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We study the effect of atomic interaction on the localization and the associated dynamics of Bose-Einstein
condensates in a one-dimensional quasiperiodic optical lattice and random disordered potentials. When the
interactions are absent, the condensates exhibit localization, which weakens as we increase the interaction
strength beyond a threshold value for both potential types. We inspect the localized and delocalized states by
perturbing the system via quenching the interaction strength instantaneously to zero and studying the dynamics
of the condensate, which we further corroborate using the out-of-time-order correlator. The temporal behavior of
the time correlator displays regular dynamics for the localized state, while it shows temporal chaos for the
delocalized state. We confirm this dynamical behavior by analyzing the power spectral density of the time
correlator. We further identify that the condensate admits a quasiperiodic route to chaotic dynamics for both
the potentials. Finally, we present the variation of the maximal Lyapunov exponents for different nonlinearity
and disorder strengths that have a positive value in the regime where the time-correlator function shows
chaotic behavior. Through this, we establish the strong connection between the spatially delocalized state of
the condensate and its temporal chaos.
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I. INTRODUCTION

Localization of matter waves in random media has been
a topic of interest in condensed-matter physics in the past
several decades [1–3]. Since the seminal prediction of the
exponential localization of the electronic wave function in
the presence of random disorder by Anderson (known as
Anderson localization [4]), the phenomenon of localization
has attracted significant attention. There have been several
efforts to observe localization in various systems, such as elec-
tromagnetic waves [5–9], microwaves [10–13], and acoustic
waves [14–16]. The experimental observations of matter wave
localization in one-dimensional (1D) [17] and 3D [18] kicked
rotors have generated significant interest in the field of ul-
tracold matter. This field has shed light on many complex
phenomena, including quantum chaos. However, in the case
of noninteracting Bose-Einstein condensates (BECs) of 87Rb
atoms, localization was observed after releasing the conden-
sate onto a 1D waveguide created by laser speckle [19]. Later
on, Roati et al. discovered the localization of matter waves
in BECs of 39K atoms trapped in a 1D bichromatic optical
lattice [20]. Further, White et al. reported a similar localization
for the 2D noninteracting condensates of 87Rb atoms trapped
in a pointlike disordered potential [21]. Skipetrov et al. ex-
tended the analysis of the localization of condensates to 3D
random potentials [22]. After the experimental observations,
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numerous numerical and theoretical studies were performed
that show the localization of the matter wave for weak nonlin-
earity for the condensate trapped in the quasiperiodic potential
[23–31] and random speckle potential [32–36]. There are sev-
eral numerical [37] and experimental [38] works that show the
destruction of localization in the presence of the interactions
in the condensate and also report the subdiffusive nature of
the delocalized state [37–39]. Cherroret et al. demonstrated
theoretically that even weak interactions among particles can
disrupt the transition from the subdiffusive regime to the
transport inhibited regime, also known as the Anderson tran-
sition, to expand localized wave packets in 3D disordered
potentials [40].

On the other hand, considerable attention has been paid to
the understanding of the dynamical behavior of matter waves
out of equilibrium. Several theoretical [23,27] and experimen-
tal [20,38] studies have been performed on the nonequilibrium
dynamics of BECs released from an external trap in differ-
ent scenarios. For instance, Doggen and Kinnunen reported
the transition from the localized to the delocalized state by
quenching the nonlinearity from a finite value to zero [41].
Efforts have also been made to understand the dynamics of
the localized BEC trapped in disordered optical lattices. In
this context, a wealth of novel scenarios has been explored
both theoretically and numerically for both interacting and
noninteracting condensates trapped in disordered potentials.
These scenarios include enhancements in transport proper-
ties and dynamical phase transitions from superfluid to Bose
glass. Kuhn et al. used the perturbative Green’s-function
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approach to show the significant role played by localization
in the diffusion of noninteracting condensates trapped in a
2D speckle potential [42]. Damski et al. demonstrated the
dynamical phase transition from a superfluid to a Bose glass
for interacting condensates trapped in a 2D speckle potential
[43]. Sanchez-Palencia et al. used theoretical and numerical
calculations to show that atomic interactions in the condensate
play a significant role in the dynamics for a short timescale
when the condensate trapped in a 1D disordered potential is
released from the trap [44]. Further, Lugan et al. extended this
analysis to the localization of Bogolyubov quasiparticles for
interacting BECs [45]. There are several works that report
the presence of more complex dynamics of the condensate
trapped in the random potential with the spin-orbit coupling.
For instance, Mardonov et al. numerically demonstrated the
appearance of the coexistence of two different mechanism of
spin dynamics, namely, spin precession and the separation
between the spin component because of anomalous spin-
dependent velocities [46–48]. Interestingly, the dynamical
evolution of BECs has also revealed the connection between
the chaos resulting from the competing interaction and disor-
der in the system [49–52]. Brězinová et al. [49] demonstrated
that once BECs trapped under the harmonic potential are
released from the trap and subject to either the periodic or
aperiodic (quasiperiodic potential, random disordered poten-
tial, etc.) potential, the condensate shows the expansion which
exhibits chaotic nature for the potential strength beyond a cer-
tain threshold value. In this work we also aim to demonstrate a
similar chaotic nature of the condensate by sudden quenching
of the nonlinearity of the condensate to zero.

The nonequilibrium dynamics is primarily generated in
such systems by releasing the BECs from the trap [38,44]
or by performing a sudden quench [53] in either coupling
parameters [54,55] or nonlinear interactions [56]. Time-of-
flight techniques have been quite widely used to distinguish
the nature of the localized and the delocalized condensate.
However, in the case of a random potential where the localiza-
tion state can be more complex phases, such as the Bose glass
phase and the Lifshitz phase, distinguishing the localized and
the delocalized phases is more challenging and has not been
done comprehensively. In this paper we use a slightly different
technique to analyze the localized and delocalized states of
matter waves in the presence of the quasiperiodic and the
random potential. We implement the complete cessation of
the nonlinear interactions of the condensate once the ground
state is obtained. This process ensures the temporal dynamics
in the condensate, which has been systematically captured by
examining the time evolution of the time-correlator function,
defined as the spatial average of the projection of the wave
function at a particular instant on the stationary ground-state
wave function. By making use of the time-correlator func-
tion, we observe that the localized state exhibits periodic or
quasiperiodic oscillations with time and the delocalized state
displays temporal chaos. We also show that the dynamical
feature of the localized and delocalized states remains sim-
ilar for the condensate trapped in quasiperiodic and random
disordered potentials. One of the main objectives of our work
is to obtain a critical value of the nonlinearity beyond which
the system shows the delocalized state. For the quasiperiodic
potential, the transition between the localized and the delocal-

ized state can be ascertained on the basis of the localization
length, the competition between the kinetic and interaction
energies, etc. However, for the random disordered potnetial,
making a distinction between these states is not so obvious be-
cause of the presence of many phases. Therefore, by studying
the dynamics of the correlation function of the condensate, we
provide a robust tool to establish a clear distinction between
the localized and the delocalized states.

The structure of our paper is as follows. In Sec. II we
provide the governing equations and numerical simulation de-
tails. It is followed in Sec. III by a brief description of different
quantities, such as the time-correlation function, power spec-
tral density (PSD), and Lyapunov exponent, which we have
used to characterize the localization and chaotic dynamics of
the delocalized states. In Sec. IV we present the results of the
numerical simulations on the delocalization of the condensate
in the quasiperiodic optical lattice and random disordered
potentials. For each type of potential we analyze the effect
of the increase in the nonlinear interaction on the ground state
of the condensates. Further, we present the dynamics of the
condensates using the time-correlator function. In Sec. V we
summarize our paper.

II. NUMERICAL MODEL

We consider the condensates confined in strong transverse
confinement, which can be modeled using the nondimensional
1D Gross-Pitaevskii equations (GPEs) as [23]

i
∂ψ (x, t )

∂t
=

(
−1

2

∂2

∂x2
+ V (x) + g|ψ (x, t )|2

)
ψ (x, t ), (1)

where V (x) is the trapping potential and g = 2asN/a2
⊥ is the

nonlinearity, with as the s-wave scattering length, N the to-
tal number of atoms in the condensate, and a⊥ the length
scale corresponding to the transverse harmonic confinement
[33]. We have chosen the transverse harmonic length a⊥ =√

h̄/mω⊥ as the characteristic length scale (with m the mass
of an atom and ω⊥ the transverse trap frequency), ω−1

⊥ as
the characteristic timescale, and h̄ω⊥ as the characteristic
energy scale of the condensate to obtain the nondimension-
alized Eq. (1). The wave function is rescaled as ψ (x, t ) =
a1/2

⊥ ψ̃ (x, t ), where ψ̃ (x, t ) is the nondimensionalized wave
function. For brevity, we have omitted the tilde over the nondi-
mensionalized wave function.

In this study we consider separately the trapping potential
V (x) as a quasiperiodic and a random disordered potential to
analyze the characteristics and dynamics of the localization of
the condensates. In experiments, the quasiperiodic potential
can be realized as a superposition of two counterpropagating
laser beams of slightly different wavelengths, which takes the
form [20]

V (x) = 4π2s1

λ2
1

cos2

(
2π

λ1
x

)
+ 4π2s2

λ2
2

cos2

(
2π

λ2
x

)
, (2)

where s1 and s2 denote the amplitudes of the primary and
secondary lattices, respectively. Following the experimental
consideration of the primary and secondary optical lattice
wavelengths as λ1 = 1032 nm and λ2 = 862 nm [20], respec-
tively, we take the ratio of the nondimensional wavelength (in
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terms of a⊥ ≈ 1 µm) to be λ̂2/λ̂1 ≈ 0.86 for all our simulation
runs [23].

To understand the resemblance of this localization and
associated dynamical behavior to the ones in the presence of
a random potential, we consider the random disordered po-
tential consisting of Ns identical spikes randomly distributed
along the x axis [57,58] in the form

V (x) = V0

Ns∑
j=1

h(x − x j ), (3)

where V0 is the strength of the spike and h(x − x j ) is the
potential of the spike at position x j . The spike potential is
considered to have the form of a Gaussian in space with width
σ as [57]

h(x) = 1

σ
√

π
exp

(
− x2

σ 2

)
. (4)

The autocorrelation of V (x) is defined as

C(d ) = 〈V (x)V (x + d )〉 − 〈V (x)〉2, (5)

where 〈V (x)〉 is the mean of the potential defined as

〈V (x)〉 ≡ 1

2L

∫ L

−L
V (x)dx = V0

D
, (6)

with D the average spacing between the spikes. Here the
correlation length and correlation energy can be estimated by
giving a fit to C(d ) [Eq. (5)] with a Gaussian function of the
form

C(d ) ≈ V 2
R exp

(− d2/σ 2
R

)
, (7)

where the amplitude VR represents the correlation energy and
σR represents the correlation length. To generate the potential
we select Ns = 300, L = 30, and width σ = 0.1. In this case,
the value of the correlation energy is VR = 4.3974 and σR ≈√

2σ = 0.1340.

III. APPROACH TO CHARACTERIZING THE DYNAMICS
OF THE LOCALIZED STATE

In this section we provide the details of the theoretical
approach that we use to characterize the dynamics of the
localized state.

A. Time-correlation function and power spectral density

For our analysis, we use the time-correlation function to
characterize the dynamics of the different states. Once we
obtain the ground state, we investigate the dynamics of the
condensate by a sudden quenching of the nonlinearity of the
condensate. The time-correlator function is defined in terms
of the absolute of the overlap function as

c(t ) = | 〈ψ (x, 0)| ψ (x, t )〉|, (8)

where ψ (x, 0) represents the ground state obtained using
imaginary-time propagation with respect to repulsive interac-
tion parameters. For convenience, we treat this wave function
at reference time t = 0. After obtaining the ground state
ψ (x, 0) we quench the nonlinearity to zero in the next time
step dt and evolve the state using the GPEs (1) to obtain

the evolved wave function at time t as ψ (x, t ) with zero
nonlinearity. Here angular brackets denote the average over
the entire space. The c(t ) can be expressed in a more explicit
manner as

c(t ) =
∣∣∣∣
∫

|ψ (x, 0)|2 exp[−iφ(x, t )]dx

∣∣∣∣, (9)

where φ(x, t ) is the phase assumed by the ground-state wave
function ψ (x, 0) upon time evolution. The time-correlator
function can be viewed as the integration of the phase acquired
by the quenched state over all the spatial points at time t .
There are several laboratory experiments that suggest a direct
measurement of the phase acquired by the condensate using
the atom interferometry [59–61]. Once the phase difference φ

acquired by the quenched condensate is determined, the c(t )
can be calculated using Eq. (9).

In general, the value of the transverse frequency is ω⊥ =
2π × 70 Hz in a typical experiment [19]. Using this fre-
quency strength, if we convert the real time corresponding
to one time step of our simulation, which is dt = 5 × 10−4,
we find that it comes out to be dt ∼ 1.13 µs. Therefore, the
instantaneous quenching timescale in our simulation is of the
order of 1.13 µs. However, in the laboratory experiments, the
quench in the nonlinear interaction is achievable through the
Feshbach resonance within a typical time of about 100 µs
[62,63]. We have verified our results by increasing the quench-
ing timescale to the 100 µs considered in the experiment;
however, we could not find any significant change in the
results presented in this paper.

To get a deeper understanding of the dynamics and in
particular the chaotic dynamics of the delocalized state, we
analyze the power spectral density of the c(t ), which is given
by [64,65]

PSD = 1

2πN |ĉ(ω)|2, (10)

where ĉ(ω) is the discrete Fourier transform of the time corre-
lator c(t ) evaluated at t = mdt (m = 0, 1, . . . ,N , with N the
length of the discrete time series).

B. Lyapunov exponent

In our study, we aim to establish a possible connec-
tion between delocalization and chaos, which we execute by
computing the maximal Lyapunov exponent. In dynamical
systems, Lyapunov exponents are defined as the mean rate
of divergence of two nearby trajectories with time. In phase
space, the rate of divergence of separation between two tra-
jectories, with an infinitesimal initial separation δX 0, can be
computed as [49]

|δX (t )| ≈ eλt |δX 0|, (11)

λmax = lim
t→∞

1

t
ln

|δX (t )|
|δX 0| . (12)

If the exponent is positive (λmax > 0), neighboring trajectories
diverge exponentially, which is a signature of the chaotic
behavior in the system.

In general, for the known sets of dynamical equations,
the exponents can be easily computed by using the phase-
space trajectory of the variables. However, computation of
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the exponents directly from the time series is not so straight-
forward. The reconstruction of phase space from the time
series data is mainly executed using the time delay τ [66]
and the embedding dimension D [67]. We use the average
mutual information (AMI) method to estimate the τ from
the time series of the time-correlator function data, while
the false nearest neighbor (FNN) method is used to compute
the D [68]. The details of the AMI and FNN methods are
illustrated in the Appendix. For our analysis, the usual time
series of the correlator function c(t ) is represented in the phase
space using τ and D. Further, we select a reference point
on the phase-space trajectory, which is used to measure its
separation from the nearest neighbor point on the phase space.
We store the information of initial separation in L0. As time
progresses, the separation between the trajectory is computed
until its value exceeds a threshold ε. Typically, we consider
ε ∼ O(10−2). Thereafter, the Wolf algorithm [69] is used to
evaluate the Lyapunov exponents, which have three control
parameters, namely, D, τ , and the threshold value of length ε.
The Lyapunov exponent is computed using

λmax = 1

N�t

M−1∑
i=1

log2
L′

i

Li
, (13)

where N is the total number of reference points usually de-
pending on the number of data points present in the time
series, �t is the time step associated with the time correlator,
Li and L′

i are the initial separation and the final separation
measured for the ith segment of the phase-space trajectory,
respectively, and M is the number of times the ratio of the
final to the initial separation is calculated to complete the
reference trajectory. The reference trajectory can be defined
as the line from where the calculation of Li is started by
searching for the nearest neighbor point from the reference
point. As time progresses, the reference point also changes
on the reference trajectory to calculate the next L′

i . For our
analysis we consider the embedded dimension D = 3 and
the time step �t = 0.0005 for a quasiperiodic potential and
�t = 0.001 for a random disordered potential.

IV. RESULTS

Here we provide detailed numerical results of the ground
states and their associated dynamics. For our present analy-
sis, we consider the quasiperiodic potential (2) and random
disordered potential (3) to investigate the dynamics of the
Bose gas following a quench of the initial ground state (lo-
calized or delocalized). While the imaginary-time split-step
Crank-Nicolson integration scheme is used for ground-
state preparation, the postquench dynamics is evolved using
the real-time split-step Crank-Nicolson integration schemes
[70,71]. In imaginary-time propagation, we consider dx =
0.025 and dt = 0.0005 for the simulation of the condensate
trapped in a quasiperiodic potential and dx = 0.04 and dt =
0.001 for a random disordered potential. For all simulation,
we use the closed boundary condition with ψboundary = 0.
Also, we perform the grid independence test by decreasing
spatial resolution to dx = 0.007 and find that all the results
presented in the paper remain unchanged. The ground state
for different nonlinearity is obtained using the imaginary-time

propagation scheme in which the Gaussian wave packet cen-
tered at x = 0 is chosen as the initial condition.

In the following, we first present our analysis of the con-
densate trapped in a quasiperiodic optical lattice and then we
will focus on the case of the random lattice.

A. Delocalization in the presence
of the quasiperiodic optical lattice

In this section we first explore the effect of nonlinearity
on the localized state of condensates trapped in the bichro-
matic optical lattice potential, followed by an analysis of the
dynamical characteristics of the condensates once we switch
off the nonlinear interactions after having the ground state of
the condensate. As mentioned before, in this case, we vary
λ1 while keeping the ratio λ2/λ1 � 0.86 fixed in Eq. (2).
This assumption has been made by following the experimental
work of Roati et al. [20], where the value of the transverse har-
monic oscillator length was taken as a⊥ ≈ 1 μm, which yields
λ1 � 1.0 and λ2 � 0.86. In our simulations, we consider the
space step as 0.025, while we fix the time step as 0.0005 [23]
and use the Gaussian wave packets centered around zero as
the initial conditions for all our simulations.

There are two ways in which the delocalization of the con-
densate trapped in the optical lattice potential can occur. One
is to increase the nonlinear repulsive interaction and the other
is by decreasing the disorder strength upon tuning the ratio
of the laser amplitude s2/s1 [23,49]. We begin by analyzing
the effect of nonlinearity on the localized condensates. The
ground states for different localized states for weak nonlin-
ear interaction have already been analyzed by Adhikari and
Salasnich [23]. As we are interested in the analysis of the
dynamics of these states, to make the paper self-contained, in
the following we briefly present the nature of different ground
states for various nonlinearities.

In Fig. 1(a) we show the spatial distribution of the ground-
state density for different nonlinear interactions with s1 = 3.0,
s2/s1 = 1.0, and λ1 = 10. It is easy to see that for the nonin-
teracting case (g = 0), the condensate gets localized within
−5 � x � 5 with the maximum density around x ∼ ±2. As
we increase the nonlinearity to g = 2, we notice a decrease
in the density around the central region (x ∼ 0), resulting
in the appearance of peaks at larger values of x. However,
the condensate appears to be confined within −10 � x � 10.
Further, an increase in the nonlinearity to g = 4 results in
an expansion of the localized condensate in the space. As
the nonlinearity exceeds a threshold value (g � 5), the matter
wave localization gets destroyed, which is quite noticeable
from the nature of the condensate that appears to span the
whole box as shown for g = 8 (pink line) and g = 10 (brown
line) in Fig. 1(a). These features are more noticeable from
the behavior of the tail of the density profile that displays an
exponential fall in the localized state, a feature which is absent
for the delocalized state [cf. Fig. 1(b)].

For comparison, we also undertake a similar analysis of
the localization by lowering the strength of the quasiperiodic
optical lattice to s2/s1 = 0.5. Figure 2 illustrates the spatial
profile of the ground state of the matter wave density for dif-
ferent nonlinearities. We find that, in this case also, the matter
wave remains localized for low nonlinearity, as expected. As
we increase the nonlinearity, the condensate gets delocalized

053320-4



QUENCH-INDUCED CHAOTIC DYNAMICS OF … PHYSICAL REVIEW A 107, 053320 (2023)

0.0

0.1

0.2

0.3

0.4
|ψ

(x
)|2

(a)
g = 0

g = 2

g = 4

g = 5

g = 8

g = 10

−20 −10 0 10 20
x

10−6

10−4

10−2

100

(b)

FIG. 1. Variation of density with different nonlinearity for λ1 =
10, λ2/λ1 = 0.86, s1 = 3, and s2/s1 = 1.0 in the (a) linear and
(b) semilogarithmic scale. The wave function gets localized near
x = 0 for g = 0. Increasing the nonlinearity results in the spread of
the wave function. In the localized states (g = 0, 2, 4), the conden-
sate density exhibits an exponential tail. For g � 5, the condensate
spans the whole box, exhibiting delocalized nature. In (b) the red
dotted line represents the double exponential fit to the condensate
ground state for g = 0.

at a smaller g (�4) than those for higher disorder strength
(s2/s1 = 1.0), which happens at g � 5.

To quantify this transition from the localized to the delo-
calized state, we compute the localization length by fitting
the localized states with the function y = ae−|x−x0|/Lloc +
ae−|x+x0|/Lloc , where Lloc is the localization length, a is the
parameter, and x0 is the localization center. The variation of
Lloc with respect to g is plotted in Fig. 3 for different values
of s2/s1. We find that when the condensate is in the localized
state, the Lloc varies linearly with g. However, a discontinuous
jump occurs in Lloc for a certain value of g, beyond which the
delocalization happens in the density profile. The threshold
value of the nonlinearity at which the delocalization occurs
decreases when we decrease the disorder strength s2/s1.

To elucidate the transition of the condensate from the
localized to the delocalized state, it is pertinent to include
the relevant physical cause. To achieve this, we compute the
energies of different components, such as the kinetic energy
Ek = 1

2

∫
dx|∇ψ |2, potential energy Epot = ∫

V (x)|ψ |2dx,
and interaction energy Eint = 1

2

∫
g|ψ |4dx, where ψ is the

ground-state wave function obtained by using imaginary-time
propagation of Eq. (1) with finite g. In Fig. 4 we present the
variation of different energies Ek ( ), Eint ( ), and Epot ( ) for
different s2/s1. We observe that while Epot and Eint increase,

0.0
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|ψ
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)|2
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g = 2

g = 4
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g = 8

g = 10
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10−2

100

|ψ
(x

)|2

(b)

FIG. 2. (a) Spatial profile of the condensate density for different
nonlinearities at s2/s1 = 0.5. The other parameters are the same
as those in Fig. 1. The condensate exhibits localized nature for
noninteracting cases (g = 0), which further shows delocalization
upon increasing the nonlinearity (g � 4). (b) Density variation in
semilogarithmic scale for different nonlinearities. The red dotted line
represents the double exponential fit to the condensate ground state
for g = 0. The exponential fall of the condensate density around its
center characterizes the localization behavior. The density exhibits
delocalized states with increasing nonlinearities.

Ek decreases with an increase in g. Interestingly, we find that
below the threshold value of the critical nonlinear strength gc,
Ek dominates over Eint , while we observe the opposite trend

0 2 4 6 8 10
g

100

101

L
lo

c

g c
=

5.
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g c
=
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2

g c
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4
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=

2.
4

s2/s1 = 1.0

s2/s1 = 0.7

s2/s1 = 0.5

s2/s1 = 0.3

FIG. 3. Variation of localization length Lloc with the nonlinearity
for different s2/s1. The Lloc is calculated using the 1/e fall of the
fitted curve ae−|x−x0 |/Lloc + ae−|x+x0 |/Lloc , with x0 the point of maxi-
mum density in space. Here x0 = ±2.275. The Lloc starts increasing
beyond gc. The gc increases upon an increase in s2/s1. The other
parameters are the same as those in Fig. 1.
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FIG. 4. Variation of interaction Eint ( ), kinetic Ek ( ), and potential Epot ( ) energies with nonlinear interaction for different disorder
strengths (a) s2/s1 = 1.0, (b) s2/s1 = 0.7, and (c) s2/s1 = 0.5. All the other parameters are the same as in Fig. 1. In the localized regime Ek

dominates over Eint; however, in the delocalized regime Eint dominates over Ek . The threshold nonlinear interaction gc for different s2/s1 values
is consistent with that obtained from the localization length. The vertical lines are drawn to guide the eyes for gc.

above the critical gc. This trend holds for all values of s2/s1

considered.
In the following, we will analyze the characteristics of

these states using their dynamical evolution.

Quench dynamics of the localized and delocalized states

To study the detailed dynamics of the localized and delo-
calized condensates, we consider the ground states obtained
for different nonlinearity and perform the time evolution by
applying an instantaneous quench of the nonlinear interaction
to zero. This protocol introduces the dynamics in the conden-
sates, which have been captured by evolving the GPEs using
the real-time scheme [70].

To probe the spatiotemporal evolution after quenching of
the condensate prepared at different values of g, in Fig. 5 we

plot the spatiotemporal evolution of the density of the con-
densates after sudden cessation of g. For g = 0, the localized
condensate propagates with time without any distortion, as
can be seen in Fig. 5(a). However, the localized condensate at
g = 4 develops oscillatory behavior, as depicted in Fig. 5(b).
The oscillatory behavior becomes more and more irregular
for higher values of nonlinearity [cf. Figs. 5(c) and 5(d)].
Interestingly, we find that the condensate, which was in the
delocalized state, exhibits chaotic oscillation with time, as
depicted in Fig. 5(d) (for g = 10). Note that the absence of
any spatial change in the condensate after the quench may
be attributed to the fact that the condensate is trapped tightly
near the minimum of the external potential and it remains so
with zero nonlinear interaction as time progresses. Also, the
dispersion due to the kinetic part is quite low because the
trapped energy dominates over other energies for all values

FIG. 5. Pseudocolor representation of the spatiotemporal evolution of the condensate after quenching the nonlinearity to zero as the ground
state is prepared for different g: (a) g = 0, (b) g = 4, (c) g = 5, and (d) g = 10. The other parameters are the same as in Fig. 1.
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FIG. 6. Temporal variation of the time-correlation function c(t )
at s2/s1 = 1.0, s1 = 3, and λ1 = 10.0 for different nonlinearities
(a) g = 1, (b) g = 2, (c) g = 3, (d) g = 4, (e) g = 5, and (f) g = 10.
In the localized state (g � 5), c(t ) exhibits periodic or quasiperi-
odic behavior, which becomes chaotic in the delocalized state. The
time period corresponding to periodic oscillation is T ≈ 15.426
(i.e., ω ≈ 0.407).

of s2/s1 (see Fig. 4). The role of the random potential here
is to contribute to the spatial phase with a random value
in the condensate with the time, which also reflects in the
temporal behavior of the time-correlator function, which we
will discuss later.

We investigate the dynamics of the localized matter wave
density by computing the time correlator c(t ) [Eq. (8)] and
analyzing its temporal evolution. For this, we consider the
ground state obtained for a particular g as ψ (0) and the
condensate wave function at a time t after quenching of the
finite nonlinearity to zero as ψ (t ). In Fig. 6 we show the
temporal evolution of c(t ) for the ground state prepared at
different values of g. Figures 6(a)–6(f) depict the evolution
of c(t ) for g = 1, 2, 3, 4, 5, and 10, respectively. For the
localized state prepared at g = 1, c(t ) exhibits periodic oscil-
lations of amplitude very close to unity. The localized state
with g = 2 shows similar oscillatory behavior, as shown in
Fig. 6(b). For g = 3, c(t ) displays some modulated oscillation,
indicating the presence of more than one frequency. However,
for g = 5 and 10, which correspond to a delocalized conden-
sate, c(t ) exhibits aperiodic or chaotic temporal features. This
indicates that quenching of nonlinearity generates periodic,
quasiperiodic, and chaotic dynamics depending on whether
the corresponding ground state is localized or delocalized.

To further investigate the nature of the different frequencies
present in the dynamics and the route to chaotic behavior of
the delocalized state, we compute the PSD of the time cor-
relator, using the formula defined in Eq. (10), corresponding
to the periodic, quasiperiodic, and chaotic states as discussed
above. Figure 7 depicts the PSD of c(t ) corresponding to the
periodic, quasiperiodic, and chaotic states. We see that the

(a) (b)

(d)(c)

(e) (f)

FIG. 7. PSD of the time-correlation function (Fig. 2) for different
nonlinearities (a) g = 1 (periodic), (b) g = 2 (periodic), (c) g = 3
(quasiperiodic), (d) g = 4 (quasiperiodic), (e) g = 5 (chaotic), and
(f) g = 10 (chaotic). The other parameters are the same as in Fig. 2.
An increase in the nonlinearity leads to the generation of two incom-
mensurate frequencies ω1 = 0.40 and ω2 = 1.07 at g ∼ 3. Finally,
a large number of frequencies get generated, a signature of chaotic
behavior at higher nonlinearity (g � 5).

periodic behavior of the dynamical state for g = 1 involves the
fundamental frequency ω1 = 0.40 together with the presence
of its higher harmonics [see Fig. 7(a)]. We observe similar
behavior in the dynamics of the localized state at g = 2,
as depicted in Fig. 7(b). The PSD of c(t ) for g = 3 shows
peaks at the frequencies at ω1 = 0.40 and ω2 = 1.07 [see
Fig. 7(c)]. The irrational ratio of the two frequencies indicates
the quasiperiodic nature of c(t ) for g = 3. Further, for g = 4
[Fig. 7(d)], apart from the frequencies ω1 and ω2, other higher
frequencies around ω1 and ω2 as well as subharmonics, such
as ω2 + ω1, ω2 + 2ω1, etc., start appearing. We notice that
more frequencies start getting populated around ω1 and ω2 for
the dynamics of the condensate that show a delocalized state
for higher nonlinearity (for g � 4) as depicted in Figs. 7(e)
and 7(f). The exponential fall behaviour of PSD with the
frequencies in the dynamics of the delocalized state confirms
the fully developed temporal chaos [72,73]. The inverse of
the rate of decay (μ̃) of the PSD with the frequency of the
chaotic state is of the order of approximately 1.4 in the high-
frequency range. In general, μ̃ is related to the Lyapunov
exponent [72]. We find that the dynamics of the localized state
exhibits periodic oscillations for a weak nonlinear interaction,
which transforms into quasiperiodic for a stronger nonlinear
interaction. The value of g at which the condensate exhibits
delocalized nature has a chaotic time correlator. With this,
we find a systematic generation of the frequencies that finally
leads to the chaotic dynamics of the delocalized state, which
suggests a quasiperiodic route to chaos. We find the presence
of the same quasiperiodic route to chaos for the lower disorder
strengths (s2/s1), which we discuss below.
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FIG. 8. Temporal evolution of the time-correlator function at
s2/s1 = 0.5, s1 = 3, and λ1 = 10.0 for different nonlinearities
(a) g = 1, (b) g = 2, (c) g = 3, (d) g = 4, (e) g = 5, and (f) g = 10.
The temporal behavior of the localization and delocalization behav-
ior have qualitative features similar to those for s2/s1 = 1.0; the only
difference is reflected in the decrease in the nonlinearity, at which
the correlation shows the chaotic behavior. The time period for the
periodic oscillation is T ≈ 23.691 (ω ≈ 0.265).

We now focus on investigating the nature of the dynamics
of the condensate for a lower disorder strength (s2/s1 = 0.5).
In Fig. 8 we plot c(t ) for different values of g. Here the ampli-
tude of c(t ) appears to be slightly higher than those obtained
for s2/s1 = 1 (Fig. 6) after quenching the nonlinearity (from
g = 1 to g = 0). Similar to the higher disorder strength, in the
case of s2/s1 = 0.5, c(t ) shows periodic [Figs. 8(a) and 8(b)],
quasiperiodic [Figs. 8(c) and 8(d)], and chaotic oscillations
[Figs. 8(e) and 8(f)] as the nonlinearity is quenched from g =
{1, 2}, {3, 4}, and {5, 10} to zero, respectively. One noticeable
effect of the disorder strength s2/s1 is observed in terms of the
magnitude of the fundamental (ω1) and quasiperiodic frequen-
cies (ω1 and ω2), which decrease with the decrease in s2/s1.

In Fig. 9 we illustrate the PSD of the time correlator
presented in Fig. 8. Figure 9(a) shows the presence of funda-
mental frequency ω1 = 0.27 along with its higher harmonics
2ω1 = 0.54 and 3ω1 = 0.81 in the dynamics of the localized
state when the nonlinearity is instantaneously quenched from
g = 1 to g = 0. In the case of the quench dynamics of the high
nonlinearity state, for example, g = 2, we find other eigen-
frequencies such as ω2 = 0.62, apart from the fundamental
frequency at ω1 = 0.27, which indicates the quasiperiodic
nature of c(t ). At higher nonlinearity g � 4, more frequencies
around ω1 and ω2 start getting populated [see Figs. 9(d)–9(f)].
The appearance of other frequencies in the case of the delo-
calized state (for quenching from g = 4 to g = 0) the PSD
exhibits exponential decay behavior, indicating the presence
of chaotic dynamics. We find that for s2/s1 = 0.5, the chaotic
dynamics appears for the state when g � 4, which is lower
than that for s2/s1 = 1. However, it is interesting to note that

(a) (b)

(d)(c)

(e) (f)

FIG. 9. PSD of time-correlator function shown in Fig. 8 at differ-
ent nonlinearities (a) g = 1, (b) g = 2, (c) g = 3, (d) g = 4, (e) g = 5,
and (f) g = 10. The other parameters are the same as in Fig. 7. The
system undergoes a transition from the localized (g = 1, 2, 3) to the
delocalized state (g = 4, 5, 10) with the appearance of frequencies
around quasiperiodic frequencies ω1 and ω2 in the PSD of the time-
correlation function upon increasing the nonlinearity.

for both disorder strengths (s2/s1 = 0.5, 1), a quasiperiodic
route to chaos is observed in the dynamics when the conden-
sate makes a transition from the localized to the delocalized
state.

To further quantify the chaotic nature of the dynamics in
a more systematic manner, we compute the maximal Lya-
punov exponent λmax as given in Eq. (12) corresponding to the
dynamics of the condensate using the time series of the time-
correlator function c(t ). In Fig. 10 we show the variation of
λmax with the interaction strength for different values of s2/s1.
The increase of λmax towards the positive value indicates the
chaotic nature of the time-correlator function. We find that
the Lyapunov exponent fluctuates about zero until g ∼ 4.8 for
s2/s1 = 1. When g � 4.8, we witness a systematic increase
in the Lyapunov exponent and remains positive (λmax > 0),
indicating the chaotic nature of the time-correlator functions
for that range of g. Therefore, the above analysis provides the
value of the critical nonlinearity, beyond which the condensate
has a delocalized state and thus the corresponding dynamics
is chaotic. Lowering the disorder strength results in a decrease
in the value of the critical nonlinearity gc beyond which λmax

becomes positive. Further, for s2/s1 = 0.5, the critical non-
linearity beyond which the condensate has chaotic dynamics
is gc ∼ 4, while for s2/s1 = 0.3 it is gc ∼ 2.4. Note that the
value of gc calculated through this analysis provides accurate
nonlinearity at which the condensate is delocalized in space
and has dynamically chaotic behavior, which may be impor-
tant feedback for the experiments. At this juncture, it is worth
mentioning that Březinová et al. [49] observed a similar kind
of chaotic behavior in the dynamics of the delocalized state
when the condensate was subject to a weak periodic trap or
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FIG. 10. Variation of the Lyapunov exponent λmax against non-
linearity for different disordered strengths s2/s1 = 1 (solid line with
red circles), s2/s1 = 0.5 (dashed line with blue pentagons), and
s2/s1 = 0.3 (dashed line with green triangles). For the localized
state λmax � 0, while for the delocalized state λmax > 0, indicating
the chaotic dynamics. The threshold gc above which λmax > 0 (a
characteristic of the delocalized state) decreases upon the decrease
in s2/s1. Vertical dotted lines are drawn to guide the eyes for
different gc.

an aperiodic (quasiperiodic and random disordered potential)
trap.

So far, we have analyzed the dynamics of the condensates
in the presence of the quasiperiodic potential and found that
while the localized state exhibits either periodic or quasiperi-
odic dynamics, delocalized states show chaotic dynamics
upon quenching the nonlinearity to zero. Also, the route to
chaos upon increasing the nonlinear interaction appears to be
quasiperiodic in nature. Several studies indicate the similarity
in the condensate dynamics for the condensate trapped in the
quasiperiodic potential and in the random-speckle potential
[49]. To further clarify this interesting feature, in the following
section we present the spatial and temporal behaviors of the
condensate in the presence of the random disordered potential.

B. Delocalization in the presence
of the random disordered potential

In this section we discuss the effect of the nonlinearity on
the localized condensate trapped in the random disordered
potential. The details to generate the random potential are
given in Sec. II. First, we discuss the ground state of the con-
densate trapped in the random disordered potential at different
nonlinearities for single disorder realization. Then we discuss
the dynamics of the condensate along a similar line of analysis
performed for the condensate trapped in a quasiperiodic po-
tential, where we use the quenching of a nonlinear interaction
from a finite value to zero to generate the dynamics. Finally,
we characterize the dynamics using the PSD and largest Lya-
punov exponent analysis of the time-correlator function.

Apart from the localized and delocalized states such as
those observed for a quasiperiodic potential, we also witness
the presence of a Bose glass phase for the condensate trapped
in the random disordered potential [74–77]. Lugan et al.
demonstrated theoretically that the condensate undergoes a
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FIG. 11. Variation of density (in semilogarithmic scale) at V0 =
1.0 for different nonlinearities (a) g = 0, (b) g = 1, (c) g = 3, (d) g =
4, (e) g = 5, and (f) g = 10. The red dashed line is the exponential
function drawn near the localized region to guide the eyes to show
the deviation of the matter wave from the localized nature.

transition from a Lifshitz glass to a delocalized state upon
the increase of the nonlinear interaction [78]. In Fig. 11 we
plot the density profile (blue solid line) in a semilogarithmic
scale for different values of g. Here the red dashed lines
are the exponential curve near the localized region drawn
to display an estimate of the exponential fall of the density
in space. For the noninteracting condensate, i.e., g = 0, the
density profile shows the exponential fall, which is quite ev-
ident from the excellent matching of the density profile with
the drawn exponential curve [see Fig. 11(a)] complementing
the localized nature of the condensate. The spatial profile of
the condensate for g = 1 also shows an exponential fall as
depicted in Fig. 11(b). However, as discussed earlier, due to
the random nature of the potential, we witness the presence of
another region of the localized condensate, apart from what
is present near x ∼ 0, on increasing g further. For instance, at
g = 3, one part of the condensate gets localized near x = 0,
while another part gets localized near x ∼ 25. The condensate
near both regions appears to fall exponentially, which is quite
clear from the fitting of the spatial profile of the condensate
with the exponential curve (red dotted line). Note that such
a bifurcation of the condensate into multiple localized states
is in general termed fragmented BECs [33,79] or Bose glass
[75–77]. However, a further increase in g (�5) results in the
deviation of the tail of the localized condensate from the
exponential nature, as apparent from Figs. 11(d)–11(f), also
termed the delocalized state.

Next we will characterize the different ground-state phases
of the condensate trapped in the random potential, namely, the
localized state (LS) for a weak interaction, Bose glass (BG)
for an intermediate interaction, and delocalized Bose-Einstein
condensate (DBEC) for large nonlinear interaction. We will
do so using the chemical potential μ defined as

μ =
∫

dx

[
1

2
|∇ψ |2 + V (x)|ψ |2 + g|ψ |4

]
, (14)

where ψ corresponds to the ground-state wave function. In
Fig. 12(a) we plot μ as a function of g for three different
random realizations (R1, R2, and R3). For all realizations, μ

shows a sharp increase with g. The rate of increase of μ with
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FIG. 12. Different states of the condensate trapped in the ran-
dom disordered potnetial of strength V0 = 1.0 based on the nature
of μ in different ranges of g. The other parameters are the same
as Fig. 11. (a) Variation of chemical potential μ with g for three
different random realizations R1 (black circles), R2 (red squares),
and R3 (blue triangles). (b) Variation of dμ/dg with g distinguishing
different regimes for the condensate: the localized state for lower g
with higher dμ/dg ∼ 0.2–0.4, the Bose glass state at intermediate
g with dμ/dg ∼ 0.12–0.2, and the delocalized BEC state at higher
g with dμ/dg ∼ 0.05–0.12. The vertical dotted lines are drawn
to guide the eyes to distinguish different localized states of the
condensate.

g keeps decreasing with the increase in g. In order to quantify
the distinct nature of the variation of μ, we compute dμ/dg
for different g. As the compressibility of the condensate is
κ ∝ (dμ/dn)−1, where n is the condensate density which is a
function of g, the inverse of dμ/dg can also be attributed to the
compressibility of the gas. In Fig. 12(b) we display dμ/dg for
different g for all the realizations (R1, R2, and R3) presented in
Fig. 12(a). In the LS, dμ/dg ∼ 0.2–0.4 has the largest value,
the intermediate value of dμ/dg ∼ 0.12–0.2 represents the
BG state, and the lowest dμ/dg ∼ 0.05–0.12 represents the
DBEC state. Overall, we find that the compressibility is higher
for the DBEC phase, intermediate for the BG, and smallest
for the LS, which is in accordance with the typical behavior
of localized and delocalized gases. The trend observed for
μ in different regimes of the condensate trapped in the ran-
dom potential is consistent with earlier studies [75–77]. In
Fig. 13 we show the density profile in the semilogarithmic
scale for V0 = 0.5 of the random disordered potential. For this
parameter, we find that for the lower nonlinearity (g � 3) the
condensate is localized and we observe a delocalized state for
higher nonlinearities. However, all the phases, like the LS,
BG, and DBEC, are of similar nature to those for V0 = 1 (see
Fig. 11). It is straightforward to see that decreasing the poten-
tial strength decreases the critical nonlinearity above which
the condensate gets delocalized, which is around gc ∼ 3 for
V0 = 0.5 compared to g ∼ 5 for V0 = 1. To further identify
the different regions of the condensate upon increasing the
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FIG. 13. Variation of density (in semilogarithmic scale) trapped
in the random potential at V0 = 0.5 with different nonlinearities
(a) g = 0, (b) g = 2, (c) g = 3, (d) g = 5, (e) g = 6, and (f) g = 10.
The red dashed line is the exponential function drawn near the lo-
calized region to guide the eyes to show the deviation of the matter
wave from the localized nature.

nonlinearity, in Fig. 14 we show the variation of μ and dμ/dg
with g for V0 = 0.5 in Figs. 14(a) and 14(b), respectively.
For this case also we obtain the presence of different regimes
based on the values of dμ/dg from those observed for V0 =
1.0. Note that although μ is lower for V0 = 0.5 than for V0 =
1, the value of dμ/dg for different regimes of localization
appears to be the same.
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FIG. 14. Different states of the condensate trapped in the random
disordered potnetial of strength V0 = 0.5 based on the nature of μ in
different ranges of g. The other parameters are the same as in Fig. 13.
(a) Variation of chemical potential μ with nonlinear interaction g
for three different random realizations R1 (black circles), R2 (red
squares), and R3 (blue triangles). (b) Variation of dμ/dg with g
distinguishing different regimes for the condensate: the localized
state for lower g with higher dμ/dg ∼ 0.12–0.36, the Bose glass
state at intermediate g with dμ/dg ∼ 0.06–0.12, and the delocal-
ized BEC state at higher g with dμ/dg ∼ 0.04–0.06. The vertical
dotted lines are drawn to guide the eyes to distinguish different
localized states of the condensate.
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FIG. 15. Spatiotemporal evolution of the condensate at different nonlinearities (a) g = 0, (b) g = 4, (c) g = 5, and (d) g = 10 trapped
under the Gaussian random disordered potential for V0 = 1.0. The condensate remains localized near x = −2.51 for low nonlinearity g = 1.
An increase in the nonlinearity results in the delocalized condensate along with more fluctuations in the density, especially near x = 0.

In the following, we present the dynamics of the different
states observed for the condensate trapped in the random
disordered potential.

Quench dynamics of the condensates trapped
in the random potential

In Fig. 15 we depict the spatiotemporal evolution of the
condensate density after quenching of the nonlinearity to zero
from different initial values of g. For g = 0 [cf. Fig. 15(a)],
the localized condensate propagates with time without any
distortion. The condensate develops fluctuation with time
upon the increase in the value of g [see Figs. 15(b)–15(d)],
especially near the region x = 0. The temporal oscillation
becomes more irregular for higher nonlinearity, and the corre-
sponding dynamics display chaos, a dynamical feature similar
to that obtained for the condensate trapped in the quasiperi-
odic potential. Note that, as discussed for the situation of no
expansion in the x direction for the condensate trapped in
a quasiperiodic potential, once the dynamics appears due to
quenching in the nonlinearity, we find a similar scenario for
the condensate dynamics trapped with a random potential. In
this case, we also observe that the potential energy dominates
over the kinetic and thus does not allow the condensate to
diffuse around the minimum of the potential well.

We characterize the condensate dynamics by analyzing the
temporal evolution of c(t ) for different values of g, which
are plotted in Fig. 16. Figure 16(a) illustrates the periodic
temporal evolution of c(t ) with a period T ≈ 1.309 for the
localized state upon quenching the nonlinearity from g = 1.6
to g = 0. Figure 16(b) shows the evolution of c(t ) for the
localized state when g is quenched from g = 2 to g = 0. The

corresponding dynamics shows the quasiperiodic oscillation
with the presence of two frequencies, which becomes more
pronounced for g = 3, as depicted in Fig. 16(c). As we ana-
lyze the quench dynamics for the state at higher nonlinearity
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FIG. 16. Temporal evolution of the time-correlation function for
quenching from (a) g = 1.6, (b) g = 2, (c) g = 3, (d) g = 5, (e) g = 6,
and (f) g = 10 to g = 0. The other parameters are the same as in
Fig. 11. In the localized state (g � 5), the correlation function ex-
hibits a periodic or quasiperiodic oscillation, which becomes chaotic
at higher g. Here the disorder strength V0 = 1.0.

053320-11



SARKAR, MISHRA, MURUGANANDAM, AND MISHRA PHYSICAL REVIEW A 107, 053320 (2023)

FIG. 17. PSD of time-correlation function (as shown in Fig. 16)
for the situation when the nonlinearity is quenched from (a) g = 1.6,
(b) g = 2, (c) g = 3, (d) g = 5, (e) g = 6, and (f) g = 10 to g = 0 for
V0 = 1.0. Increasing the nonlinearity generates two incommensurate
frequencies ω1 = 1.13 and ω2 = 4.09 at g ∼ 2. Finally, the region
near these frequencies starts getting populated, leading to the chaotic
behavior at higher nonlinearity (g � 5).

(g � 5) for which the ground state exhibits a delocalized na-
ture, we find that the corresponding c(t ) exhibits aperiodic or
chaotic oscillation [see Figs. 16(d)–16(f)]. These dynamical
behaviors for different states will become clear as we investi-
gate the PSD of the time correlation, which we discuss below.
In Fig. 17 we plot the PSD of the time-correlation function
presented in Fig. 16. The PSD for the localized state quenched
from g = 1.6 to g = 0 is illustrated in Fig. 17(a). It shows
the presence of fundamental frequencies at ω1 = 1.13 along
with its higher harmonics such as 2ω1 = 2.26, confirming the
dynamics are periodic. However, a quenching from g = 2 to
g = 0 generates another frequency at ω2 = 4.09 along with
ω1, as shown in Fig. 17(b), indicating the quasiperiodic na-
ture of the dynamics of the condensate. The dynamics of the
localized states with higher nonlinearity (g = 3) exhibits the
generation of more frequencies around the two frequencies ω1

and ω2, as illustrated in Figs. 17(c) and 17(d). However, for
g � 5, more frequencies start appearing near ω1 and ω2 in the
PSD. The condensate has a delocalized ground state for g � 5
and shows the presence of a wide range of frequencies in
the dynamics; the corresponding PSD shows the exponential
variation with the angular frequency, a typical signature of
the chaotic dynamics. The PSD plots for g = 6 [Fig. 17(e)]
and g = 10 [Fig. 17(f)] indeed show the exponential distri-
bution with the frequencies. Interestingly, similar to the case
of a quasiperiodic potential, we find that the delocalized state
exhibits a chaotic state when the condensate is trapped in a
random disordered potential. The quasiperiodic route to the
chaos that exists in the dynamics is similar to that obtained
with the condensate trapped in the quasiperiodic potential.
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FIG. 18. Variation of the time-correlation function with time
at V0 = 0.5 after quenching the steady state from (a) g = 1.4,
(b) g = 2.0, (c) g = 3, (d) g = 4, (e) g = 6, and (f) g = 10 to g = 0.
The other parameters are the same as in Fig. 13. In the localized state
(g � 4), the correlation function exhibits either a periodic (g = 1.4)
or quasiperiodic (g = 1.6, 2, 3) oscillation, which becomes chaotic
after quenching the system from higher nonlinearity.

As we decrease the strength of the random disordered
potential, the critical value of the nonlinearity at which the
chaotic behavior appears in the time correlator decreases.
Figure 18 depicts c(t ) at different nonlinearity for the disorder
strength V0 = 0.5 of the random disordered potential. In this
case, the nature of c(t ) is periodic for g = 1.4, quasiperiodic
for g = 2, 3, and chaotic for g = 4, 6, 10. As we analyze the
corresponding PSD, we find the presence of a fundamental
frequency at ω1 = 0.62 [as shown in Fig. 19(a)], which is
lower than that for V0 = 1, which is ω1 = 1.13. An increase in
g = 2 leads to the generation of another frequency ω2 = 1.02,
which is incommensurate with the fundamental frequency
ω1, indicating the quasiperiodic nature of the dynamics [see
Fig. 19(b)]. Further, an increase in the nonlinear interaction
to g = 3 [Fig. 19(c)] and g = 4 [Fig. 19(d)] generates other
frequencies, whose origin can be understood as a combination
of ω1 and ω2. However, for g = 6 and 10, the PSD exhibits
an exponential distribution with the frequencies indicating
the fully chaotic state. Interestingly, the route to chaos for
V0 = 0.5 remains a quasiperiodic route, similar to what we ob-
tained for V0 = 1. After associating the delocalized state with
the chaotic dynamics, we now focus on complementing the
studies by computing the maximal Lyapunov exponent λmax

of the time series c(t ). In Fig. 20 we plot the variation of λmax

averaged over five different random realizations with g for
different sets of V0. For a given V0, λmax remains negative or
close to zero for the localized state, while it becomes positive
for the delocalized state. For instance, for V0 = 1, λmax ∼ 0
for g � 3.8. However, beyond this nonlinearity, λmax becomes
positive and remains above zero for a higher value of g. The
threshold value of the nonlinearity for V0 = 1 indicates the
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FIG. 19. PSD of the time-correlation function (as shown in
Fig. 18) at V0 = 0.5 after quenching at different nonlinearities
(a) g = 1.4, (b) g = 2, (c) g = 3, (d) g = 4, (e) g = 6, and (f) g = 10
to g = 0. Increasing the nonlinearity generates two incommensurate
frequencies ω1 = 0.62 and ω2 = 1.02 at g ∼ 2. Here frequencies get
populated near ω1 and ω2 when we quench the system from low
nonlinearity rather than V0 = 1.0.

delocalized feature of the condensate. Decreasing the poten-
tial strength to V0 = 0.5 decreases the threshold nonlinearity
to gc ∼ 2.4. A further decrease to V0 = 0.3 makes gc ∼ 2.0.

In Fig. 21 we present a comparative analysis of the gc

at which the dynamics of the condensate begins to exhibit a
positive Lyapunov exponent for both the quasiperiodic optical
lattice (blue circles) and the random disordered potential (red
diamonds). We observe that the critical value gc increases for
both potentials as the disorder strength increases. Although gc

appears to be of the same order for both disorder potentials
at low disorder strengths, for higher disorder strengths gc is
higher for the quasiperiodic potentials than for the random
disordered potentials.

V. CONCLUSION

In this paper we have studied the effect of atomic in-
teraction on the ground state and the associated dynamics
of Bose-Einstein condensates in a one-dimensional bichro-
matic optical lattice and random disordered potentials. We
identified that increasing the nonlinearity strength leads to
the delocalization of the condensates. We analyzed the con-
densate dynamics by quenching the nonlinearities to zero
from the value at which we prepared the ground state. We
noticed the regular dynamics of the condensate for small
nonlinear strengths, while it became chaotic at large nonlin-
earities where delocalization occurred. We also identified a
quasiperiodic route to chaos for both bichromatic and random
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g

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

λ
m

ax

g c
=

3.
8

g c
=

2.
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=

2.
0

V0 = 1.0 V0 = 0.5 V0 = 0.3

FIG. 20. Maximal Lyapunov exponent λmax averaged over five
different random realizations, plotted against nonlinearity for differ-
ent strengths of the random potential: V0 = 1 (red circles), V0 = 0.5
(green squares), and V0 = 0.3 (black diamonds). The localized state
has λmax � 0, while the delocalized states have λmax > 0, indicating
chaotic dynamics. The threshold gc above which λmax > 0, a char-
acteristic of the delocalized state, decreases as V0 decreases. Vertical
dotted lines are included to guide the eyes for different gc values. The
gc value is evaluated by taking the average over five realizations.

disordered potentials. The power spectral density displayed
a broadband spectrum and the maximal Lyapunov exponent
was positive when it exhibited chaotic dynamics. The power
spectral density and largest Lyapunov exponent confirmed the
presence of chaotic dynamics. Further, we found that the crit-
ical nonlinearity for delocalization decreases by decreasing
the ratio of amplitudes of the secondary to the primary laser
for a quasiperiodic potential or the strength of the random
disordered potential. Our study upon quenching the nonlinear
interaction revealed the regular dynamics of the condensate
for the localized state, while it became chaotic for the delocal-
ized state. In this study, we restricted our analysis to the scalar
BECs. However, it would be interesting to extend the work
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FIG. 21. Variation of the critical nonlinearity strength gc with the
disorder strength ratio s2/s1 for the quasiperiodic (QP) lattice and the
potential strength V0 for the random potential (RP). The data points
for the random potential are the averaged data over five different
disorder realizations.
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FIG. 22. (a) Temporal variation of the time-correlator function c(t ) at g = 9.0 and s2/s1 = 1.0. (b) Variation of the average mutual
information with the time delay τ of c(t̃ ). Here the value of the optimum time delay τ = 109 is estimated using the 1/e fall of the AMI
function. The red dashed line is drawn at 1/e as a guide for estimating the optimum value. (c) Variation of false nearest neighbors with the
embedding dimension D. The optimum embedding dimension D turns out to be 3, where the FNN falls to zero.

for the spin-orbit-coupled spinor BECs where the quenching
of coupling parameters has an effect similar to quenching of
the nonlinear interaction and thus has the possibility of richer
dynamics [55]. Also, it would be interesting to extend the
work for a finite quenching rate.

ACKNOWLEDGMENTS

We thank Kanhaiya Pandey, Sadhan K. Adhikari, Luca
Salasnich, and Saptarishi Chaudhuri for the fruitful discus-
sions and suggestions. We also gratefully acknowledge our
supercomputing facility Param-Ishan (IITG), where all the
simulation runs were performed. The work of P.M. was sup-
ported by DST-SERB under Grant No. CRG/2019/004059,
DST-FIST under Grant No. SR/FST/PSI-204/2015(C), and
MoE RUSA 2.0 (Physical Sciences). P.K.M. acknowledges
the Department of Science and Technology–Science and En-
gineering Research Board India for financial support through
Project No. ECR/2017/002639.

APPENDIX: SELECTION CRITERIA FOR THE
EMBEDDING DIMENSION AND DELAY TIME OF TIME

SERIES OF THE CORRELATION FUNCTION

In this Appendix we provide details on the steps involved
in choosing a proper embedding dimension and delay time to
obtain the maximal Lyapunov exponent λmax from the time
series of the correlation function. The first step involves re-
constructing the phase space from the time series data. Let us
assume we have a set of N discrete data points in the time se-
ries of the correlation function, given as c1, c2, c3, c4, . . . , cN .
By considering the delay time τ and an embedding dimen-
sion D, we obtain the D-dimensional delay coordinate as
Y (t̃ ) = (c(t̃ ), c(t̃ + τ ), . . . , c(t̃ + (D − 1)τ )). Note that both
t̃ ∈ [1, N] and τ ∈ [1, N] are integers used to index the time
series data of c(t ), which can be mapped to the real time
by multiplying by the factor dt . Usually, the choice of τ

is such that the values of c(t̃ ) and c(t̃ + τ ) are sufficiently
independent to be useful components of the time-correlator
vector c(t̃ ), but they should not be so independent that they
have no connection at all. To choose the optimum value of
τ , we calculate the average mutual information I (τ ) of the

variable c(t̃ ) and c(t̃ + τ ) for various values of τ given as [80]

I (τ ) =
∑

i

∑
j

Pi, j (τ )log2
Pi, j (τ )

PiPj
. (A1)

Here Pi represents the probability that c(t̃ ) falls inside the ith
bin of the histogram constructed from the data points of c
and Pi, j is the joint probability that c(t̃ ) and c(t̃ + τ ) should
come under the ith and jth bins of the histogram, respectively.
Following this, the optimum τ is calculated by examining the
value of τ at which I (τ ) either achieves its first minimum [80]
or drops below the value of 1/e [81]. Whichever criterion
gives the minimum τ is chosen. This value of τ represents
the delay time at which c(t̃ + τ ) contributes the maximum
information to our knowledge of c(t̃ ). The next step is to
determine the embedding dimension D, which can be esti-
mated using the method of false nearest neighbors. In this
process, we consider the data points that are neighbors to each
other in the original one-dimensional time series of c(t̃ ). Then
we check the separation between these neighbors when the
time series is embedded in a higher-dimensional space. If the
embedding process significantly changes the distance between
the neighboring points, they are referred to as false neighbors,
indicating the need to increase D. Therefore, the entire scheme
is based on gradually increasing the embedding dimension
D for the optimum τ and computing the percentage of false
neighbors with respect to the true neighbors for each value of
D. Only the value of D for which the number of FNNs drops to
0 or subsequent increments in D leave the FNNs unchanged is
considered the optimum embedding dimension. Let us denote
the ith nearest neighbor of the coordinate vector Y (t̃ ) by Y i(t̃ ).
The separation between them can be represented in the D-
dimensional phase space as

R2
D(t̃, i) =

D−1∑
j=0

[c(t̃ + jτ ) − c(i)(t̃ + jτ )]2. (A2)

Following the above discussion, as we go from a D-
dimensional phase space to a (D + 1)-dimensional phase
space using time-delayed embedding, the separation between
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the ith neighbors of a new vector Y (t̃ ) can be written as

R2
D+1(t̃, i) = R2

D(t̃, i) + [c(t̃ + Dτ ) − c(i)(t̃ + Dτ )]2. (A3)

In Fig. 22 we demonstrate the calculation of τ and D us-
ing the chaotic time series of the time correlator obtained

after the quenching of the ground state prepared for g = 9.0
and s2/s1 = 1.0, with other parameters the same as those
in Fig. 1. Following the method discussed above, we obtain
the optimum τ and D as 109 and 3, respectively, for this
case.
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