the
central site is ωx:ωy:ωz ≈ 514:1:5.76. When the trap depth
value is 60ER, the tunneling time is 5 s [1], which is much
longer than the typical 2D experimental time of 100 ms.
Therefore, when the trap depth is more than 60ER, tunneling
between the different lattice sites is negligible and the Fermi
gas remains kinematically two dimensional.

We produce the ultracold Fermi gases in the ODT [28,29]
and transfer gases to a 1D optical lattice to produce quasi-
2D degenerate Fermi gases. The crossed-beam ODT with a
crossed angle of 12◦ is made by a 100 W fiber laser at 1064 nm
(IPG Photonics YLR-100-LP). The Gaussian radius of the
beams at the center of the chamber is 37 µm. The maxi-
mum ODT depth is 5.6kB mK. As shown in Fig. 2, a typical
experimental procedure is described in the following steps.
First, about 2 × 108 atoms at a temperature of 300 µK are
trapped in a magneto-optical trap (MOT). Second, we transfer
the atoms from the MOT to the ODT for evaporative cool-
ing, typically lowering the ODT depth to several µK. In our
experiment, we use the two lowest-energy hyperfine ground
states of 6Li, |2 2S1/2, F = 1/2, mF = 1/2〉 and |2 2S1/2, F =
1/2, mF = −1/2〉, usually labeled |1〉 and |2〉, respectively.
A radio-frequency pulse is then applied to produce a 50:50
mixture of atoms in |1〉 and |2〉. At this point, there are about
5 × 105 atoms per spin state in the ODT. Third, starting from
the ODT depth dropping to several µK, we ramp up the lattice
depth from 1 µK to 4.4 µK with an exponential ramp of
160 ms, while the ODT is kept for 100 ms before turning
off. Afterward, the lattice depth is kept stationary for 90 ms.
Then the lattice depth is exponentially decreased to the desired

FIG. 2. Experimental sequence for the production of 2D-3D
crossover Fermi gases. We keep the lattice depth for 10 ms and wait
for thermal equilibrium when the lattice depth reaches the desired
depth. After that, we choose to abruptly turn off the lattice or im-
plement band mapping; then the absorption image is taken after the
atom cloud expands in a magnetic curvature.

depth at 230 ms for further evaporative cooling. Eventually,
we have about 1.5 × 105 atoms per spin state in the lattice.

In ultracold Fermi gases, we can realize two different types
of the 2D-3D dimensional crossovers. One is band-occupation
dimensional crossover and the other is interparticle-scattering
dimensional crossover. Band-occupation type refers to the
atoms occupying different energy bands in the lattice. A
noninteracting Fermi gas is kinematically two dimensional
when the effective global chemical potential of the gas μ <

3/2h̄ωx, where the atoms occupy only the lowest-energy band.
Here h̄ωx is the energy-level gap from the ground state to
the first excited state in the tight-binding direction. At zero
temperature, the maximum number of atoms allowed in each
lattice site satisfying the 2D condition is N2D = η(η + 1)/2
[2], where η = ωx/

√
ωyωz. When μ > 3/2h̄ωx, atoms occupy

multiple energy bands and the Fermi gases are in the so-
called the kinematic 2D-3D crossover. On the other hand,
interparticle-scattering dimensional crossover means that the
characteristic length of the lattice potential in the tight-binding
direction is smaller than the scattering length between parti-
cles, where not only the kinematics but also the microscopic
scattering properties of the atoms will be strongly modified
by the lattice potential. In this paper we are focusing on the
band-occupation dimensional crossover using noninteracting
Fermi gas.

In our experiment, when we load the lowest-temperature
Fermi gas into the lattice, the typical value of the atoms in
each lattice site is about 5.5 × 103, which is much less than
the N2D = 2.3 × 104 calculated using our trap parameters. So
loading the lowest-temperature gas into the 1D lattice strictly
produces a 2D Fermi gas. To approach the 2D-3D crossover,
we could increase the occupation number of the atoms in
the higher bands by increasing the ODT depth so the gas is
hotter when loading into the lattice and the atoms have enough
energy to occupy the higher bands, where the gas is located in
the 2D-3D crossover. To tune the gas closer to the 2D side,
we could further lower the lattice depth after the loading and
the atoms in the higher band continue to evaporate so that the
occupation ratio of the ground lattice band increases.

The band occupation information is obtained by taking the
absorption images. Currently we cannot directly take individ-
ual images of each lattice site because of the resolution of the
imaging system. So we take the images with two methods.
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FIG. 3. Comparison of the (a)–(c) abrupt turnoff and (d)–(f) band mapping images, with the (a) and (d) column density, (b) and (e) axial,
and (c) and (f) radial spatial density distribution (normalized) of an atom cloud occupying both the ground and first excited states of the lattice.
Note that for the band mapping picture (e), a small population of the excited state is observed. The two clouds are captured by the ballistic
expansion of atoms for 5 ms in (a) and the band mapping of atoms for 2.8 ms in (b). The other parameters for these images are described in
the text.

One is to abruptly turn off the lattice, let the atom cloud
expand for the time of flight (TOF), and then take the images.
The other one is band mapping [30–36], in which the chemical
potential and the ratio of the atoms occupying the different
lattice bands can be obtained. The band mapping is achieved
by gradually ramping down the lattice potential adiabatically
over a suitable timescale. This timescale needs to be faster
than the tunneling time of the lowest-energy band of the lattice
so that the occupations of the different quasimomentum states
remain constant during the lowering process. In addition,
this timescale also needs to be slow enough so that different
quasimomentum states can be adiabatically transformed into
the corresponding momentum states. By doing this, the Bloch
waves in the lattice will adiabatically transform into the plane
waves. Correspondingly, the quasimomentum distribution of
atoms in the lattice is transformed into the momentum dis-
tribution of the atoms when the lattice is off. Following a
ballistic expansion after the band mapping, the momentum
distribution is then transformed into the spatial density dis-
tribution of the atoms.

We first take the image by abruptly turning off the lattice,
as shown in Fig. 3(a). The TOF after abrupt turnoff is 5 ms,
which is a trade-off to obtain more image data points and
maintain a high signal-to-noise ratio. The lattice depth before
turnoff is 105ER and the bias magnetic field during expan-
sion is 300 G. The axial and radial distributions are shown
in Figs. 3(b) and 3(c), respectively. The temperature of the
gas is obtained from the radial distribution by fitting with
the 2D Thomas-Fermi distribution. The radial spatial density
distribution can be described by [1,37]

n(z) = − 2Na√
πσz

(
T

TF

)3/2

Li3/2

[
− exp

(
μ/EF − z2/σ 2

z

T/TF

)]
,

(1)

where σz = √
2EF /mω2

z is the Fermi radius, EF = h̄ω̄
√

2Na

is the Fermi energy, ω̄ = √
ωyωz, Na is the number of atoms

per spin state in a lattice site, TF = EF /kB is the Fermi tem-
perature, and Li(x) is the polylogarithm. The T/TF fitted by
the 2D Thomas-Fermi distribution in Fig. 3(c) is 0.66 ± 0.06,
which indicates that the temperature is 359 ± 31 nK.

Second, we implement the band mapping by ramping down
the lattice potential to 0.01U0 = 1.186ER with an exponential
ramp of 2.8 ms, as shown in Fig. 3(d). When the lattice depth
is 1.186ER, the absolute depth of the lattice is no longer
enough to trap the atoms and the atoms begin to expand.
After that, the lattice is turned off and the atoms expand
freely before taking the images. The TOF after band mapping
is 12.8 ms. The axial and radial distributions are shown in
Figs. 3(e) and 3(f), respectively. As shown in Fig. 3(e), the
atoms are in a step distribution in the lattice axial direction.
The radial distribution is about a Gaussian distribution, as
shown in Fig. 3(f).

Based on the images in Fig. 3, we calculate the mo-
mentum distribution at the initial moment when the atom is
just released from the optical lattice by the Wigner function
W (x, p, t ) method [35,38]. When the atoms are released, the
momentum distribution W (p) of the atoms is converted to a
spatial distribution W (x). When the gas expands, the magnetic
field does not shut down, so the expansion is affected by
the magnetic-field curvature, which acts as a harmonic trap.
For release into a harmonic potential, the Wigner function
W (x, p, t ) rigorously obeys the equation of motion for a clas-
sical phase-space distribution. Thus W (x, t ) is determined by
both the momentum distribution and the position distribution
at the initial moment W (x, p, t = 0). For imaging after a
time of flight t , the final position distribution determines the
momentum distribution when the final position distribution
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FIG. 4. Atom spatial density distribution in the lattice axial direction when the lattice depth changes. (a) The lattice depth is 14.1ER,
similar to Fig. 3; the fitting gives μ = 13.7 ± 0.2ER > 3/2h̄ωx = 11.3ER, T/TF = 0.70 ± 0.10, and T = 99 ± 14 nK; and about 87% of the
atoms are in the lowest band. (b) The lattice depth is 9.6ER, μ = 10.0 ± 0.1ER ≈ 3/2h̄ωx = 9.3ER, T/TF = 0.72 ± 0.03, T = 75 ± 3 nK,
and about 91% of the atoms are in the lowest band. (c) The lattice depth is 4.5ER, μ = 4.5 ± 0.3ER < 3/2h̄ωx = 6.3ER, T/TF = 0.84 ± 0.44,
T = 50 ± 27 nK, and all the atoms are in the lowest band. The numbers of atoms are (a) 1.2 × 105, (b) 1.0 × 105, and (c) 7 × 104. As the
lattice depth decreases, the atoms in the higher bands escape from the lattice.

is broad compared to the initial position distribution. For
ωmagt = π/2, a quarter period, the final position distribution
rigorously corresponds to the initial momentum distribution
with the relation p = mωmagx/sin(ωmagt ), where ωmag is the
frequency of the magnetic trapping potential in the lattice
axial direction and is independent of the initial position dis-
tribution. In our experiments, we control the expansion time
t close to T/4 to neglect the effect of the initial position
distribution.

The Wigner function related to the momentum distribution
of atoms in the lattices is given by

W (p) = 1

h̄

∑
α,q

Pμ
α (q)

∑
G

|Cα
q+G|2δ

( p

h̄
− q − G

)
, (2)

where δ is the Dirac delta function and Cα
q+G is a coeffi-

cient determined by the Bloch wave function in a 1D optical
lattice with

ψα
q (x) = 1√

Nd

∑
G

Cα
q+G exp[i(q + G)x]. (3)

We obtain the value of Cα
q+G by solving the time-independent

Schrodinger equation in a 1D lattice [35], where N is the
total number of lattice sites, d is the lattice constant, α is
the band index, q = 2nπ/Nd is the quasimomentum in the
lattice −π/d � q � π/d , G = 2nπ/d is the reciprocal lattice
vector, and n is an integer.

Here Pμ
α (q) is the probability that the atom is in the Bloch

state with quasimomentum q and band index α when the
chemical potential is μ. In our experiment, we treat the gas
with zero temperature, so the probability can be described by

Pμ
α (q) = [μ − Eα (q)]2∑

α,q [μ − Eα (q)]2
�(μ − Eα (q)), (4)

where Eα (q) is the energy of the atom in the Bloch state with
quasimomentum q and band index α and � is the Heaviside
step function. In Fig. 3(b), Pμ

α (q) and Cα
q+G of Eq. (2) both

correspond to the lattice depth before it is abruptly turned off.
In Fig. 3(e), Pμ

α (q) still corresponds to the lattice depth before
the tarp is lowered, but Cα

q+G corresponds to the lattice depth
after band mapping.

Fitting Fig. 3(b) gives μ = 44.0 ± 1.0ER and about 84%
of the atoms are in the lowest band. Fitting Fig. 3(e) gives
μ = 39.1 ± 0.3ER > 3/2h̄ωx = 30.7ER and about 90% of the
atoms are in the lowest band. Notice that the TOFs of the two
images are different, which may result in the different effects
of the initial spatial distribution on the momentum distribu-
tion. In Fig. 3(e) the TOF is close to T/4, corresponding to
ωmag/2π = 18.8 ± 0.3 Hz, so the effect of the initial spatial
distribution is minimized [35,39].

III. RESULTS AND DISCUSSIONS

To tune the occupation of the ratio in the lowest lattice
band, we adopts two experiments. The first one is to change
the depth of the lattice when we abruptly turn off the ODT. We
fix the ODT with a depth of 80ER around 2.6% of the full ODT
depth and load the atom into a lattice of a maximum depth of
25ER, where the atoms are relatively cold and most of them
occupy the two lowest lattice bands. As shown in Fig. 4, when
the lattice is lowered from Fig. 4(a) to Fig. 4(c), the atoms in
the higher bands will evaporate, leading to an increase in the
percentage of atoms occupying the lowest band.

In Fig. 5(a) we decrease the lattice depth and plot the
dependence of the percentage of atoms in the lowest band and
T/TF of the atoms loaded into the lattice. When the lattice
depth is above 8ER, the percentage of atoms in the lowest
band does not vary significantly with the decrease of the trap
depth, because the lattice depth is larger than the energy of
the p band and the weakly interacting atoms do not have a
large evaporative effect. This observation is also supported
by the almost unchange T/TF in this regime. Below 8ER, the
percentage of atoms in the lowest band increases significantly
with the decrease of the lattice depth, where it changes from
around 85% to near the unity. The reason is that when the
lattice depth approaches 7.5ER it no longer supports the first
excited band and so most of the atoms in the excited bands
evaporate and in the end almost all the atoms are in the lowest
band.

The second experiment is to tune the occupation of the
energy band by varying the gas temperature in the ODT.
The gas temperature is varied by changing the ODT depth
when loading the lattice, where the higher lattice depth gives
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FIG. 5. Percentage of atoms occupying the lowest band and
T/TF of Fermi gases versus (a) the lattice depth before the band
mapping and (b) the ODT depth when loading the lattice. Note that
the percentage data in (b) are derived from the fitting of the axial
distribution of the abrupt turnoff. All the error bars of data are the
one standard deviation of the image fitting. The TOF is slightly less
than T/4, so the fitting has a certain systematic error.

a higher gas temperature. For example, we load a lattice of
119ER with an ODT around 26ER, where we increase the ODT
depth to change the percentage of atoms occupying the lowest
band. As shown in Fig. 5(b), when the ODT depth increases,
the gas is hotter and more atoms occupy higher-energy bands,
resulting in a significant decrease of the percentage of atoms
in the lowest band. Since the T/TF of the gas in the ODT is
higher, we observe that the T/TF in the lattice is also higher.

The percentage of atoms occupying the lowest-energy band
can be well controlled by jointly tuning the lattice depth and
the ODT depth as shown in Fig. 6(a). We find that the per-
centage of atoms occupying the lowest-energy band strongly
depends on the ratio of the lattice depth and the ODT depth.
As shown in Fig. 6(b), there are two scenarios to adjust the
percentage. First, for the loading with the shallow ODT, when
we lower the lattice depth, the first excited energy band gradu-
ally approaches the edge of the lattice and atoms in the excited
band will evaporate quickly so that the percentage of atoms
occupying the lowest-energy band approaches unity. Second,
for the deep trap loading, we increase the ODT depth and
the lattice depth remains relatively high. As the ODT depth
increases, more and more energetic atoms are transferred to
the lattice and occupy the excited energy band, leading to
a decrease in the percentage of atoms in the lowest-energy
band. In experiments, we could choose to jointly tune the
lattice depth and the ODT depth so that the percentage of
atoms occupying the lowest-energy band, the temperature of
the Fermi gas, and the number of atoms are all well controlled.
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FIG. 6. Continuous tuning of the occupation ratio of the lowest
band: (a) the experimental scheme and (b) the result. Note that the
lowest red point in (b) is an outlier, which we cannot fit with a smooth
curve. For that point, we load a very hot gas into a very shallow trap
and the smooth evolution of the occupation ratio breaks. By varying
the lattice depth, we could prepare a Fermi gas with the percentage
of the atoms in the lowest band from unity to 80%. By varying the
ODT depth, we could change the percentage from 80% to 50%.

IV. SUMMARY

In summary, we have produced a degenerate Fermi gas in
the 2D-3D crossover by transforming a Fermi gas from the
ODT into a 1D optical lattice. We developed the method to
quantitatively control the percentage of atoms in the lowest
lattice band by jointly tuning the lattice depth and the ODT
depth. The capability enables us to tune the Fermi gases in the
crossover from two dimensions to three dimensions for further
research on a many-body quantum system in the dimension-
ality crossover.
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