
PHYSICAL REVIEW A 107, 053318 (2023)

Dipole-mode and scissors-mode oscillations of a dipolar supersolid
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We study dipole-mode and scissors-mode oscillations of a harmonically trapped dipolar supersolid, composed
of dipolar droplets arranged on a one-dimensional (1D) or a 2D lattice, to establish the robustness of its crys-
talline structure under translation and rotation, using a beyond-mean-field model including a Lee-Huang-Yang
interaction. The dipolar atoms are polarized in the z direction with the supersolid crystalline structure lying in
the x-y plane. A stable dipole-mode oscillation is possible in the case of both quasi-1D and quasi-2D dipolar
supersolids, whereas a sustained angular scissors-mode oscillation is possible only in the case of a quasi-1D
dipolar supersolid between a maximum and a minimum of trap anisotropy in the x-y plane. In both cases
there is no visible deformation of the crystalline structure of the dipolar supersolid during the oscillation. The
theoretical estimate of the scissors-mode-oscillation frequency is in good agreement with the present results and
the agreement improves with an increase in the number of droplets in the supersolid and also with an increase in
the confining trap frequencies. The results of this study can be tested experimentally with present knowhow.
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I. INTRODUCTION

A supersolid [1–6], or a superfluid solid, is a quantum state
of matter simultaneously possessing the properties of both
a solid and a superfluid. Hence, a supersolid has a spatially
periodic crystalline structure as a solid, breaking continu-
ous translational invariance, and also enjoys frictionless flow
like a superfluid, breaking continuous gauge invariance. The
pioneering search of supersolidity in ultracold 4He [7] was
not successful [8]. Later, there had been theoretical sugges-
tions for creating a supersolid in a Bose-Einstein condensate
(BEC) with finite-range atomic interaction [9], or specifically,
in a dipolar BEC [10–12], and also in a spin-orbit-coupled
(SOC) spinor BEC [13]. The study of supersolids has recently
gained new momentum among research workers in various
fields, after the experimental observation of supersolids in a
quasi-one-dimensional (quasi-1D) [14–17] and quasi-2D [18]
dipolar BEC and in a quasi-1D SOC pseudospin- 1

2 spinor
BEC [19,20].

Recently, in the pursuit of a supersolid, a spatially peri-
odic state with a 1D stripe pattern in density was observed
in an SOC pseudospin- 1

2 BEC of 23Na [19] and 87Rb [20]
atoms. Later, in theoretical studies of quasi-2D SOC spin-1
[21,22], spin-2 [23], and pseudospin- 1

2 [24] spinor BECs, the
formation of stripe and square- and hexagonal-lattice [13,19]
patterns in density was demonstrated.

In a different context, in a strongly dipolar BEC, for the
number of atoms N beyond a critical value, high-density
droplets were observed experimentally in a trapped BEC of
164Dy [25,26] and 168Er [27] atoms and studied theoretically
[28,29]. In a quasi-1D trapped BEC of 164Dy [14,30,31],
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162Dy [15,16,32], and 166Er [14,31] atoms, with a large N ,
a dipolar supersolid in the form of a spatially periodic ar-
rangement of droplets in a straight line was observed in
different experiments [14–17] and also was studied theoret-
ically [17,33]. In a quasi-2D trapped BEC of 164Dy atoms,
a dipolar supersolid in the form of a spatially periodic ar-
rangement of droplets on a hexagonal lattice was observed
experimentally [18] and established theoretically [34–38]. In a
trapped quasi-2D dipolar BEC, the formation of honeycomb-
lattice, stripe, square-lattice, and other periodic patterns in
density were also found [34,35,38–41] in theoretical studies.

In the framework of a mean-field model employing the
Gross-Pitaevskii (GP) equation, a dipolar BEC collapses for
a strong dipolar interaction beyond a critical value [42] and
a Lee-Huang-Yang [43] (LHY) beyond-mean-field interac-
tion [44,45] is necessary in theoretical studies to stabilize a
strongly dipolar droplet against collapse [12]. As the num-
ber of atoms N in a trapped dipolar BEC is increased, so
that the density of atoms reaches a critical value, due to the
dipolar attraction, the condensate shrinks to a very small size.
However, it cannot collapse due to the LHY interaction and a
droplet is formed [25,26] in the case of an appropriate mixture
of contact and dipolar interactions. The size of the droplet
is much smaller than the harmonic oscillator trap lengths.
Such droplets can accommodate a maximum number of atoms
[28] for a given harmonic trap frequencies so as to attain a
critical density of atoms in the condensate. As the number
of atoms is increased further in the dipolar BEC, multiple
droplets are generated and due to an interplay between the
dipolar repulsion in the x-y plane and the external trapping po-
tential, a supersolidlike arrangement of droplets on a spatially
periodic lattice emerges as the minimum-energy state [46–48].
In spite of the name droplet, the present dipolar BEC droplets
in a strong trap are different from recently observed [49,50]
nondipolar binary BEC droplets in free space. Nevertheless,
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in both cases, the collapse is arrested [51] by a beyond-mean-
field LHY interaction [43].

Although there have been many theoretical investigations
of the statics of dipolar supersolids [33,52–63], there have
hardly been any direct studies of the dynamics. Linear dipole-
mode and angular scissors-mode oscillations of a BEC are
earmarks of superfluidity. Scissors-mode oscillation of a sin-
gle droplet [64] as well as a quasi-1D dipolar supersolid [65]
has been studied experimentally and theoretically [66]. In
Refs. [65,66] the authors studied the variation of scissors-
mode-oscillation frequency with a variation of the strength
of the dipolar interaction relative to that of the contact in-
teraction. In the present study we consider an evolution of
the scissors-mode oscillation with a variation of trap fre-
quency while the trap passes from a quasi-1D to a quasi-2D
type. Hence the two studies are complementary to each other.
In the case of a dipolar supersolid and dipole-mode and
scissors-mode oscillations, without any distortion of the lat-
tice structure of droplets, tests of both the superfluidity and the
robustness of the crystalline structure of the dipolar supersolid
under translation and rotation hence confirm the supersolidity
of these states.

Inspired by the experimental study of Ref. [65], to test
the superfluidity and robustness of a dipolar supersolid, in
this paper we study the linear dipole-mode-oscillation and
angular scissors-mode-oscillation dynamics of a harmoni-
cally trapped dipolar supersolid. The dipole-mode oscillation
of a quasi-1D or quasi-2D dipolar supersolid is studied by
employing real-time propagation by giving a sudden trans-
lation of the harmonic trap in the x direction. To study the
angular scissors-mode oscillation of a quasi-1D dipolar su-
persolid, with an asymmetric trapping potential in the x-y
plane, a sudden rotation of the harmonic trap in the z direc-
tion is applied. In both cases a continuous steady oscillation
of the dipolar supersolid was confirmed without any visible
distortion of the crystalline structure, thus establishing the
superfluidity and the robustness of the crystalline structure
of the dipolar supersolid. Although the theoretical estimate
of the scissors-mode-oscillation frequency ωth =

√
ω2

x + ω2
y

[67], where ωx and ωy are the angular trap frequencies in the
x and y directions, respectively, is a good approximation to
the actual frequency of oscillation, the agreement improves
as the number of droplets in the dipolar supersolid increases
or as the confining trap becomes stronger. For a sustained
periodic scissors-mode oscillation, the trap asymmetry in the
x-y plane should lie between an upper and a lower limit.
As the asymmetry is reduced beyond the lower limit or in-
creased above the upper limit, the periodic simple-harmonic
scissors-mode oscillation becomes an irregular one. No sus-
tained scissors-mode oscillation was found for a quasi-2D
dipolar supersolid with a hexagonal- or square-lattice struc-
ture. The linear dipole-mode oscillation in the x direction is
simple harmonic and takes place with the frequency of the trap
ωx. While studying the scissors-mode oscillation of a quasi-
1D dipolar supersolid we keep ωx and ωz fixed maintaining
ωz � ωx and vary ωy such that ωy > ωx, thus generating a
trap with asymmetry in the x-y plane as required to initiate the
scissors-mode oscillation. As ωy increases from a small value
to a value larger than ωz the trap changes from a quasi-2D type
to a quasi-1D type. In this fashion we study the evolution of

the scissors-mode oscillation of a quasi-1D dipolar supersolid
in both types of trap; in all cases the numerical frequency of
the scissors-mode oscillation was smaller than its theoretical
estimate.

In Sec. II we consider the beyond-mean-field model in-
cluding the LHY interaction. We also present the appropriate
energy functional, a minimization of which leads to this
model. In Sec. III we present numerical results for dipole-
mode oscillation of quasi-1D three-droplet and quasi-2D
nine-droplet dipolar supersolids of 164Dy atoms after a sudden
displacement of the trap. We also present results for angu-
lar scissors-mode oscillation of quasi-1D three-droplet and
five-droplet dipolar dipolar supersolids. A variation of the
scissors-mode frequency with ωy, as the trap evolves from a
quasi-2D to a quasi-1D type, is also studied. A breakdown
of the scissors-mode oscillation of a nine-droplet quasi-2D
square-lattice and a seven-droplet triangular-lattice dipolar
supersolid is also demonstrated. Finally, in Sec. IV we present
a summary of our findings.

II. BEYOND-MEAN-FIELD MODEL

We consider a BEC of N dipolar atoms, of mass m each,
polarized along the z axis, interacting through the atomic
contact and dipolar interactions [68–70]

V (R) =μ0μ
2

4π
Udd(R) + 4π h̄2a

m
δ(r − r′), (1)

Udd(R) =1 − 3 cos2 θ

|r − r′|3 , (2)

where μ is the magnetic dipole moment of each atom, μ0 is
the permeability of the vacuum, and a is the scattering length.
Here r ≡ {x, y, z} and r′ ≡ {x′, y′, z′} are the positions of the
two interacting dipolar atoms and θ is the angle made by
R ≡ r − r′ with the polarization z direction. In analogy with
the scattering length, the dipolar length add determines the
strength of the dipolar interaction

add = μ0μ
2m

12π h̄2 . (3)

The dimensionless ratio

εdd ≡ add

a
(4)

determines the strength of the dipolar interaction relative to
the contact interaction and controls many properties of a dipo-
lar BEC.

In this paper we base our study on a 3D beyond-mean-field
model including the LHY interaction. The formation of a
lattice of droplets is described by the 3D beyond-mean-field
GP equation including the LHY interaction [29,36,68–70]

ih̄
∂ψ (r, t )

∂t
=

(
− h̄2

2m
∇2 + U (r) + 4π h̄2

m
aN |ψ (r, t )|2

+ 3h̄2

m
addN

∫
Udd(R)|ψ (r′, t )|2dr′

+ γLHY h̄2

m
N3/2|ψ (r, t )|3

)
ψ (r, t ), (5)

U (r) = 1
2 m

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)
, (6)
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where ωx, ωy, and ωz are the angular frequencies in the
x, y, and z directions, respectively, and the wave func-
tion is normalized as

∫ |ψ (r, t )|2dr = 1. The coefficient of
the beyond-mean-field LHY interaction γLHY is given by
[29,44,45]

γLHY = 128
3

√
πa5Q5(εdd ), (7)

where the auxiliary function Q5(εdd ) is given by

Q5(εdd ) =
∫ 1

0
dx(1 − εdd + 3x2εdd )5/2. (8)

This function can be evaluated as [29]

Q5(εdd ) = (3εdd )5/2

48
�

[
(8 + 26η + 33η2)

√
1 + η

+ 15η3ln

(
1 + √

1 + η√
η

)]
, η = 1 − εdd

3εdd
, (9)

where Re denotes the real part.
Equation (5) can be reduced to the dimensionless form by

scaling lengths in units of l = √
h̄/mωz, time in units of ω−1

z ,
angular frequency in units of ωz, energy in units of h̄ωz, and
density |ψ |2 in units of l−3,

i
∂ψ (r, t )

∂t
=

(
− 1

2
∇2 + U (r) + 4πaN |ψ (r, t )|2

+ 3addN
∫

Udd(R)|ψ (r′, t )|2dr′

+ γLHYN3/2|ψ (r, t )|3
)

ψ (r, t ), (10)

U (r) = 1

2

(
ω2

x x2 + ω2
y y2 + z2

)
. (11)

Here and in the following, without any risk of confusion,
unless otherwise indicated, all variables are scaled and rep-
resented by the same symbols as the unscaled variables.

Equation (10) can also be obtained from the variational rule

i
∂ψ

∂t
= δE

δψ∗ (12)

with the energy functional (energy per atom)

E = 1

2

∫
dr

(
|∇ψ (r)|2 + (

ω2
x x2 + ω2

y y2 + z2)|ψ (r)|2

+ 3addN |ψ (r)|2
∫

Udd(R)|ψ (r′)|2dr′

+ 4πNa|ψ (r)|4 + 4γLHY

5
N3/2|ψ (r)|5

)
(13)

for a stationary state. First, a stationary quasi-1D or a quasi-
2D dipolar supersolid state is generated by solving Eq. (10)
by imaginary-time propagation. To study the dipole-mode
oscillation, we perform real-time propagation with the space-
translated potential

U (r) = 1
2

[
ω2

x (x − x0)2 + ω2
y y2 + z2

]
(14)

and using the stationary state as the initial function, where
x0 is the space translation in the x direction. In this case

a nondipolar BEC executes the simple-harmonic oscillation
x(t ) = x0 cos(ωxt ) in the x direction without any distortion
with angular frequency ωx indicating superfluidity.

To study the angular scissors-mode oscillation of a quasi-
1D supersolid state in the x-y plane, the real-time propagation
is executed with the space-rotated trap

U (r) = 1
2

[
ω2

x (x cos θ0+y sin θ0)2

+ ω2
y (−x sin θ0 + y cos θ0)2 + z2

]
, (15)

employing the stationary state as the initial function, where θ0

is the angle of rotation of the potential in the polarization z
direction. For a sufficiently large asymmetry of the trap in the
x-y plane, a (superfluid) BEC, in the Thomas-Fermi regime,
obeying the hydrodynamic equations of superfluids, will
execute sustained periodic scissors-mode oscillation θ (t ) =
θ0 cos(ωtht ) with the frequency ωth =

√
ω2

x + ω2
y [67,71]. A

sustained angular oscillation with the frequency ωth signals
superfluidity. In the opposite collisionless regime, distinct fre-
quencies |ωx ± ωy| survive [67]. Because of the asymmetry of
the dipolar interaction, say, in the x-z plane, it is also possible
to have a spontaneous scissors-mode oscillation [64] of a
dipolar BEC in this plane with a circularly symmetric trapping
potential. The emergent circularly asymmetric dipolar BEC
will naturally point in the z direction in this case and, if
angularly displaced, can execute a scissors-mode oscillation
in the x-z plane. That scissors-mode oscillation is typically
different from the present scissors-mode oscillation generated
in a circularly asymmetric trap in the x-y plane.

To generate a quasi-1D dipolar supersolid in the x direction
we need to take ωx 	 ωy, 1; to generate a quasi-2D dipolar
supersolid in the x-y plane we will take ωx, ωy 	 1. (The
angular frequencies are expressed in units of the angular fre-
quency in the z direction, which in dimensionless units is
1.) In the case of dipole-mode oscillation we will consider
both a quasi-1D and a quasi-2D dipolar supersolid and in the
case of scissors-mode oscillation we will mostly study only a
quasi-1D dipolar supersolid. We could not find any sustained
scissors-mode oscillation in the case of a quasi-2D dipolar
supersolid for any sets of parameters.

III. NUMERICAL RESULTS

To study the oscillation dynamics of a dipolar supersolid
we solve the partial differential beyond-mean-field GP equa-
tion (10), numerically, using FORTRAN C programs [69] or
their open-multiprocessing versions [72,73], employing the
split-time-step Crank-Nicolson method using the imaginary-
time propagation rule [74]. Because of the divergent 1/|R|3
term in the dipolar potential (1), it is problematic to treat
numerically the nonlocal dipolar interaction integral in the
beyond-mean-field model (10) in configuration space. To cir-
cumvent the problem, this term is evaluated in the momentum
k space by a Fourier transformation using a convolution iden-
tity as [69]∫

dr′Udd(R)n(r′) =
∫

dk
(2π )3

e−ik·rṼdd(k)ñ(k), (16)

where n(r) ≡ |ψ (r)|2 and Ṽdd(k) and ñ(k) are respective
Fourier transforms. This is advantageous numerically due to
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the smooth behavior of this term in momentum space. The
Fourier transformation of the dipolar potential Ṽdd(k) can be
found analytically [69] enhancing the accuracy of the nu-
merical procedure. After solving the problem in momentum
space, a backward Fourier transformation provides the desired
solution in configuration space.

For the appearance of a supersolid droplet lattice we need a
strongly dipolar atom with add > a [25]. The system becomes
repulsive for add < a, while the system is necessarily a su-
perfluid, and no droplets can be formed. Instead of presenting
results only in dimensionless units, we also relate our results
to the recent experimental [18,65] and related theoretical [36]
studies on supersolid formation in a dipolar BEC of 164Dy
atoms. Although add = 130.8a0 for 164Dy atoms, where a0

is the Bohr radius, we have a certain flexibility in fixing the
scattering length a, as the scattering length can be modified by
the Feshbach resonance technique by manipulating an exter-
nal electromagnetic field. As in our previous studies [39,40],
we take a = 85a0, which is close to its experimental estimate
a = (92 ± 8)a0 [75]. With the reduction of contact repulsion,
this choice has the advantage of slightly increasing the net
attraction, which will facilitate the formation of the dipolar
droplets. Consequently, we use a = 85a0 in all calculations of
this paper. Other studies of quantum droplets in a quasi-2D
dipolar BEC used nearby values of scattering lengths, e.g.,
a = 88a0 [18,36] and a = 70a0 [37], always smaller than its
experimental estimate to facilitate the formation of droplets
and the droplet lattice.

In this study the trap frequencies in the x and z direc-
tions are taken as ωx = 33

167 and ωz = 1 for trap A, as in a
recent experimental [18] and related theoretical [36] investi-
gations on hexagonal-lattice crystallization of droplets. For
dysprosium atoms m(164Dy) ≈ 164 × 1.660 54 × 10−27 kg,
h̄ = 1.054 571 8 × 10−34 m2 kg/s, and ωz = 2π × 167 Hz;
consequently, the unit of length l = √

h̄/mωz = 0.6075 µm.
To find the dependence of the scissors-mode-oscillation fre-
quency on the trapping frequency, we also considered the
frequencies (for trap B) ωx = 23

90 and ωz = 1, as in a recent
experimental study of scissors-mode oscillation of a quasi-1D
dipolar supersolid [65]; in that case l = 0.8275 µm. In both
cases the trap frequency in the y direction ωy will be varied to
generate an appropriate quasi-1D or quasi-2D trap.

A. Dipole-mode oscillation of a quasi-1D
and a quasi-2D supersolid

To prepare a quasi-1D dipolar supersolid for the inves-
tigation of dynamics, we consider 20 000 164Dy atoms in
the quasi-1D trap A with ωx = 33

167 , ωy = 110
167 , and ωz = 1.

The dipolar BEC crystallizes in a three-droplet state along
the x axis. The converged final state in this case can be ob-
tained by imaginary-time simulation using an initial Gaussian
wave function. However, the convergence is quicker if we
use an analytic wave function for a few droplets (three or
five) periodically arranged in the x direction with a fixed
mutual separation and symmetrically placed around the oc-
cupied x = 0 site as in Ref. [39] and we will take such
an initial state in the present study. A contour plot of the
z = 0 and y = 0 sections of the 3D density |ψ (x, y, 0)|2 (left
side) and |ψ (x, 0, z)|2 (right side) is shown in Fig. 1(a) with

FIG. 1. Contour plot of density |ψ (x, y, 0)|2 (left side of each
panel) and |ψ (x, 0, z)|2 (right side of each panel) of the quasi-1D
three-droplet supersolid of N = 20 000 164Dy atoms executing linear
dipole-mode oscillation in trap A at times (a) t = 0, (b) t = 7.95,
(c) t = 15.9, (d) t = 23.85, (e) t = 31.8, and (f) t = 39.75. The trap
frequencies are ωx = 33

167 , ωy = 110
167 , and ωz = 1. Displayed results in

all figures [except Fig. 5(a)] are dimensionless. The unit of length is
l = 0.6075 µm and unit of time 0.953 ms.

three droplets placed symmetrically around x = 0 (a parity-
symmetric state).

To study the dipole-mode oscillation, we consider the
above-mentioned quasi-1D three-droplet dipolar supersolid in
trap A [18,36], displaced in the x direction over a distance
of x0 = 5 [see Eq. (14)]. For both quasi-1D and quasi-2D
dipole-mode oscillations (studied in the following), the initial
configuration is the stationary state obtained by imaginary-
time propagation and the dynamics is studied by real-time
simulation replacing the original symmetric trap (11) by the
displaced trap (14) with x0 = 5 at t = 0. Due to the linear dis-
placement of the trap in the x direction, the dipolar supersolid
will execute sustained dipole-mode oscillation in the x direc-
tion with an amplitude of 5. In Fig. 2(a) we compare the time
evolution of position x of the central droplet with its theoret-
ical prediction of periodic oscillation with the trap frequency
ωx. The present period of oscillation T = 31.8 compares
well with the theoretical period T ≡ 2π/ωx = 31.7967. The
energy of the oscillating supersolid also executes a steady
simple-harmonic oscillation as shown in Fig. 2(b). The fre-
quency of energy oscillation is double that of the frequency
of position oscillation. The dependence of the energy of the
oscillating supersolid with time is important as it can be calcu-
lated much more accurately than the position of the supersolid
and any deviation from the expected simple-harmonic os-
cillation of energy signals a breakdown of the expected
dipole-mode and scissors-mode oscillations, indicating either
a distortion of the supersolid or the destruction or absence of
superfluidity during oscillation or both (see Fig. 9).
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FIG. 2. (a) Linear displacement x of the central droplet versus
time t of a quasi-1D three-droplet supersolid of N = 20 000 164Dy
atoms or of a quasi-2D nine-droplet supersolid of N = 60 000 164Dy
atoms executing dipole-mode oscillation in the x direction as ob-
tained by real-time propagation fitted to the theoretical prediction
cos(ωxt ) (th). The oscillation is started by a linear displacement of
x0 = 5 of trap A at t = 0 [see Eq. (14)]. (b) Energy E versus time
t during this dipole-mode oscillation. For the quasi-1D case, the
angular frequency ωy = 110

167 and for quasi-2D case ωy = 33
167 . The

other parameters are ωx = 33
167 , ωz = 1, a = 85a0/l , and l = 0.6075.

The linear dipole-mode oscillation of a quasi-1D dipolar
supersolid in the x direction is more explicitly illustrated in
terms of a contour plot of densities |ψ (x, y, 0)|2 (left side)
and |ψ (x, 0, z)|2 (right side) as displayed in Fig. 1 at times
t = 0 [Fig. 1(a)], t = 7.95 [Fig. 1(b)], t = 15.9 [Fig. 1(c)],
t = 23.85 [Fig. 1(d)], t = 31.8 [Fig. 1(e)], and t = 39.75
[Fig. 1(f)]. At t = 0 the center of the supersolid lies at x = 0,
at t = 7.95 it moves to the center of the displaced trap at
x = 5, and at t = 15.9 it moves to the position of largest
displacement at x = 10. After that the supersolid turns around
and passes through the center of the displaced trap again at
t = 23.85 to the initial equilibrium position at t = 31.8 at the
end of a complete period. Then the system starts to repeat the
same cycle again, passing through the center of the displaced
trap at t = 39.75. This dipole-mode oscillation is found to be
simple harmonic with the present amplitude of 5.

Next we consider the linear dipole-mode oscillation of
a quasi-2D nine-droplet supersolid of 60 000 164Dy atoms
arranged on a square lattice in trap A with angular frequen-
cies ωx = ωy = 33

167 and ωz = 1. The 3D isodensity plot of
|ψ (x, y, z)|2 of this supersolid is shown in Figs. 3(a) and 3(b)
for densities on contours of 0.0001 and 0.0005, respectively.
A background atom cloud surrounding the square-lattice ar-
rangement of nine droplets can be seen clearly in Fig. 3(a).
For a large density on the contour in Fig. 3(b), the low-
density background atom cloud is not visible and a perfect

FIG. 3. Three-dimensional isodensity plot of |ψ (x, y, z)|2 of
a quasi-2D nine-droplet (square-lattice) supersolid of N = 60 000
164Dy atoms in trap A with ωx = ωy = 33

167 and ωz = 1 for the value
of density on the contour of (a) 0.0001 and (b) 0.0005.

FIG. 4. Contour plot of density |ψ (x, y, 0)|2 of the quasi-2D
nine-droplet supersolid of N = 60 000 164Dy atoms of Fig. 3 execut-
ing dipole-mode oscillation in trap A at times (a) t = 0, (b) t = 7.95,
(c) t = 15.9, (d) t = 23.85, (e) t = 31.8, and (f) t = 39.75. The trap
parameters are ωx = ωy = 33

167 and ωz = 1.

square-lattice arrangement of droplets can be seen. The
high-density droplets in a supersolid are embedded in the
low-density atom cloud and thus the whole supersolid is
phase coherent, which is responsible for frictionless flow
and transportability of the supersolid. A similar background
atom cloud also exists in a quasi-1D dipolar supersolid. The
dipole-mode oscillation of the quasi-2D nine-droplet dipolar
supersolid is initiated by displacing the trap through a dis-
tance of x0 = 5 units [see Eq. (14)] and studied by real-time
propagation using the stationary wave function as the initial
state. The time evolution of the position of this quasi-2D
supersolid is the same as the quasi-1D supersolid as shown in
Fig. 2(a). The time evolution of the energy of this quasi-2D
supersolid is distinct from that of the quasi-1D supersolid
[see Fig. 2(b)], although both are controlled by the axial
trap frequency in the x direction ωx. The dipole-mode os-
cillation in the x direction is better illustrated by snapshots
of a contour plot of density |ψ (x, y, 0)|2 in the x-y plane at
different times t = 0, 7.95, 15.9, 23.85, 31.8, and 39.75 as
displayed in Figs. 4(a)–4(f), respectively. The nine-droplet
supersolid starts the oscillation in Fig. 4(a), passes through
the position of the minimum of trapping potential at x = 5 in
Fig. 4(b) at t = 7.95 to the position of maximum displacement
x = 10 in Fig. 4(c) at t = 15.9. Then it turns around, passes
through the position x = 5 in Fig. 4(d) at t = 23.85 to the
initial position x = 0 in Fig. 4(e) at t = 31.8 and repeats
the same dynamics. Although not explicitly demonstrated in
this paper, similar oscillation of a hexagonal supersolid was
also found. Sustained dipole-mode oscillation without distor-
tion of both the quasi-1D and quasi-2D dipolar supersolids
guarantees superfluidity and robustness of the crystalline
structure.

B. Scissors-mode oscillation of a quasi-1D supersolid

We consider the quasi-1D dipolar supersolid of a few (three
or five) droplets in trap A, with ωx = 33

167 and ωz = 1, and
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FIG. 5. (a) Angular displacement θ versus dimensionless time
t of a quasi-1D three-droplet (five-droplet) supersolid of N =
35 000 (40 000) 164Dy atoms executing scissors-mode oscillation
in trap B (A) fitted to the sinusoidal oscillation cos(0.935ωtht )
[cos(0.971ωtht )] [67,71]. The oscillation is started by giving a ro-
tation of θ0 = −4◦ of the trapping potential at t = 0 [see Eq. (15)].
(b) Energy E versus time t plot during the scissors-mode oscillation
of the three-droplet supersolid in trap B fitted to the sinusoidal os-
cillation cos(2 × 0.935ωtht ). For trap A, ωx = 33

167 and ωy = ωz = 1,
and for trap B, ωx = 23

90 and ωy = ωz = 1. In trap B the unit of length
is l = 0.8275.

trap B, with ωx = 23
90 and ωz = 1. In both cases we study

the variation of the scissors-mode-oscillation frequency with
a variation of ωy. By varying ωy from a small (ωy 	 1) to
a large (ωy � 1) value we will pass from a quasi-2D trap
to a quasi-1D trap and study scissors-mode oscillation of a
quasi-1D supersolid in both types of trap. The initial config-
uration in all calculations is the stationary state obtained by
imaginary-time propagation in the appropriate trap, and the
angular scissors-mode oscillation is started by rotating the
spatially asymmetric harmonic trap in the x-y plane (11) in
the z direction in a counterclockwise sense at t = 0 through
an angle θ0 = −4◦ at t = 0 [see (15)] and the subsequent
dynamics is studied by real-time simulation. Due to the strong
spatial asymmetry (ωy � ωx) of the trap in the x-y plane,
the dipolar supersolid will execute sustained scissors-mode
oscillation [67,76,77] in the z direction. A reasonably large
spatial asymmetry of the trap in the x-y plane is necessary
for a sustained scissors-mode oscillation [67]. The theoretical
frequency of this oscillation for a large superfluid BEC with
a Thomas-Fermi distribution of matter is ωth =

√
ω2

x + ω2
y

[65,67]. Nevertheless, a supersolid with a highly circularly
asymmetric distribution of matter, i.e., the droplets and the
background atom cloud, has a slightly reduced anomalous
moment of inertia compared to the classical moment of inertia
and a reduced scissors-mode-oscillation frequency compared
to its theoretical estimate.

We consider a quasi-1D three-droplet supersolid in trap
B and vary ωy in the range from 46

90 to 110
90 . In Figs. 5(a)

and 5(b) we illustrate the corresponding time evolution
of angle θ and energy E for ωx = 23

90 , ωy = ωz = 1, and
N = 35 000 fitted to the periodic oscillations cos(0.935ωtht )
and cos(2 × 0.935ωtht ), respectively, yielding the frequency
ωsci = 0.935ωth of scissors-mode oscillation with the theo-
retical frequency ωth = 1.032 137 899. Both the energy and
the angle of the oscillating supersolid are found to execute a
steady sinusoidal oscillation as shown in Figs. 5(a) and 5(b).
The period of angular oscillation T = 2π/ωsci = 6.5 com-
pares well with the theoretical period Tth = 2π/ωth = 6.0875.

FIG. 6. Contour plot of density |ψ (x, y, 0)|2 (left side of each
panel) and |ψ (x, 0, z)|2 (right side of each panel) of the quasi-1D
three-droplet supersolid of N = 35 000 164Dy atoms in trap B of
Fig. 5 executing scissors-mode oscillation at times (a) t = 0, (b) t =
1.625, (c) t = 3.25, (d) t = 4.875, (e) t = 6.5, and (f) t = 8.125. For
trap B, ωx = 23

90 and ωy = ωz = 1.

The angular oscillation of the supersolid is explicitly
displayed in Fig. 6 through a contour plot of densi-
ties |ψ (x, y, z = 0)|2 and |ψ (x, y = 0, z)|2 at times t =
0, 1.625, 3.25, 4.875, 6.5, 8.125. The supersolid starts to ro-
tate in the clockwise direction at θ = 0 and t = 0 [see
Fig. 6(a)] and passes through the minimum-energy equilib-
rium position in the rotated trap at θ = −4◦ and t = 1.625
[see Fig. 6(b)] to the position of maximum angular dis-
placement of θ = −8◦ at t = 3.25 [see Fig. 6(c)]. Then the
supersolid turns around and again passes through the equilib-
rium position of θ = −4◦ at t = 4.875 [see Fig. 6(d)] to the
initial position of minimum angular displacement of θ = 0◦ at
t = 6.5 [see Fig. 6(e)] at the end of a complete oscillation. The
supersolid then turns around again and the same dynamics is
repeated thereafter [see Fig. 6(f)]. At the position of maximum
angular displacement of θ = −8◦ at t = 3.25, two droplets
away from the center of the quasi-1D supersolid completely
move out of the x-z plane and hence only the central droplet
is clearly visible in this plane [see Fig. 6(c)]. For a small
angular rotation of the trap in the x-y plane, this angular
oscillation should be simple harmonic [67]. The dynamics of
angular displacement θ and energy of the quasi-1D supersolid
in Figs. 5(a) and 5(b) are found to be simple harmonic for the
relatively large spatial trap anisotropy (ωx = 23

90 and ωy = 1)
and a moderate angular amplitude of 4◦ employed in this
study. For a large angle of rotation of the trap |θ0| � 8◦ the
dynamics ceases to be simple harmonic in nature with a single
frequency.

Next we consider the scissors-mode oscillation of a
quasi-1D five-droplet supersolid in trap A for ωx = 33

167 ,
ωy = ωz = 1, and N = 40 000 for an initial trap rotation of
θ0 = −4◦ in detail. (The same for a three-droplet supersolid
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FIG. 7. Contour plot of density |ψ (x, y, 0)|2 (left side of each
panel) and |ψ (x, 0, z)|2 (right side of each panel) of a quasi-1D
five-droplet supersolid of N = 40 000 164Dy atoms of Fig. 5 in trap A
executing scissors-mode oscillation at times (a) t = 0, (b) t = 1.625,
(c) t = 3.25, (d) t = 4.875, (e) t = 6.5, and (f) t = 8.125. For trap
A, ωx = 33

167 and ωy = ωz = 1.

in trap A will not be considered here.) The variation of θ

with time is illustrated in Fig. 5(a) and fitted to a sinusoidal
oscillation. The evolution of this oscillation with time is illus-
trated by snapshots of contour density plots of |ψ (x, y, 0)|2
and |ψ (x, 0, z)|2 in Fig. 7 at times t = 0 [Fig. 7(a)], t =
1.587 [Fig. 7(b)], t = 3.174 [Fig. 7(c)], t = 4.875 [Fig. 7(d)],
t = 6.348, [Fig. 7(e)], and t = 8.125 [Fig. 7(f)] with angular
displacements θ = 0, θ ≈ −4◦, θ ≈ −8◦, θ ≈ −4◦, θ ≈ 0,
and θ ≈ −4◦, respectively, illustrating the periodic nature of
the oscillation. The period of this oscillation is T = 6.348,
compared to the theoretical period of T = 2π/ωth = 6.1634,
and the system is back to the initial state θ ≈ 0 in Fig. 7(e) at
the end of a complete cycle.

The variation of the frequency of scissors-mode oscillation
ωsci of a quasi-1D three-droplet supersolid in trap A or trap
B and of a quasi-1D five-droplet supersolid in trap A as a
function of frequency ωy is illustrated in Fig. 8(a) and is com-
pared with the theoretical frequency ωth. The deviation of the
scissors-mode-oscillation frequency ωsci from the theoretical
frequency ωth, e.g., ωsci/ωth, for different ωy is presented in
Fig. 8(b). The actual scissors-mode frequency is always less
[66] than its theoretical estimate ωth > ωsci, as can be found
in Fig. 8. The theoretical frequency ωth in both traps leads
essentially to the same line shown in Fig. 8(a). Although the
theoretical frequency ωth is a good approximation of the actual
frequency ωsci for a wide range of variation of trap param-
eters, as can be seen in Fig. 8(a), the agreement improves
as ωy increases, resulting in an increase of the asymmetry
of the trap in the x-y plane. For the same trap, viz., trap A,
the agreement improves as the number of droplets increases,
resulting in a larger supersolid. For the same frequency ωy, the
agreement also improves in a stronger trap, e.g., trap A with an
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FIG. 8. (a) Frequency of scissors-mode oscillation ωsci versus ωy

for the three- and five-droplet states in trap A and for the three-
droplet state in trap B, of amplitude 4◦, compared with the theoretical
frequency ωth. (b) Deviation of scissors-mode-oscillation frequency
from the theoretical frequency ωsci/ωth versus ωy for the three- and
five-droplet states in trap A and for the three-droplet state in trap
B. In trap A N = 25 000 for three droplets and N = 40 000 for
five droplets with ωx = 33

167 , ωz = 1, and θ0 = −4◦ and in trap B
N = 35 000 for three droplets with ωx = 23

90 , ωz = 1, and θ0 = −4◦.

overall stronger trapping (large 3
√

ωxωyωz) compared to trap B.
Nevertheless, for the same number of droplets, the frequency
of scissors-mode oscillation was found to be independent of
the number of atoms. The trap B is the same as in Ref. [65]
and it is possible to compare the present results obtained in
trap B with that reference. In trap B, with ωx = 23

90 = 0.2556,
ωy = 46

90 = 0.5111, ωz = 1, and a = 87.2a0 (εdd = 1.5), the
experiment in [65] obtained ωsci/ωth ≈ 0.78 ± 0.03. For the
same trap with a = 85a0 we get ωsci/ωth ≈ 0.784. We also
repeated our calculation in the same trap for a = 87.2a0 as
in Ref. [65] and we found ωsci/ωth = 0.795, in good agree-
ment with the result in [65]. We also compared the present
results with Ref. [66] for a = 85a0, where the trap frequen-
cies ωx = 20

80 = 0.25, ωy = 40
80 = 0.5, and ωz = 1 were used,

which are pretty close to the present frequencies for trap B in
dimensionless units. The result of ωsci/ωx ≈ 1.74 in [66] for
a = 85a0 translates to ωsci/ωth ≡ ωsci/

√
ω2

x + ω2
y ≈ 0.778, in

good agreement with the present result ωsci/ωth ≈ 0.784. In
Fig. 8 ωy � 0.5 typically represents a quasi-1D trap and it is
also the region of sustained periodic scissors-mode oscilla-
tion. As ωy decreases below a lower limit or increases above
an upper limit the scissors-mode oscillation ceases to be sim-
ple harmonic with a single frequency and becomes irregular
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FIG. 9. (a) Numerical (num) energy E versus time t during
scissors-mode oscillation of a nine-droplet supersolid of 164Dy atoms
of amplitude 4◦ in trap A fitted to its theoretical estimate (th) cos(2 ×
ωtht ). Contour plot of the density |ψ (x, y, 0)|2 of this supersolid
undergoing scissors-mode oscillation at times (b) t = 0, (c) t = 4,
(d) t = 8, and (e) t = 12. The parameters for this simulation are
ωx = 33

167 , ωy = 60
167 , ωz = 1, and N = 60 000.

in nature. The domain of frequencies 0.4 � ωy � 1.2 seems
to be appropriate for a sustained periodic scissors-mode os-
cillation. A quasi-2D supersolid can be formed for ωy � 0.4,
while the trap approximates a quasi-2D configuration; how-
ever, in this region one cannot have a sustained scissors-mode
oscillation as the trap anisotropy in the x-y plane is smaller
than that required for a sustained oscillation. This is why we
could not find any scissors-mode oscillation for a quasi-2D
supersolid with square or hexagonal symmetry.

To illustrate the breakdown of scissors-mode oscillation
for a quasi-2D supersolid explicitly, we consider a quasi-2D
nine-droplet supersolid for ωx = 33

167 , ωy = 60
167 ≈ 0.359 28,

ωz = 1, and N = 60 000. Although a smaller ωy is favored
for the formation of a quasi-2D nine-droplet supersolid,
no regular simple-harmonic scissors-mode oscillation could
be found there. In this case, for a trap-rotation angle of
θ0 = −4◦, the evolution of energy is compared to its the-
oretical estimate cos(2ωtht ) in Fig. 9(a), where there is no
periodic oscillation, indicating a breakdown of the scissors-
mode oscillation, which can be seen more explicitly from the
contour plot of density |ψ (x, y, 0)|2 at times t = 0 [Fig. 9(b)],
t = 4 [Fig. 9(c)], (d) t = 8 [Fig. 9(d)], and t = 12 [Fig. 9(3)].
Due to a stronger trap in the y direction, the y = 0 droplets
are larger, accommodating a larger number of atoms than the
y �= 0 droplets, as can be seen in the initial density in Fig. 9(b).
In Fig. 9(a) we see that the oscillation agrees with the the-
oretical estimate up to 1

4 cycle and after this the oscillation
becomes irregular. At t = 4 in Fig. 9(c), at the end of 1

4 cycle,
the supersolid rotated about 4◦. After that the rotation angle
increases to about 6◦ at t = 8 in Fig. 9(d) and remains roughly
the same thereafter, viz., t = 12 in Fig. 9(e), indicating a
breakdown of the scissors-mode oscillation.

We also studied the scissors-mode oscillation of a seven-
droplet triangular-lattice supersolid state in trap A for

FIG. 10. (a) Numerical (num) energy E versus time t during
scissors-mode oscillation of a seven-droplet supersolid of N =
50 000 164Dy atoms of amplitude 4◦ in trap A, with ωy = 60

167 , fitted to
its theoretical estimate (th) cos(2 × ωtht ). Contour plot of the density
|ψ (x, y, 0)|2 of this supersolid undergoing scissors-mode oscillation
at times (b) t = 0, (c) t = 4, (d) t = 8, and (e) t = 12.

N = 50 000 164Dy atoms. In this case the panorama is quite
similar to the case studied in Fig. 9, as exhibited in Fig. 10
through the evolution of energy [Fig. 10(a)] and the contour
plot of density |ψ (x, y, 0)|2 at times t = 0 [Fig. 10(b)], t = 4
[Fig. 10(c)], t = 8 [Fig. 10(d)], and t = 12 [Fig. 10(f)]. Again,
a lack of periodic oscillation in energy in Fig. 10(a) indicates
a breakdown of the scissors-mode oscillation. The oscillation
is regular up to t = 4 [see Fig. 10(c)], where the angular
displacement of the supersolid is 4◦. After that the angu-
lar displacement increases to about 5◦ and the oscillation
practically stops there [see Figs. 10(d) and 10(e)], as in the
case of the nine-droplet supersolid in Fig. 9. Similar results
were also found in related studies [78,79]. The breakdown of
scissors-mode oscillation in these cases of a quasi-2D dipolar
supersolid does not mean a lack of superfluidity, because the
confining trap does not have a large asymmetry in the x-y
plane as required for a sustained scissors-mode oscillation.

IV. SUMMARY

In this paper we studied the linear dipole-mode and angular
scissors-mode oscillation dynamics of a dipolar supersolid us-
ing a beyond-mean-field model including the LHY interaction
with a view to test both the superfluidity and the rigid solid
structure of the material. The LHY interaction has a higher-
order quartic nonlinear term compared to the cubic nonlinear
term of the mean-field model. The quartic nonlinearity leads
to a higher-order short-range repulsion that stops the collapse
instability resulting from the strong dipolar attraction in the
presence of a moderate short-range repulsion resulting from
the cubic nonlinear term. In the case of dipole-mode oscilla-
tion, both the quasi-1D and quasi-2D supersolids performed
exceeding well on the above-mentioned test, demonstrating
the superfluidity and rigid solid structure of the supersolid.
Only the quasi-1D dipolar supersolid was capable of exe-
cuting a stable angular scissors-mode oscillation without any
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deformation of the crystalline structure in a highly asymmetric
trap in the x-y plane. The relatively large asymmetry of the
trap is also necessary for a sustained angular scissors-mode
oscillation of a nondipolar BEC. However, in such a trap,
it is not possible to have a quasi-2D supersolid; a quasi-2D
supersolid naturally appears in a trap with small asymmetry in
the x-y plane, but such a trap was found to be not appropriate
for a sustained angular scissors-mode oscillation.

In the study of linear dipole-mode oscillation, we con-
sidered a quasi-1D three-droplet supersolid and a quasi-2D
nine-droplet supersolid in trap A [25,26]. The study of angu-
lar scissors-mode oscillation was performed with a quasi-1D
three-droplet and a five-droplet supersolid in trap A and with
a quasi-1D three-droplet supersolid in trap B with appropri-
ate parameters. The dipole-mode oscillation was started by
giving an initial displacement of x0 = 5 of the trap in the x
direction perpendicular to the polarization direction z. The
angular scissors-mode oscillation was started with an initial
rotation of the trap by θ0 = −4◦ around the z axis. For a
periodic scissors-mode oscillation, the trap should be asym-
metric in the x-y plane with a moderate anisotropy between
upper and lower limits. The frequency of the dipole-mode
oscillation was found to be identical to the theoretical fre-
quency ωx in all cases; that of the scissors-mode oscillation
was close to, but always less than, its theoretical estimate
ωth, as found also in other studies [65,66]. The deviation
of the scissors-mode frequency from its theoretical estimate

decreases as the asymmetry of the trap in the x-y plane in-
creased and also as the overall strength of the trap increased
from trap B to trap A. The frequency of the scissors-mode
oscillation was found to be independent of the number of
atoms for a fixed number of droplets in the supersolid but
increased with the number of droplets in the supersolid. For
the same atomic interaction parameters (a and add) and trap
frequencies, the present results for scissors-mode frequency
are in excellent agreement with those of Refs. [65,66]. The
present study of scissors-mode oscillation is complementary
to that of Refs. [65,66], where the authors studied the effect
of the variation of the atomic interaction on the scissors-mode
oscillation. In this paper we studied the effect of the variation
of the trap parameters and the number of atoms and droplets
on the scissors-mode oscillation. Specifically, we studied the
evolution of the scissors-mode oscillation with a variation of
the angular frequency ωy in the y direction, while the trap
passes from a quasi-1D to a quasi-2D type. The results of
the present study can readily be tested using the experimental
setup of Ref. [65].
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